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Abstract
For any small positive real ε and integer t > 1

ε
, we build a graph with a vertex deletion set of size t

to a tree, and twin-width greater than 2(1−ε)t. In particular, this shows that the twin-width is
sometimes exponential in the treewidth, in the so-called oriented twin-width and grid number, and
that adding an apex may multiply the twin-width by at least 2 − ε. Except for the one in oriented
twin-width, these lower bounds are essentially tight.

1 Introduction

Twin-width is a graph parameter introduced by Bonnet, Kim, Thomassé, and Watrigant [12].
It is defined by means of trigraphs. A trigraph is a graph with some edges colored black, and
some colored red. A (vertex) contraction consists of merging two (non-necessarily adjacent)
vertices, say, u, v into a vertex w, and keeping every edge wz black if and only if uz and
vz were previously black edges. The other edges incident to w become red (if not already),
and the rest of the trigraph remains the same. A contraction sequence of an n-vertex graph
G is a sequence of trigraphs G = Gn, . . . , G1 = K1 such that Gi is obtained from Gi+1 by
performing one contraction. A d-sequence is a contraction sequence in which every vertex of
every trigraph has at most d red edges incident to it. The twin-width of G, denoted by tww(G),
is then the minimum integer d such that G admits a d-sequence. Figure 1 gives an example
of a graph with a 2-sequence, i.e., of twin-width at most 2. Twin-width can be naturally
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Figure 1 A 2-sequence witnessing that the initial graph has twin-width at most 2.

extended to matrices (unordered [12] or ordered [9]) over a finite alphabet, and hence to any
binary structures. Classes of binary structures with bounded twin-width include graphs with
bounded treewidth, bounded clique-width, Kt-minor free graphs, posets with antichains of
bounded size, strict subclasses of permutation graphs, map graphs, bounded-degree string
graphs [12], segment graphs with no Kt,t subgraph, visibility graphs of 1.5D terrains without
large half-graphs, visibility graphs of simple polygons without large independent sets [6],
as well as Ω(logn)-subdivisions of n-vertex graphs, classes with bounded queue number or
bounded stack number, and some classes of cubic expanders [7].

Despite their apparent generality, classes of bounded twin-width are small [7], χ-bounded [8],
even quasi-polynomially χ-bounded [17], preserved (albeit with a higher upper bound)
by first-order transductions [12], and by the usual graph products when one graph has
bounded degree [16, 7], have VC density 1 [11, 19], admit, when O(1)-sequences are given,
a fixed-parameter tractable first-order model checking [12], an (almost) single-exponential
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parameterized algorithm for various problems that are W[1]-hard in general [8], as well as
a parameterized fully-polynomial linear algorithm for counting triangles [15], an (almost)
linear representation [18], a stronger regularity lemma [19], etc.

In all these applications, the upper bound on twin-width, although somewhat hidden
in the previous paragraph, plays a role. There is then an incentive to obtain as low as possible
upper bounds on particular classes of bounded twin-width. To give one concrete algorithmic
example, an independent set of size k can be found in time O(k2d2kn) in an n-vertex graph
given with a d-sequence [8]. This is relatively practical for moderate values of k, with the
guarantee that d is below 10, but not when d is merely upperbounded by 1010. Another
motivating example: triangle-free graphs of twin-width at most d are d + 2-colorable [8],
a stronger fact in the former case than in the latter.

In that line of work, Balabán and Hlinený show that posets of width k (i.e., with antichains
of size at most k) have twin-width at most 9k [2]. Unit interval graphs have twin-width
at most 2 [8], and proper k-mixed-thin graphs (a recently proposed generalization of unit
interval graphs) have twin-width O(k) [3]. Every graph obtained by subdividing at least
2 logn (throughout the paper, all logs are in base 2) times each edge of an n-vertex graph has
twin-width at most 4 [4]. Schidler and Szeider report the (exact) twin-width of a collection of
graphs [20], obtained via SAT encodings. Jacob and Pilipczuk [14] give the current best upper
bound of 183 on the twin-width of planar graphs, while graphs with genus g have twin-width
O(g) [13]. Most relevant to our paper, for every graph G, tww(G) 6 3 · 2tw(G)−1 [14], where
tw(G) denotes the treewidth of G.

Conversely, one may ask the following.

I Question 1. What is the largest twin-width a graph of treewidth k can have?

A lower bound of Ω(k) comes from the existence of n-vertex graphs with twin-width Ω(n)
(since the treewidth is trivially upperbounded by n− 1). This is almost surely the case of
graphs drawn from G(n, 1/2). Alternatively, the n-vertex Paley graph (for a prime n such
that n ≡ 1 mod 4) has precisely twin-width (n− 1)/2 [1]. Another example to derive the
linear lower bound is the power set graph [14]. Improving on this lower bound is not obvious,
and Θ(k) is indeed the answer to Question 1 within the class of planar graphs [14], or when
replacing ’treewidth’ by ’cliquewidth’ or ’pathwidth.’

When switching ’twin-width’ and ’treewidth’ in Question 1, the gap is basically as large
as possible: There are n-vertex graphs with treewidth Ω(n) and twin-width at most 6, in
the iterated 2-lifts of K4 [7, 5].

An important characterization of bounded twin-width is via the absence of complex
divisions of an adjacency matrix. A matrix has a k-mixed minor if its row (resp. column) set
can be partitioned into k sets of consecutive rows (resp. columns), such that each of the k2

cells defined by this k-division contains at least two distinct rows and at least two distinct
columns. The mixed number of a matrix M is the largest integer k such that M admits
a k-mixed minor. The mixed number of a graph G, denoted by mxn(G), is the minimum,
taken among all the adjacency matrices M of G, of the mixed number of M . The following
was shown.

I Theorem 1 ([12]). For every graph G, (mxn(G)− 1)/2 6 tww(G) 6 22O(mxn(G)) .

In sparse graphs (here, excluding a fixed Kt,t as a subgraph), the previous theorem is
both simpler to formulate and has a better dependency. A matrix has a k-grid minor if it
has a k-division with at least one 1-entry in each of its k2 cells. The grid number of a matrix
and of a graph G, denoted by gn(G), are defined analogously to the previous paragraph. We
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only state the inequality that is useful to bound the twin-width of a sparse class, but is valid
in general.

I Theorem 2 (follows from [12]). For every graph G, tww(G) 6 2O(gn(G)).

Theorems 1 and 2 allow to bound the twin-width of a class C by exhibiting, for every G ∈ C,
an adjacency matrix of G without large mixed or grid minor. Therefore one merely has to
order V (G) (the vertex set of G) in an appropriate way. The double (resp. simple) exponential
dependency in mixed number (resp. grid number) implies relatively weak twin-width upper
bounds. For several classes whose twin-width was originally upperbounded via Theorem 1,
better bounds were later given by avoiding this theorem (see [7, 2, 14, 13, 4]). Still for some
geometric graph classes, bypassing Theorem 1 seems complicated (see [6]). And in general
(since this theorem is at the basis of several other applications, see for instance [7, 8, 9]) it
would help to have an improved upper bound of tww(G); in particular a negative answer to
the following question.

I Question 2. Is twin-width sometimes exponential in mixed and grid number?

A variant of twin-width, called oriented twin-width, adds an orientation to the red edges
(see [10]). The red edge (arc) is oriented away from the contracted vertex. The oriented
twin-width d of a graph G, denoted by otww(G), is then defined similarly as twin-width
by tolerating more than d red arcs incident to a vertex, as long as at most d of them are
out-going. Rather surprisingly twin-width and oriented twin-width are tied.

I Theorem 3 ([10]). For every graph G, otww(G) 6 tww(G) 6 22O(otww(G)) .

Classic results show that planar graphs have oriented twin-width at most 9 [10]. Thus it
would be appreciable to lower the dependency of tww(G) in otww(G).

I Question 3. Is twin-width sometimes exponential in oriented twin-width?

An elementary argument shows that when adding an apex (i.e., an additional vertex with
an arbitrary neighborhood) to a graph G, the twin-width of the obtained graph is at most
2 · tww(G) + 1. Again it is not clear whether this increase could be made smaller.

I Question 4. Does twin-width sometimes essentially double when an apex is added?

Note that Question 1 is asked by Jacob and Pilipczuk [14], and Question 3 is posed by
Bonnet et al. [10], and is closely related to Question 2.

Our contribution.

With a single construction, we answer all these questions. The answer to Questions 2, 3,
and 4 is affirmative, while the answer to Question 1 is 2Θ(k), which confirms the intuition of
the authors of [14]. More precisely, we show the following.

I Theorem 4. For every real 0 < ε 6 1/2 and integer t > 1/ε, there is a graph Gt,ε with
a feedback vertex set of size t and such that tww(Gt,ε) > 2(1−ε)t.

The graph Gt,ε has in particular treewidth at most t+ 1, grid number at most t+ 2, and
oriented twin-width at most t+ 1. Thus

tww(Gt,ε) > 2(1−ε)(tw(Gt,ε)−1),
tww(Gt,ε) > 2(1−ε)(gn(Gt,ε)−2), and
tww(Gt,ε) > 2(1−ε)(otww(Gt,ε)−1).
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Hence Theorem 4 has the following consequences.

I Corollary 5. For every small ε > 0, there is a family F of graphs with unbounded twin-width
such that for every G ∈ F : tww(G) > 2(1−ε)(tw(G)−1).

Up to multiplicative factors, it matches the known upper bound [14, 12], and essentially
settles Question 1. The following answers Question 2.

I Corollary 6. For every small ε > 0, there is a family F of graphs with unbounded twin-width
such that for every G ∈ F : tww(G) > 2(1−ε)(gn(G)−2).

The following answers Question 3.

I Corollary 7. For every small ε > 0, there is a family F of graphs with unbounded twin-width
such that for every G ∈ F : tww(G) > 2(1−ε)(otww(G)−1).

The following answers Question 4.

I Corollary 8. For every small ε > 0, there is a family F of graphs with unbounded twin-width
such that for every G ∈ F : tww(G) > (2− ε)tww(G− {v}), where v is a single vertex of G.

We leave as an open question if the twin-width upper bound in oriented twin-width and
mixed number can be made single-exponential.

2 Preliminaries

For i and j two integers, we denote by [i, j] the set of integers that are at least i and at
most j. For every integer i, [i] is a shorthand for [1, i]. We use the standard graph-theoretic
notations: V (G) denotes the vertex set of a graph G, E(G) denotes its edge set, G[S] denotes
the subgraph of G induced by S, etc.

We give an alternative approach to contraction sequences. The twin-width of a graph,
introduced in [12], can be defined in the following way (complementary to the one given
in introduction). A partition sequence of an n-vertex graph G, is a sequence Pn, . . . ,P1 of
partitions of its vertex set V (G), such that Pn is the set of singletons {{v} : v ∈ V (G)},
P1 is the singleton set {V (G)}, and for every 2 6 i 6 n, Pi−1 is obtained from Pi by
merging two of its parts into one. Two parts P, P ′ of a same partition P of V (G) are said
homogeneous if either every pair of vertices u ∈ P, v ∈ P ′ are non-adjacent, or every pair of
vertices u ∈ P, v ∈ P ′ are adjacent. Two non-homogeneous parts are also said red-adjacent.
The red degree of a part P ∈ P is the number of other parts of P which are red-adjacent
to P . Finally the twin-width of G, denoted by tww(G), is the least integer d such that there
is a partition sequence Pn, . . . ,P1 of G with every part of every Pi (1 6 i 6 n) having red
degree at most d.

The definition of the previous paragraph is equivalent to the one given in introduction,
via contraction sequences. Indeed the trigraph Gi is obtained from partition Pi, by having
one vertex per part of Pi, a black edge between any fully adjacent pair of parts, and a red
edge between red-adjacent parts. A partial contraction sequence is a sequence of trigraphs
Gn, . . . , Gi, for some i ∈ [n]. A (full) contraction sequence is one such that i = 1. We
naturally consider the trigraph Gj to come after (resp. before) Gj′ if j < j′ (resp. j > j′).
Thus when we write the first trigraph of the sequence S to satisfy X (or the first time
a trigraph of S satisfies X) we mean the trigraph Gj with largest index j among those
satisfying X. The same goes for partition sequences.
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If u is a vertex of a trigraph H, then u(G) denotes the set of vertices of G eventually
contracted into u in H. We denote by PG(H) (and P(H) when G is clear from the context)
the partition {u(G) : u ∈ V (H)} of V (G). We may refer to a part of H as any set in
{u(G) : u ∈ V (H)}. We may also refer to a part of a contraction/partition sequence as any
part of one its trigraphs/partitions. A contraction involves a vertex v if it produces a new
part (of size at least 2) containing v. In general, we use trigraphs and partitioned graphs
somewhat interchangeably, when one notion appears more convenient than the other.

3 Proof of Theorem 4

We fix once and for all, 0 < ε 6 1/2, a possibly arbitrarily small positive real. We build for
every integer t > 1/ε, a graph Gt,ε, that we shorten to Gt. We set

f(t) =
⌈
2 + Ct2(1−ε)t(2+Ct(2(1−ε)t+1))

⌉
where Ct = 2(1−ε)t/ε.

Construction of Gt. Let T be the full 2t-ary tree of depth f(t), i.e., with root-to-leaf
paths on f(t) edges. Let X be a set of t vertices, that we may identify to [t]. The vertex
set of Gt is X ] V (T ). The edges of Gt are such that G[X] is an independent set, and
G[V (T )] = T . The edges between V (T ) are X are such that

the root of T has no neighbor in X, and
the 2t children (in T ) of every internal node of T each have a distinct neighborhood in X.

Note that this defines a single graph up to isomorphism. By a slight abuse of language, we
may utilize the usual vocabulary on trees directly on Gt. By root, internal node, child, parent,
leaf of Gt, we mean the equivalent in T .

We start with this straightforward observation.

I Lemma 9. Gt has treewidth at most t+ 1.

Proof. The setX is a feedback vertex set of Gt of size t, thus tw(Gt) 6 fvs(Gt)+1 6 t+1. J

The following is the core lemma, which occupies us for the remainder of the section.

I Lemma 10. Gt has twin-width greater than 2(1−ε)t.

Proof. We assume, by way of contradiction, that Gt admits a d-sequence with d 6 2(1−ε)t.
We consider the partial d-sequence S, starting at Gt, and ending right before the first
contraction involving a child of the root. We first show that no vertex of X can be involved
in a contraction of S. Note that it implies, in particular, that the root cannot be involved in
a contraction of S.

B Claim 11. No part of S contains more than one vertex of X.

Proof of the Claim: Observe that, for every i 6= j ∈ [t], there are 2t−1 sets of 2[t]

containing exactly one of i, j: 2t−2 only contain i, and 2t−2 only contain j. Recall now that
by assumption, in every trigraph of S, every child of the root is alone in its part. Thus a part
P of S such that |P ∩X| > 2 would have red degree at least 2t−1 > 2(1−ε)t > d. ♦

B Claim 12. No part of S intersects both X and V (T ).
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Proof of the Claim: For the sake of contradiction, consider the first occurrence of a part
P ⊇ {x, v} with x ∈ X and v ∈ V (T ). Vertex x is adjacent to half of the children of the root,
whereas v is adjacent to at most one of them, or all of them (if v is itself the root). In both
cases, this entails at least 2t−1 − 1 red edges for P towards children of the root. If v is not
a grandchild of the root, the red degree of P is at least 2t−1. We thus assume that v is
a grandchild of the root.

As t > 2, there is a y ∈ X \ {x}. Let v′ be the child of v whose neighborhood in X is
exactly {y}. This vertex exists since f(t) > 3. If P contains v′, P is also red-adjacent to {y}
(indeed a part, by Claim 11). If instead, P does not contain v′, then P is also red-adjacent
to the part containing v′.

Thus, in any case, the red degree of P is at least 2t−1 > 2(1−ε)t > d. ♦

From Claims 11 and 12, we immediately obtain:

B Claim 13. Every part of S intersecting X is a singleton.

Crucial to the proof, we introduce two properties P, and later Q, on internal nodes
v ∈ V (T ) in trigraphs H ∈ S. Property P is defined by

P(v,H) = “At least 2εt children of v are in the same part of P(H).”

We first remark that any internal node in a non-singleton part verifies P.

B Claim 14. Let H be any trigraph of S and v be any internal node of T whose part in
P(H) is not a singleton. Then P(v,H) holds.

Proof of the Claim: Let P be the part of v (i.e., the one containing v) in P(H), and
u ∈ P \ {v}. At least 2t − 1 children of v are not adjacent to u. Thus these 2t − 1 vertices
have to be in at most d+ 1 6 2(1−ε)t + 1 parts. These parts are part P , plus at most d parts
linked to P by a red edge. Since (2εt − 1)(2(1−ε)t + 1) < 2t − 1 (recall that ε < 1/2), one of
these parts (possibly P ) contains at least 2εt children of v. ♦

As the merge of a singleton part {v} with any other part does not change the intersections
of parts with the set of children of v, we get a slightly stronger claim.

B Claim 15. Let v be an internal node of T , and H be the last trigraph of S for which v is
in a singleton part of P(H). Then P(v,H) holds.

A preleaf is an internal node of T adjacent to a leaf, i.e., the parent of some leaves. We
obtain the following as a direct consequence of Claim 14.

B Claim 16. In any trigraph H ∈ S, any non-preleaf internal node v ∈ V (T ) that verifies
P(v,H) has at least 2εt children u verifying P(u,H).

We define the property Q on internal nodes v of T and trigraphs H ∈ S by induction:

Q(v,H) =
{
P(v,H) if v is a preleaf, and otherwise
Q(u1, H) ∧Q(u2, H) for some pair u1 6= u2 of children of v.

That is, Q is defined as P for preleaves, and otherwise, Q holds when it holds for at least
two of its children. Observe that P and Q are monotone in the following sense: If P(v,H)
(resp. Q(v,H)) holds, then P(v,H ′) (resp. Q(v,H ′)) holds for every subsequent trigraph H ′
of the partial d-sequence S. We may write that v satisfies P (resp. Q) in H when P(v,H)
(resp. Q(v,H)) holds, and may add for the first time if no trigraph H ′ ∈ S before H is such
that P(v,H ′) (resp. Q(v,H ′)) holds.
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B Claim 17. For any trigraph H ∈ S and internal node v of T , P(v,H) implies Q(v,H).

Proof of the Claim: This is a tautology if v is a preleaf. The induction step is ensured
by Claim 16, since 2εt > 2. ♦

At the end of the partial d-sequence S, we know, by Claim 15, that at least one child
of the root satisfies P, hence satisfies Q, by Claim 17. Thus the first time in the partial
d-sequence S that Q(v,H) holds, for a trigraph H ∈ S and a child v of the root, is well-defined.
We call F this trigraph, and v0 a child of the root such that Q(v0, F ) holds.

We now find many nodes satisfying Q in F , whose parents form a vertical path of singleton
parts.

B Claim 18. There is a set Q ⊂ V (T ) of at least f(t)− 2 internal nodes such that
for every v ∈ Q, Q(v, F ) holds,
the parent of any v ∈ Q is in a singleton part of P(F ), and
and no two distinct nodes of Q are in an ancestor-descendant relationship.

Proof of the Claim: We construct by recurrence two sequences (vi)i∈[f(t)−2], (qi)i∈[0,f(t)−3]
of internal nodes of T such that for all i ∈ [f(t)−2], vi is a child of vi−1, vi−1 is in a singleton
part of P(F ), and vi−1 has a child qi−1 6= vi for which Q(qi−1, F ) holds.

Assume that the sequence is defined up to vi, for some i < f(t)− 2. We will maintain
the additional invariant that vi satisfies Q for the first time in F . This is the case for i = 0.

As vi is not a preleaf, it satisfies Q for the first time when a second child of vi satisfies Q.
Let vi+1 be this second child, and qi be the first child to satisfy Q (breaking ties arbitrarily
if both children satisfy Q for the first time in F ). The vertex vi+1 satisfies Q for the first
time in F . Thus our invariant is preserved.

For every i ∈ [f(t)− 2], vi is in a singleton part of P(F ). Indeed, by Claim 15, if vi was
not in a singleton part of P(F ), vi would satisfy P, hence Q, in the trigraph preceding F ;
a contradiction.

The set Q can thus be defined as {qi : i ∈ [0, f(t)− 3]}. We already checked that the
first two requirements of the lemma are fulfilled. No pair in Q is in an ancestor-descendant
relationship since the nodes of Q are all children of a root-to-leaf path made by the vis
(see Figure 2). ♦

root

v0

q0v1

q1v2

q2

vhpreleaf

leaves

non-preleaf internal nodes

Figure 2 The nodes (vi)i∈[0,h] and (qi)[0,h−1] (h = f(t) − 2) satisfy P and Q in F . The vis and
the root (nodes circled in blue) are in singleton parts of F . The other represented nodes can be in
larger parts (shaded areas).
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Let B the vertices w ∈ V (F ) such that w(G) contains at least 2εt children of the same
node of T . Each vertex of B is red-adjacent to at least log(2εt) = εt (singleton) parts of X.
Therefore, since the red degree of (singleton) parts of X is at most 2(1−ε)t:

|B| 6 2(1−ε)t

ε
.

Next we show that there is relatively large set of vertices of F each corresponding to
a non-singleton part that contains an internal node of T .

B Claim 19. There is a set B′ ⊆ V (F ) of size at least

1
(1− ε)t log

(
f(t)− 2
|B|

)
− 1

such that for every b ∈ B′ there is an internal node v of T with v ∈ b(Gt) and |b(Gt)| > 2.

Proof of the Claim: Let s := 1
(1−ε)t log( f(t)−2

|B| )− 1. Our goal is to construct a sequence
(bi)i∈[0,s] of distinct vertices of F such that for every i ∈ [s],

part bi(Gt) is not a singleton and contains an internal node of T. (1)

We first focus on finding b0. Note that b0 need not satisfy Invariant (1), but will be chosen
to force the existence of b1 itself satisfying (1) and starting the induction.

Let Q := {qj : 0 6 j 6 f(t) − 3} ⊂ V (T ) be as described in Claim 18. Every qj ∈ Q
has (at least) one descendant q′j that is a preleaf and satisfies Q, hence P, in F . The q′js are
pairwise distinct because no two nodes of Q are in an ancestor-descendant relationship. We
set Q′ := {q′j : 0 6 j 6 f(t)− 3}.

Now for every q′j , at least 2εt of its children are in the same part of P(F ); hence, this part
corresponds to a vertex in B. By the pigeonhole principle, there is a b0 ∈ B that contains at
least 2εt children of at least (f(t)− 2)/|B| nodes of Q′.

For each bi, we define Qi ⊂ Q as the set of vertices qj such that
bi(Gt) contains a (not necessarily strict) descendant z of qj , and
no part bi′(Gt) with i′ < i contains a node on the path between qj and z in T .

Thus |Q0| > (f(t)− 2)/|B|.
We now assume that bi ∈ V (F ), for some 0 6 i < s, has been found with

|Qi| >
f(t)− 2
|B| · 2i(1−ε)t . (2)

Observe that Q0 satisfies (2). We construct bi+1, Qi+1 satisfying the invariants (1) and (2).
For each qj ∈ Qi, consider the highest descendant zj of qj in bi(Gt), and z′j the parent of

zj in T . By construction, the part Pj of P(F ) containing z′j is not a bk(Gt) for any k 6 i.
Part Pj is linked to bi(Gt) by a red edge. Therefore there are at most 2(1−ε)t such parts Pj .
In particular, there is a bi+1 ∈ V (F ) such that bi+1(Gt) contains at least

|Qi|
d
>

f(t)− 2
|B| · 2i(1−ε)t ·

1
2(1−ε)t = f(t)− 2

|B| · 2(i+1)(1−ε)t

parents z′j of highest descendants zj .
Remark that bi+1(Gt) has size at least two while (f(t)− 2)/(|B| · 2(i+1)(1−ε)t) > 1, which

holds since i < s. Thus bi+1(Gt) does not contain any parent vj of a qj (since the vjs are
in singleton parts). In particular, |Qi+1| > (f(t) − 2)/(|B| · 2(i+1)(1−ε)t), and bi+1, Qi+1
satisfy (1) and (2).
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Finally, the set B′ := {bi : 1 6 i 6 s} has the required properties. ♦

We can now finish the proof of the lemma.
For every bi ∈ B′, let ui ∈ bi(Gt) be an internal node of T . As bi(Gt) > 2, ui satisfies P

in F . This implies that bi or a red neighbor of bi is in B. Therefore, the total number of red
edges incident to a vertex of B is at least |B′| − |B|. Thus there is a vertex in B with red
degree at least (|B′| − |B|)/|B|. This is a contradiction since

|B′| − |B|
|B|

= |B
′|
|B|
− 1 >

(
1

(1− ε)t log
(
f(t)− 2
|B|

)
− 1
)
· 1
|B|
− 1

>

(
1

(1− ε)t log
(

2(1−ε)t(2+Ct·(2(1−ε)t+1))
)
− 1
)
· 1
|B|
− 1

=
(

(2 + Ct · (2(1−ε)t + 1))− 1
)
· 1
|B|
− 1 > 2(1−ε)t + 1− 1 = 2(1−ε)t > d.

since, we recall, f(t) =
⌈
2 + Ct · 2(1−ε)t(2+Ct·(2(1−ε)t+1))

⌉
and Ct = 2(1−ε)t

ε
> |B|. J

Since X is a feedback vertex set of size t of Gt, Lemma 10 implies Theorem 4, and
hence Corollary 5.

As the twin-width of T is 2, adding the t apices in X, multiplies the twin-width by at least
2t(1−ε− 1

t ). Thus one apex in X multiplies the twin-width by at least 21−ε− 1
t , which can be

made arbitrarily close to 2. This establishes Corollary 8.

4 Oriented twin-width and grid number

In this section, we check that Gt has oriented twin-width at most t+ 1, and grid number
at most t+ 2.

A (partial) oriented contraction sequence is defined similarly as a (partial) contraction
sequence with every red edge replaced by a red arc leaving the newly contracted vertex.
Then a (partial) oriented d-sequence is such that all the vertices of all its ditrigraphs have
at most d out-going red arcs. The oriented twin-width of a graph G, denoted by otww(G), is
the minimum integer d such that G admits an oriented d-sequence.

I Lemma 20. The oriented twin-width of Gt is at most t+ 1.

Proof. We observe that the 2-sequence for trees [12] is an oriented 1-sequence. We contract
T to a single vertex (without touching X) in that manner. This yields a partial oriented
t+ 1-sequence for Gt ending on a t+ 1-vertex ditrigraph, which can be contracted in any
way. This contraction sequence witnesses that otww(Gt) 6 t+ 1. J

Thus Corollary 7 holds.

We finish by establishing Corollary 6.

I Lemma 21. The grid number of Gt is at most t+ 2.

Proof. Recall that V (Gt) = X ] V (T ). Let ≺ be the total order on V (Gt) that puts first
all the vertices of X in any order, then from left to right, all the leaves of T , followed by
the preleaves, the nodes at depth f(t) − 2, the nodes at depth f(t) − 3, and so on, up to
the root. We denote by M the adjacency matrix of Gt ordered by ≺.
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Let MT be the submatrix of M obtained by deleting the t rows and t columns corres-
ponding to X. Note that the grid number of M is at most gn(MT ) + t. We claim that there
is no 3-grid minor in MT .

Indeed, in the order ≺, above the diagonal of MT there is no pair of 1-entries in strictly
decreasing positions. Thus overall there is no triple of 1-entries in strictly decreasing positions.
Thus no 3-grid minor is possible in MT . J
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