
Journal of Computational Geometry jocg.org

Fine-grained complexity of coloring unit disks and balls∗1

Csaba Biró,†Édouard Bonnet,‡Dániel Marx,§Tillmann Miltzow,¶Paweł Rzążewski,‖2

Abstract. On planar graphs, many classic algorithmic problems enjoy a certain “square3

root phenomenon” and can be solved significantly faster than what is known to be possible4

on general graphs: for example, Independent Set, 3-Coloring, Hamiltonian Cycle,5

Dominating Set can be solved in time 2O(
√
n) on an n-vertex planar graph, while no 2o(n)

6

algorithms exist for general graphs, assuming the Exponential Time Hypothesis (ETH).7

The square root in the exponent seems to be best possible for planar graphs: assuming the8

ETH, the running time for these problems cannot be improved to 2o(
√
n). In some cases, a9

similar speedup can be obtained for 2-dimensional geometric problems, for example, there10

are 2O(
√
n logn) time algorithms for Independent Set on unit disk graphs or for TSP on11

2-dimensional point sets.12

In this paper, we explore whether such a speedup is possible for geometric coloring13

problems. On the one hand, geometric objects can behave similarly to planar graphs: 3-14

Coloring can be solved in time 2O(
√
n) on the intersection graph of n disks in the plane and,15

assuming the ETH, there is no such algorithm with running time 2o(
√
n). On the other hand,16

if the number ` of colors is part of the input, then no such speedup is possible: Coloring the17

intersection graph of n unit disks with ` colors cannot be solved in time 2o(n), assuming the18

ETH. More precisely, we exhibit a smooth increase of complexity as the number ` of colors19

increases: If we restrict the number of colors to ` = Θ(nα) for some 0 6 α 6 1, then the20

problem of coloring the intersection graph of n disks with ` colors21

• can be solved in time exp
(
O(n

1+α
2 log n)

)
= exp

(
O(
√
n` log n)

)
, and22

• cannot be solved in time exp
(
o(n

1+α
2)
)

= exp
(
o(
√
n`)
)
, even on unit disks, unless23

the ETH fails.24

More generally, we consider the problem of coloring d-dimensional balls in the Eu-25

clidean space and obtain analogous results showing that the problem26

∗Supported by the European Research Council (ERC) Starting Grant PARAMTIGHT (no. 280152) and
Consolidator Grant SYSTEMATICGRAPH (no. 725978).
†Department of Mathematics, University of Louisville, csaba.biro@louisville.edu
‡Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France,

edouard.bonnet@dauphine.fr
§Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI),

dmarx@cs.bme.hu
¶Université libre de Bruxelles (ULB), Brussels, Belgium, t.miltzow@gmail.com
‖Faculty of Mathematics and Information Science, Warsaw University of Technology,

p.rzazewski@mini.pw.edu.pl

http://jocg.org/

Journal of Computational Geometry jocg.org

• can be solved in time exp
(
O(n

d−1+α
d log n)

)
= exp

(
O(n1−1/d`1/d log n)

)
, and27

• cannot be solved in time exp
(
O(n

d−1+α
d
−ε)
)

= exp
(
O(n1−1/d−ε`1/d)

)
for any ε > 0,28

even for unit balls, unless the ETH fails.29

Finally, we prove that fatness is crucial to obtain subexponential algorithms for30

coloring. We show that existence of an algorithm coloring an intersection graph of segments31

using a constant number of colors in time 2o(n) already refutes the ETH.32

1 Introduction33

There are many examples of 2-dimensional geometric problems that are NP-hard, but can34

be solved significantly faster than the general case of the problem: for example, there are35

2O(
√
n logn) time algorithms for TSP on 2-dimensional point sets or for Independent Set36

on the intersection graph of unit disks in the plane [1, 23, 30], while only 2O(n) time algo-37

rithms are known for these problems on general metrics or on arbitrary graphs. There is38

evidence that these running times are essentially best possible: under the Exponential Time39

Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [19], the 2O(
√
n logn) time algorithms40

for these 2-dimensional problems cannot be improved to 2o(
√
n), and the 2O(n) algorithms41

for the general case cannot be improved to 2o(n). Thus running times with a square root in42

the exponent seems to be the natural complexity behavior of many 2-dimensional geometric43

problems. There is a similar “square root phenomenon” for planar graphs, where running44

times of the form 2O(
√
n), 2O(

√
k) · nO(1), or nO(

√
k) are known for a number of problems45

[4, 7–15, 17, 18, 20, 21, 23, 27, 28, 31]. More generally, for d-dimensional geometric prob-46

lems, running times of the form 2O(n1−1/d) or nO(k1−1/d) appear naturally, and Marx and47

Sidiropoulos [24] showed that, assuming the ETH, this form of running time is essentially48

best possible for some problems.49

In this paper, we explore whether such a speedup is possible for geometric coloring50

problems. Deciding whether an n-vertex graph has an `-coloring can be done in time `O(n)
51

by brute force, or in time 2O(n) using dynamic programming. On planar graphs, we can52

decide 3-colorability significantly faster in time 2O(
√
n), for example, by observing that planar53

graphs have treewidth O(
√
n). Let us consider now the problem of coloring the intersection54

graph of a set of disks in the 2-dimensional plane, that is, assigning a color to each disk55

such that if two disks intersect, then they receive different colors. For a constant number of56

colors, geometric objects can behave similarly to planar graphs: 3-Coloring can be solved57

in time 2O(
√
n) on the intersection graph of n disks in the plane and, assuming the ETH,58

there is no such algorithm with running time 2o(
√
n). However, while every planar graph59

is 4-colorable, disks graphs can contain arbitrary large cliques, and hence `-colorability is60

a meaningful question for larger, non-constant, values of ` as well. We show that if the61

number ` of colors is part of the input and can be up to Θ(n), then, surprisingly, no speedup62

is possible: Coloring the intersection graph of n disks with ` colors cannot be solved in63

time 2o(n), assuming the ETH. Thus we understand the complexity of the problem when64

the number of colors is a constant or Θ(n), but what exactly happens between these two65

http://jocg.org/

Journal of Computational Geometry jocg.org

extremes? Our main 2-dimensional result exhibits a smooth increase of complexity as the66

number ` of colors increases.67

Theorem 1. For any fixed 0 6 α 6 1, the problem of coloring the intersection graph of n68

disks with ` = Θ(nα) colors69

• can be solved in time 2O(n
1+α
2 logn) = 2O(

√
n` logn), and70

• cannot be solved in time 2o(n
1+α
2) = 2o(

√
n`), even for unit disks, unless the ETH fails.71

Let us remark that when we express the running time as a function of two parameters72

(number n of disks and number ` of colors) it is not obvious what we mean by claiming that a73

running time is “best possible.” In the statement of Theorem 1, we follow Fomin et al. [16],74

who studied the complexity of a two-parameter clustering problem in a similar way: We75

restrict the parameter ` to be Θ(nα) for some fixed α, and determine the complexity under76

this restriction as a univariate function of n.77

The proofs of both statements in Theorem 1 are not very specific to disks and can be78

easily adapted to, say, axis-parallel squares or other fat objects. However, it seems that the79

requirement of fatness is essential for this type of complexity behavior as, for example, the80

coloring of the intersection graphs of line segments does not admit any speedup compared81

to the 2O(n) algorithm, even for a constant number of colors.82

Theorem 2. There is no 2o(n) time algorithm for 6-Coloring the intersection graph of83

line segments in the plane, unless the ETH fails.84

We actually show a stronger statement that proves the lower bound even if the85

segments have only two directions. Let us mention that very recently Theorem 2 was86

strengthened by a subset of authors, who modified the argument to show that the same lower87

bound holds even for 4-Coloring, while for 3-Coloring there exists a subexponential88

algorithm [2]. We include the proof of Theorem 2 for the sake of completeness.89

We observe that both hardness proofs crucially use that the segments can be of90

different (non-constant) lengths. For unit segments, only a weaker lower bound was shown91

in [2]: assuming the ETH, there is no algorithm for 4-Coloring an intersection graph of92

unit segments in time 2o(n
2/3). The exact complexity of coloring the intersection graphs of93

unit line segments remains open.94

How does the complexity change if we look at the generalization of the coloring95

problem into higher dimensions? It is known for some problems that if we generalize the96

problem from two dimensions to d dimensions, then the square root in the exponent of97

the running time changes to a 1 − 1/d power, which makes the running time closer and98

closer to the running time of the brute force as d increases [24]. This may suggest that the99

d-dimensional generalization of Theorem 1 should have (n`)1−1/d in the exponent instead100

of
√
n`. Actually, this is not exactly what happens:1 the correct exponent appears to be101

1The astute reader can quickly realize that 2O((n`)1−1/d) is certainly not the correct answer when, say,
` = Θ(n) and d = 3: then 2O((n`)1−1/d) = 2O(n4/3) is worse than the running time 2O(n) possible even for
general graphs!

http://jocg.org/

Journal of Computational Geometry jocg.org

n1−1/d times `1/d. That is, as d increases, the running time becomes less and less sensitive102

to the number of colors and approaches 2O(n), even for constant number of colors.103

Theorem 3. For any fixed 0 6 α 6 1 and dimension d > 2, the problem of coloring the104

intersection graph of n balls in the d-dimensional Euclidean space with ` = Θ(nα) colors105

• can be solved in time 2
O

(
n
d−1+α

d logn

)
= 2O(n1−1/d`1/d logn), and106

• cannot be solved in time 2
O

(
n
d−1+α

d
−ε

)
for any ε > 0, even for unit balls, unless the107

ETH fails.108

Note that the lower bound of Theorem 3 is slightly weaker than the lower bound109

of Theorem 1: we only prove that the exponent of n cannot be improved by any positive110

ε > 0.111

Techniques. The upper bounds of Theorems 1 and 3 follow fairly easily using112

standard techniques. Clearly, the problem of coloring disks with ` colors is non-trivial only113

if every point of the plane is contained in at most ` disks: otherwise the intersection graph114

would contain a clique of size larger than ` and we would immediately know that there is no115

`-coloring. On the other hand, if every point is contained in at most ` of the n disks, then116

it is known that there is a balanced separator of size O(
√
n`) [26, 29, 30]. By finding such a117

separator and trying every possible coloring on the disks of the separator, we can branch into118

`O(
√
n`) smaller instances (here it is convenient to generalize the problem into the list coloring119

problem, where certain colors are forbidden on certain disks). This recursive procedure has120

the running time claimed in Theorem 1. We can use higher-dimensional separation theorems121

and a similar approach to prove the upper bound of Theorem 3. This part is explained in122

detail in Section 2.123

For the lower bound of Theorem 1, the first observation is that instances with the124

following structure seem to be the hardest: the set of disks consists of g2 groups forming a125

g × g-grid and each group consists of ` pairwise intersecting disks such that disks in group126

(i, j) can intersect disks only from those other groups that are adjacent to (i, j) in the g×g-127

grid. Note that this instance has n = g2` disks. As a sanity check, let us observe that128

the g` disks in any given row have `g` possible different colorings, hence we can solve the129

problem by a dynamic programming algorithm that sweeps the instance row by row in time130

in 2O(g` log `) = 2O(
√
n` log `), which is consistent with the upper bound of Theorem 1. We131

introduce the Partial d-grid Coloring problem as a slight generalization of such grid-like132

instances where some of the g × g groups can be missing, see Figure 1 for an illustration.133

To prove that instances of this form cannot be solved significantly faster, we reduce134

from a restricted version of satisfiability where g2k variables are partitioned into g2 groups of135

size k each such that these groups form a g × g-grid and there are two types of constraints:136

clauses of size at most 3 where each variable comes from the same group and equality137

constraints forcing two variables from two adjacent groups to be equal. It is not very138

difficult to show that any 3-SAT instance with O(gk) variables and O(gk) clauses can be139

embedded into such a problem, hence the ETH implies that the problem cannot be solved in140

http://jocg.org/

Journal of Computational Geometry jocg.org

Figure 1: A grid of disks.

time 2o(gk). We reduce such instances of 3-SAT to the coloring problem by representing each141

group of k variables with a group of ` = O(k) disks and make the following correspondence142

between truth assignments and colorings: if the i-th variable of the group is true, then we143

represent it by giving color 2i− 1 to the (2i− 1)-st disk and color 2i to the 2i-th disk, and144

we represent false by swapping these two colors. Then we implement gadgets that enforce145

the meaning of the clauses and the equality constraints. This way, we create an equivalent146

instance with O(g2) groups of ` = O(k) disks in each group, hence an algorithm with running147

time 2o(g`) = 2o(gk) would violate ETH, which is what we wanted to show.148

A technical issue that arises in the reduction is that we want to consistently assign the149

same meaning to the colors everywhere throughout the created instance (e.g., in each group,150

we want to use colors {2i−1, 2i} on the (2i−1)-st and 2i-th disks of the group). This would151

be easy to do in the more general list coloring version of the problem where it is possible152

to distinguish colors using the lists. However, the colors are completely interchangeable in153

the ordinary coloring problem, for example, we can arbitrarily permute the colors in any154

proper coloring. An obvious approach is to use one of the groups as reference and define the155

color appearing on the i-th disk of the group to be interpreted as the i-th color. Then the156

challenge is to propagate this reference coloring to each and every gadget of the constructed157

instance. This may seem impossible at first: the “wires” propagating the reference coloring158

would need to cross the “wires” propagating streams of information between the gadgets. We159

get around this problem by splitting the reference coloring into two halves and propagating160

them separately.161

The d-dimensional lower bound of Theorem 3 goes along the same lines, but we162

first prove a lower bound for a d-dimensional version of 3-SAT, where there are gd groups163

of variables of size k each, arranged into a g × · · · × g-grid. Based on earlier results by164

Marx and Sidiropoulos [24], we prove an almost tight lower bound for this d-dimensional165

3-SAT by embedding a 3-SAT instance with roughly gd−1k variables and clauses into the166

d-dimensional g × · · · × g-grid. Then the reduction from this problem to coloring unit balls167

in d-dimensional space is very similar to the 2-dimensional case.168

http://jocg.org/

Journal of Computational Geometry jocg.org

2 Algorithms169

The ply (also called thickness) of a family of sets is the maximum number of sets that cover170

a single point. Fix d > 2 and let S be a family of n d-dimensional convex objects. Note171

that the ply of S is at most the chromatic number of the intersection graph of S. Indeed,172

the subfamily of objects covering a same point forms a clique.173

The diameter of a geometric object S is the supremum of the distance between
any pair of points of S. The width of S is the infimum of distances between two parallel
hyperplanes H1, H2, such that S lies between H1 and H2. A family S of geometric objects
is B-fat if for each S ∈ S it holds that

diameter(S)

width(S)
6 B.

The theorem below is a special case of Theorem 26 in the manuscript of Smith and174

Wormald [29], which was informally announced in the extended abstract presented at FOCS175

1998 [30].176

Theorem 4 (Smith, Wormald [29]). For every d > 1 and B > 0, there exists a constant177

c = c(d,B), such that for every B-fat collection S of n d-dimensional convex sets with ply178

at most `, there exists a d-dimensional sphere Q, such that:179

(i) at most d+1
d+2 n elements of S are entirely inside Q,180

(ii) at most d+1
d+2 n elements of S are entirely outside Q,181

(iii) at most cn1−1/d`1/d elements of S intersect Q.182

Now, using a fairly standard divide-and-conquer approach we prove the main result183

of this section, which implies the upper bounds in Theorems 1 and 3.184

Theorem 5. Let G be an intersection graph of a B-fat collection S = {S1, S2, . . . , Sn} of185

n d-dimensional convex objects. For any integer ` 6 n and lists L : S → 2[`], we can decide186

whether G can be properly colored with lists L in time nO(n1−1/d`1/d) = 2O(n1−1/d`1/d logn),187

using polynomial space.188

Proof. First, we will exhaustively check if G contains an (`+ 1)-clique. If so, we can imme-
diately terminate, as ` colors are clearly not sufficient to color G. We can do it in time:

n`+1 · nO(1) = n` · nO(1) = 2` logn · nO(1) = 2O(n1−1/d`1/d log `).

Indeed, ` log n 6 n1−1/d`1/d log ` is equivalent to `1−1/d/log ` 6 n1−1/d/logn; which holds when189

n is sufficiently large (n > 8) since ` 6 n and x→ x1−1/d/log x is increasing for x > 8.190

From now on, we can assume that there is no (`+ 1)-clique in G and thus the ply of191

S is at most `. By Theorem 4, there exists a set Q ⊆ S of at most cn1−1/d`1/d objects (or,192

equivalently, a subset of vertices of G) such that S \Q is split into two parts S1,S2, each of193

size at most d+1/d+2 n and such that no object of S1 intersects an object of S2.194

http://jocg.org/

Journal of Computational Geometry jocg.org

We can find such a set in an exhaustive way in time:

ncn
1−1/d`1/d · nO(1) = 2O(n1−1/d`1/d logn).

Now, for every coloring of Q with lists L, we can try to extend this coloring to S1 and S2

recursively, using the standard divide-and-conquer approach (note that the lists of objects
in S \Q are updated according to the coloring of Q). This gives us the total running time

T (n) 6 2O(n1−1/d`1/d log `) · 2 T
(
d+ 1

d+ 2
n

)
.

Solving this recursion we obtain the running time 2O(n1−1/d`1/d log `).195

Thus, the total running time of the algorithm is 2O(n1−1/d`1/d logn). Observe that the196

space used is polynomial.197

Since finding a proper geometric representation of many types of intersection graphs198

is NP-hard [32] (or even ∃R-hard [3]), we are often interested in designing robust algorithms.199

An algorithm is robust if its input is a graph (without a geometric representation), and the200

algorithm either gives a correct answer, or reports that the input graph is not an intersection201

graph.202

We point out that the above coloring procedure is robust. If G is not an intersection203

graph of fat convex objects, then the algorithm either gives the correct answer (if G happens204

to have appropriate separators), or we can correctly report that the input is invalid (the205

exhaustive search step fails to find any separator).206

Note that the running time could be slightly improved to 2O(n1−1/d`1/d log `) should207

we have a faster algorithm for finding separators. It is worth noting that such (polynomial)208

algorithms exist for d-dimensional balls, cubes, and many other shapes [26, 30]. In particular,209

we obtain the following result for disks in a plane.210

Corollary 6. Given a set S of n disks in the plane, the existence of a `-coloring of an211

intersection graph of S can be decided in time 2O(
√
n` log `), using polynomial space.212

3 Intermediate problems213

In this section, we introduce two technical problems, which will serve as an intermediate214

step in our hardness reductions. Let us start with some notation and definitions. For an215

integer n, we denote by [n] the set {1, 2, . . . , n}. For a set S, we denote by 2S the family216

of all subsets of S. For a fixed dimension d and i ∈ [d], we denote by ei the d-dimensional217

vector, whose i-th coordinate is equal to 1 and all remaining coordinates are equal to 0. For218

a point p ∈ Nd and i ∈ [d], by p[i] we denote the i-th coordinate of p, i.e. p · ei, where ‘·’219

denotes the inner product of vectors. For two positive integers g, d, we denote by R[g, d] the220

d-dimensional g-grid, i.e., a graph whose vertices are all vectors from [g]d, and two vertices221

are adjacent if they differ on exactly one coordinate, and exactly by one (on that coordinate).222

In other words, a and a′ are adjacent if a = a′ ± ei for some i ∈ [d].223

http://jocg.org/

Journal of Computational Geometry jocg.org

We will often refer to vertices of a grid as cells. Moreover, if the value of g is either224

clear from the context or unimportant, we will call R[g, d] simply a d-dimensional grid.225

The first problem is called d-grid 3-Sat and can be seen as a 3-Sat embedded in226

a grid.227

Problem: d-grid 3-Sat

Input: A d-dimensional grid G = R[g, d], a positive integer k, a function ζ : v ∈
V (G) 7→ {v1, v2, . . . , vk} mapping each cell v to k fresh boolean variables, and a set C of
constraints of two kinds:

clause constraints: for a cell v, a set C(v) of pairwise variable-disjoint disjunctions of
at most 3 literals on ζ(v);

equality constraints: for adjacent cells v and w, a set C(v, w) of pairwise variable-
disjoint constraints of the form vi = wj (with i, j ∈ [k]).

Question: Is there an assignment of the variables such that all constraints are satisfied?

Not all variables need to appear in some constraint.228

The second technical problem is called Partial d-grid Coloring.229

Problem: Partial d-grid Coloring

Input: An induced subgraph G of the d-dimensional grid R[g, d], a positive integer `,
and a function ρ : v ∈ V (G) 7→ {pv1, pv2, . . . , pv`} ∈ ([`]d)` mapping each cell v to a set of
` points in [`]d. It is possible that some points pvi and pvj are superimposed, i.e., they
have exactly the same coordinates – they are still counted as different points.
Question: Is there an `-coloring of all the points such that:

• two points in the same cell get different colors;

• if v and w are adjacent in G with w = v + ei (for some i ∈ [d]), and p ∈ ρ(v) and
q ∈ ρ(w) receive the same color, then p[i] 6 q[i]?

The above definition is fairly technical but its underlying idea is simple. Let us first230

think of Partial 2-grid Coloring, the case when d = 2. We want to see a grid of unit231

disks (see Figure 1) as the centers of the disks in a discretized and normalized space (say,232

inner grids) where adjacencies between two contiguous cells (of the outer grid) is determined233

by exactly one coordinate within the inner grids. The forthcoming Section 4.1 and Figure 2234

show the direct correspondence between a grid of unit disks and an instance of Partial235

2-grid Coloring.236

http://jocg.org/

Journal of Computational Geometry jocg.org

4 Two-Dimensional Lower Bounds237

In this section, we discuss how to obtain a lower bound for the complexity of coloring unit238

disk graphs. We do it using a three-step reduction and the intermediate problems introduced239

in the previous section. Thanks to introducing these two intermediate steps, our construction240

is easy to generalize to higher dimensions (see Section 5).241

We start with the last step of the reduction chain as it is the most direct. Furthermore242

it explains and motivates the introduction of Partial d-grid Coloring, or rather here243

Partial 2-grid Coloring, its special case in dimension 2. We will use the following244

theorem, whose proof can be found in Section 4.3.245

Theorem 8. For any 0 6 α 6 1, there is no 2o(
√
n`) algorithm solving Partial 2-grid246

Coloring on a total of n points and ` = Θ(nα) points in each cell (that is n/` cells), unless247

the ETH fails.248

4.1 Reduction from Partial 2-grid Coloring to `-Coloring of unit disk graphs249

Proof of the third and last step of the lower bound of Theorem 1. There is a transparent re-250

duction from Partial 2-grid Coloring to `-Coloring on unit disk graphs. We follow,251

for instance, Theorems 1 and 3 in [22]. In that paper, a reduction is given from a problem252

called Grid Tiling to Independent Set on unit disk graphs. The same reduction applies253

from Partial 2-grid Coloring, which can be seen as a coloring variant of Grid Tiling,254

to `-Coloring on unit disk graphs.255

Consider an instance of Partial 2-grid Coloring with n points in total, whose256

points are are in [`]2 in each cell. One turns every point (x, y) ∈ [`]2 of every cell at position257

(i, j) into a disk centered at ((2`2 + 0.1)i + x, (2`2 + 0.1)j + y). The common radius of all258

the disks is set to `2, and we set the number of colors to ` (see Figure 2). This way, the fact259

that two disks coming from adjacent cells along the x-axis (resp. y-axis) intersect is only260

determined by their x-coordinate (resp. y-coordinate). Indeed, the disks are big enough261

compared to the cells containing the points so that in the region where the disks of adjacent262

cells may intersect, their boundaries are close to horizontal or vertical straight lines (see the263

red rectangle in Figure 2). A formal explanation is detailed in Theorem 14.34 of [6]. Now264

Theorem 1 follows directly from Theorem 8.265

Remark 1. Note that we do not actually require that the relation of the number n of disks266

and the number ` of colors is ` = Θ(nα) for some α. The claim holds also for other functions267

` = `(n) = O(n), e.g. ` = Θ(log n).268

Then we detail the first step of the reduction chain.269

4.2 Reduction from 3-Sat to 2-grid 3-Sat270

Theorem 7. For any 0 6 α 6 1 there is no algorithm solving 2-grid 3-Sat with n variables271

in total and k = Θ(nα) variables per cell in time 2o(
√
nk) = 2

o

(
n

1+α
2

)
, unless the ETH fails.272

http://jocg.org/

Journal of Computational Geometry jocg.org

Figure 2: Illustration of how the disks are spaced out. In the region marked by the red
rectangle, where disks of two adjacent cells may intersect, the boundary of each disk is close
to a horizontal straight line. So, two disks do not intersect if and only if the y-coordinate
of the center in the top cell is at most the y-coordinate of the center in the bottom cell.

Proof. The ETH together with the Sparsification Lemma [19] implies that there is no273

2o(N+M) algorithm to decide satisfiability of a 3-Sat formula with N variables and M274

clauses.275

Let Φ be a 3-Sat formula with the variable set V ar and the clause set C. There276

is a simple polynomial-time procedure to modify Φ so that each variable appears at most277

3 times. Indeed, first note that we can assume that no variable appears more than once278

within a clause. For each variable v appearing ∆ > 3 times, we introduce ∆ new variables279

v1, v2, . . . , v∆ and substitute each appearance of v with a different vi. We also add clauses280

(v1 ∨ ¬v2), (v2 ∨ ¬v3), . . . , (v∆−1 ∨ ¬v∆), (v∆ ∨ ¬v1) to C. This chain of clauses enforces281

that all vi’s have the same truth-value in any satisfying assignment. Note that each newly282

introduced variable has exactly 3 occurrences. We repeat this until there are no variables283

with more than 3 occurrences. Thus we introduced at most 3|C| new variables and 3|C|284

new clauses. So we can assume that each variable of Φ appears at most three times, let285

N := |V ar| and M := |C|. Clearly M = Θ(N).286

We choose k = Θ(N2α/(1+α)) (actual constants will follow from the description287

below). Now we want to cover the set of variables by g = 7 d6M/ke = Θ(k(1−α)/2α) groups288

V1, . . . ,Vg such that the following conditions hold:289

• for each clause C, there exists a group Vi, such that all variables of C belong to Vi;290

we say this group contains the clause C;291

• if two clauses C,C ′ share a variable, then they are contained in different groups;292

http://jocg.org/

Journal of Computational Geometry jocg.org

• each group contains at most k/2 variables.293

To form these groups, we first construct a partition P0 of the clauses into g′ = g/7 = d6M/ke294

groups of size at most bM/g′c 6 k/6. As each variable occurs in at most three clauses, and295

thus every clause shares some variable with at most six other clauses, we can easily define a296

second refined partition P1 of the clauses into g = 7g′ groups, such that no two clauses that297

share a variable are contained in the same group. We denote these groups by C1, . . . , Cg.298

Now, we set Vi to be exactly the set of variables contained in the set of clauses Ci. As each299

clause has at most three variables, each group Vi contains at most 3 · k/6 = k/2 variables.300

Now, we construct an instance I(Φ) of 2-grid 3-Sat. Let G = R[g, 2] with k variables in

V1

V2

V3

V4

V5

V1 V2 V3 V4 V5

x

x

x

x x x

Figure 3: Allocation of the variables. Each color corresponds to a set of variables. Note
that for any variable x, the set of cells containing x is connected.

301

each cell. Note that the number of variables in I(Φ) is g2k = Θ(k1/α).302

The cell (i, j) should contain the information about truth assignment of Vi ∪ Vj .303

Note that if a variable appears in both Vi and Vj , it will be represented just once in the304

cell (i, j). As each group Vi contains at most k/2 variables, each cell has enough space to305

accommodate all this information. To make all cells contain exactly k variables, we can306

add some dummy variables, which will not appear in any constraints. The total number307

of dummy variables added is at most g2 · k, so the total number n of variables is Θ(k1/α).308

Observe that the variable group Vi is contained exactly in the i-th row and i-th column of309

G. Now, we add each clause C ∈ Ci to the set of clause constraints of the cell (i, i). Finally,310

we need to make sure that all copies of a single variable have the same truth assignment.311

Observe that for each variable x the cells containing x form a connected set (see Fig. 3).312

Therefore the consistency can be ensured using equality constraints. Note that since no313

variable appears more than once in a single cell, the equality constraints related to each314

edge of G are variable-disjoint.315

It is easy to see that Φ is satisfiable if and only if I(Φ) is satisfiable. Furthermore316

N = O(gk) = O(
√
g2k2) = O(

√
nk). This implies that a 2o(

√
nk) algorithm for 2-grid317

3-Sat refutes the ETH.318

http://jocg.org/

Journal of Computational Geometry jocg.org

4.3 Reduction from 2-grid 3-Sat to Partial 2-grid Coloring319

The next step is reducing 2-grid 3-Sat to Partial 2-grid Coloring. This step is the320

most important part of the proof.321

Theorem 8. For any 0 6 α 6 1, there is no 2o(
√
n`) algorithm solving Partial 2-grid322

Coloring on a total of n points and ` = Θ(nα) points in each cell (that is n/` cells), unless323

the ETH fails.324

Proof. We present a reduction from 2-grid 3-Sat to Partial 2-grid Coloring. Let325

I = (G, k, ζ, C) be an instance of 2-grid 3-Sat, where G = R[g, 2] and each cell contains326

k variables. We think of G as embedded in the plane in a natural way, with edges being327

horizontal or vertical segments. We construct an equivalent instance J = (F, `, ρ) of Partial328

2-grid Coloring with |V (F)| = Θ(|V (G)|) = Θ(g2) and ` := 4k points per cell, where F329

is an induced subgraph of R[g′, 2] with g′ = Θ(g).330

First, we will explain the most basic building blocks of our construction, i.e., standard331

cells, reference cell, variable-assignment cells, local reference cells, and wires. Then we are332

ready to give an overview of the whole reduction. We finish with an elaborate explanation333

of more complicated gadgets and proof of their correctness.334

Standard cells. A standard cell is a cell where the points p1, . . . , p` are on the main335

diagonal, that is pi = (i, i) for every i ∈ [`] (see cells A and B of Figure 5a). When we336

talk about the ordering of the points in a standard cell, we always mean the left-to-right (or337

equivalently, top-to-bottom) ordering. Standard cells will be used for the basic pieces of the338

construction, i.e., variable-assignment cells, local reference cells, and wires (see below).339

Reference coloring. Later in the construction we will choose one standard cell R̄, which340

will be given a special function. We will refer to the coloring of R̄ as the reference coloring.341

For each i ∈ [`], we define the color i to be the color used for the point pi in R̄. Now, saying342

that a point somewhere else has color i, has an absolute meaning; it means using the same343

color as used for point pi in R̄.344

Variable-assignment cells. For each cell v = (i, j) ∈ V (G), we introduce in F a standard345

cell A(v) = (δi, δj), where δ is a large constant (the coordinates of cells refer to their position346

in R[g′, 2], which is a supergraph of F). The cells A(v) for v ∈ V (G) are responsible347

for encoding the truth assignment of variables in ζ(v). Therefore we call them variable-348

assignment cells. We will partition variable-assignment cells into two types. The cell A(v)349

for v = (i, j) of I is called even if i+ j is even. Otherwise A(v) is odd. Note that if v and w350

are adjacent cells in I, then A(v) and A(w) have different parity.351

As each variable-assignment cell contains ` = 4k points, there are `! = 2O(` log `)
352

ways to color these points with ` colors. We will only make use of 2`/4 = 2k colorings353

among those. In our construction, we will make sure that each variable-assignment cell354

receives one of the standard colorings. If the cell A(v) is even, the coloring ϕ of A(v) is355

standard if {ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for i ∈ [k] and ϕ(pi) = i for i ∈ [4k] \ [2k]. If356

the cell A(v) is odd, its standard colorings ϕ are the ones with ϕ(pi) = i for i ∈ [2k] and357

{ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for i ∈ [2k] \ [k]. The choice of the particular standard358

coloring for the points in A(v) defines the actual assignment of variables in ζ(v). If A(v) is359

http://jocg.org/

Journal of Computational Geometry jocg.org

A1
2
4
3

5
6
7
8

x1

x2

bottom of
reference
coloring

B

y1

y2

top of
reference
coloring

1
2
3
4

6
5

7
8

Figure 4: Variable-assignment cells of even parity contain the bottom half of the reference
coloring as in cell A and cells of odd parity contain the top part of the reference coloring,
as in cell B.

even, then for each i ∈ [k], we interpret the coloring in the following way:360

p2i−1 7→ 2i− 1 , p2i 7→ 2i as setting the variable vi to true;361

p2i−1 7→ 2i , p2i 7→ 2i− 1 as setting the variable vi to false.362

If A(v) is odd, for each i ∈ [k], we interpret it in that way:363

p2k+2i−1 7→ 2i− 1 , p2k+2i 7→ 2i as setting the variable vi to true;364

p2k+2i−1 7→ 2i , p2k+2i 7→ 2i− 1 as setting the variable vi to false.365

Observe that in even (odd, respectively) cells A(v) the assignment of variables is366

only encoded by the coloring of the first (last, respectively) 2k points in A(v). The colors of367

the remaining points are exactly the same as in the reference coloring, so each cell contains368

exactly one half of the reference coloring.369

Local reference cells. For all i, j ∈ [g − 1], we introduce a new standard cell R(i, j) :=370

(δi + δ/2, δj + δ/2), called a local reference cell. Moreover, we set the reference R̄ to be371

R(1, 1). In the construction, we will ensure that the coloring of each local reference cell is372

exactly the same, i.e., is exactly the reference coloring.373

Consider the variable-assignment cellA(v) for v = (i, j). We say that a local reference374

cell R(i′, j′) is associated with A(v), if j − j′ ∈ {0, 1} and i − i′ ∈ {0, 1}. Note that each375

variable-assignment cell has one, two, or four associated local reference cells. Moreover, if376

v, w are adjacent cells of I, then A(v) and A(w) share at least one associated local reference377

cell.378

Wires. If two standard cells are adjacent, then they must be colored in the same way;379

thus having a path of standard cells, allows us to transport the information from one cell to380

another. Let us prove that claim. Let A and B be two adjacent standard cells, such that A381

is left of B (see Figure 5a; the argument is similar if the cells are vertically adjacent).382

Let p1, . . . , p` be the points of the cell A and q1, . . . , q` be the points of the cell B.383

Note that the color of q1 is necessarily equal to the color of p1, because the x-coordinates384

of points p2, p3, . . . , p` exceed the x-coordinate of q1. Inductively, we can show that for385

every i > 2, the color of qi is the same as the color of pi. Indeed, the colors used for386

pi+1, pi+2, . . . , p` are not available for qi, because these points are too close to qi. On the387

http://jocg.org/

Journal of Computational Geometry jocg.org

p1
p2

A

p3
p4

q1
q2

B

q3
q4

(a) If two standard cells are adjacent, they
must have the same coloring. (b) Wires can be used to create many copies

of the same cell.

Figure 5: Construction and usage of wires.

other hand, by the inductive assumption, all colors used on p1, p2, . . . , pi−1 are already used388

for points q1, q2, . . . , qi−1. Thus the only possible choice for the color of qi is the color of pi.389

Observe that the use of wires allows us to create many copies of the same cell (see390

Fig. 5b). We say two cells are the same, if the point configuration and their coloring must391

be necessarily the same.392

clause checking gadget

local reference cell

consistency checking
gadget

wires

even variable assignment cell

odd variable assignment cell

Figure 6: Illustration of the instance J . Each blue square represents a cell A(v) correspond-
ing to the cell v of I (light blue cells represent even cells and dark blue ones represent odd
cells). The orange squares are local reference cells, which contain the reference coloring.
Gray and brown squares represent, respectively, clause-checking and consistency gadgets.

Overview of the construction Before we move on to describe more complicated gadgets,393

we explain the overview of the construction. Figure 6 presents the arrangement of the cells394

in F . For each variable-assignment cell A(v), we introduce a clause-checking gadget, which395

is responsible for ensuring that all clauses in C(v) are satisfied. This gadget requires an396

access to the reference coloring, which can be attained from the local reference cells (we can397

choose any of the local reference cells associated with A(v)). For each edge vw of G, we398

introduce a consistency gadget. In fact, for inner edges of G (i.e., the ones not incident with399

the outer face2) we introduce two consistency gadgets, one for each face incident with vw.400

2by a face we mean a region of the plane bounded by edges of G

http://jocg.org/

Journal of Computational Geometry jocg.org

This gadget is responsible for ensuring the consistency on three different levels:401

• to force all equality constraints C(v, w) to be satisfied,402

• to ensure that each of A(v) and A(w) receives one of the standard colorings,403

• to ensure that the local reference cell contains exactly the reference coloring.404

This gadget also requires access to the reference coloring, so we join it with the appropriate405

local reference cell (see Fig. 6).406

To join the variable-assignment cells and local reference cells with appropriate gad-407

gets, we will use wires. Notice that each cell A can interact with at most four other cells,408

which may not be enough, if we want to attach several gadgets to A (see e.g. the middle409

variable assignment cell in Figure 6). However, since wires allow us to create an exact copy410

of A, we can attach any constant number of gadgets to copies of A, adding only a constant411

number of additional cells. Moreover, we can do it in a way that ensures that no two gad-412

gets interact with each other (anywhere but on A). Thus, when we say that we attach some413

gadget to a cell, we will not discuss how exactly we do this.414

Every gadget uses only a constant number of cells. Thus, making the constant δ415

large enough and using wires, we can make sure that different gadgets do not interact with416

each other (except for the shared cells). The total number of points in the construction is417

clearly increased only by a constant factor.418

Permuting points and colors. Recall that when describing wires, we have not used the419

second coordinate of the points p1, . . . , p` and q1, . . . , q`. In fact, those coordinates can be420

chosen at our convenience, and the argument supporting the claim in the paragraphs on421

the wires would still work. Combining this observation horizontally and vertically, we can422

force any permutation of the colors (see Figure 7a). The gadget is realized as follows. Let423

σ be our target permutation. To the right of a standard cell A, we put a cell B. For each424

i ∈ [`], we add a point (i, σ(i)) to B, so there are ` points in total. Below the cell B, we put425

a standard cell C. We observe that in any feasible coloring of those three cells, for every426

i ∈ [`], the points pi and qσ(i) have the same color, where pi (resp. qi) is the point in (i, i) in427

the cell A (resp. cell C). Although permutation gadgets are more complicated than wires,428

the formal argument of correctness is identical as in the case of wires, as the propagation of429

colors between neighboring cells depends on only one coordinate.430

Forgetting color assignment. Besides permuting points and colors, it is also possible to431

forget the color assignment of some points. Figure 7b shows a forgetting gadget attached432

to standard cells A and C. In the cell A we have the coloring from left to right a, b, c, d.433

In the cell C, the first two points can be colored either a, b or b, a. In particular, if A is an434

even variable-assignment cell, then by looking at C we cannot distinguish anymore whether435

the variable was set to true or to false. Thus, using a forgetting gadget attached to two436

standard cells, we may force equality of colors of some corresponding points, while giving437

some freedom of choosing the others. This concept will be used in the next paragraph.438

Parallelism. As we may have hinted in the previous paragraph, subparts of a given cell439

can act independently. In particular, this means that we can choose to forget any subset440

http://jocg.org/

Journal of Computational Geometry jocg.org

a

b

c

d

a

b

c

d

d

c

a

b

A B

C

(a) The coloring of C is the coloring of A with
the permutation σ = (3, 4, 1, 2) applied.

a

b

c

d

a|b

c

d

d

c

a|b

a|b
a|b

A B

C

(b) In the cell C, colors a and b are now in-
terchangeable.

Figure 7: Permutation gadget (left) and forgetting gadget (right), attached to cells A and
C.

`1

`2

`3

`4

`5

`1

`2

`3

`4

`5

A B

(a) The sets of colors used within corresponding
boxes of A and B are equal.

R

A

(b) If R contains the reference coloring, then
A receives one of standard colorings (for an
even cell).

Figure 8: Boxes in adjacent cells with the same box-structure act independently from each
other.

of information but preserve the rest. It is important to note that this is a more general441

phenomenon. Let `1, . . . , `t be positive integers summing up to `. Consider an arrangement442

of cells where the points of each cell are all contained in the same square boxes of side lengths443

respectively `1, . . . , `t, along the diagonal as shown in Figure 8a. For each h ∈ [t], the h-th444

box (of side length `h) contains exactly `h points.445

One may observe that a slight generalization of the argument given in the paragraph446

on wires shows that if A and B are adjacent cells with the same box-structure, i.e., each has447

points grouped in t boxes of sizes `1, . . . , `t, then for each h ∈ [t], the set of colors used on448

points in h-th box in A is exactly the same as the set of colors used in h-th box in B (see449

Figure 8a).450

We point out that the combination of this observation and the forgetting gadget451

attached to a local reference cell and a variable-assignment cell A can be used to ensure that452

A receives one of the standard colorings (see Fig. 8b). The construction of the forgetting453

http://jocg.org/

Journal of Computational Geometry jocg.org

gadget varies depending on the parity of A. In general the gadget preserves the colors of 2k454

points containing the copy of one half of the reference coloring, and allows any permutation455

of colors within two-element boxes representing the variables. We will use a similar approach456

to check several clauses in parallel within the same group of a constant number of cells.

re
fe
re
n
ce

co
lo
ri
n
g 1

2
3
4
5
6

1

2

3

4
6

5

1

2

3

4
6

5

c

x1

x2

x3

[6] \ c

varia
b
le

a
ssign

m
en
t

R S

T

UB

Aa
b

a
b

re
fe
re
n
ce

co
lo
ri
n
g

varia
b
le

a
ssign

m
en
t

R S

T

UB

AC1

C2

Figure 9: Illustration of the clause-checking gadget. To the left, one clause x1 ∨ ¬x2 ∨ x3 is
represented. To the right, two clauses are checked in parallel.

457

Clause gadget. We detail how a disjunction of three literals is encoded (see the left part of458

Figure 9). Clauses with fewer literals are just a simplification of what comes next. First, we459

will explain how to express a clause C, whose variables x1, x2, x3 are contained in a (6× 6)-460

box of a variable-assignment cell A. In the next paragraph we will show how to check several461

variable-disjoint clauses in one constant-size gadget. In general, in what follows, one should462

think of the coordinates that we will specify as coordinates within a box part of the cell,463

rather than as coordinates in the cell. The same applies to the colors, we should always look464

at the set of colors appearing in the particular box. Obviously, the clause-checking gadget465

needs to interact with variable-assignment encoding the values of x1, x2, x3. For simplicity of466

notation assume that x1 is encoded by coloring points p1, p2 with colors 1, 2; x2 is encoded by467

coloring points p3, p4 with colors 3, 4 and; x3 is encoded by coloring points p5, p6 with colors468

5, 6. Our clause-checking gadget needs also an access to the reference coloring contained in469

the cell R. This is necessary to be able to distinguish between colors e.g. 1 and 2, and thus470

between setting x1 to true or to false.471

First consider cells S, T , and U . The cell R contains the reference coloring and we472

force the order of the colors in cell T to be from top to bottom 1, 3, 5, 2, 4, 6, similarly as we473

did in a permutation gadget. Consider now cell U . It has one point at position p = (3, 3)474

and 5 points superimposed at position (6, 6). Now, because of cell T , the point p can only475

have a color c ∈ {1, 3, 5}. All the other colors should be given to the 5 superimposed points.476

http://jocg.org/

Journal of Computational Geometry jocg.org

Then, consider cells A and B.477

The cell A contains the variable assignment. Recall that for each variable we use two478

points. If a variable occupying rows 2i− 1 and 2i in the cell A occurs positively in C, then479

we place in cell B a point in row 2i − 1 in the third column of the box and a point in the480

row 2i in the sixth column; if the variable appears negatively, we do the opposite: we place481

in cell B a point in the row 2i − 1 in the sixth column and a point in row 2i in the third482

column. Note that the colors of points in B are forced, looking from top to bottom they483

are the same as in A. By construction, the colors in the sixth column are not available to484

the point p. Therefore, the point p can be colored if and only if one of colors 1,3,5 appears485

in the third column of B, i.e., one of literals is true. Since the remaining points in U can486

receive any distinct colors, we conclude that the whole set of cells constituting the gadget487

can be colored if and only if the clause is satisfied by the truth assignment.488

Checking clauses in parallel. Consider the cell v of 2-grid 3-Sat. Let C1, . . . , Cf be489

the clauses of C(v) and recall that these clauses are pairwise variable-disjoint. Let σ be a490

permutation of points in A(v), such that the 2|C1| points encoding the variables of C1 appear491

on positions 1, 2, . . . , 2|C1|, the 2|C1| points encoding the variables of C2 appear on positions492

2|C1|+ 1, 2|C1|+ 2, . . . , 2|C1|+ 2|C2| and so on. The points encoding variables which do not493

appear in any clause from C(v) and the points which do not encode any variable (i.e., the494

points carrying a half of the reference coloring) appear on the last position, in any order.495

We introduce a new standard cell A, and using a permutation gadget we ensure that496

it contains the copies of points of A(v) in the permutation σ. In the same way we introduce497

a standard cell R, which contains the reference coloring with the permutation σ applied.498

An illustration on how two clauses can be checked simultaneously is shown on the right499

part of Figure 9. Observe that since the clauses in C(v) are pairwise variable-disjoint, one500

clause-checking gadget is enough to ensure the satisfiability of all clauses in C(v).501

Thus, for each cell A(v) and its associated local reference cell R, we introduce a502

clause-checking gadget corresponding to the clauses in C(v), and join it with A(v) and R.503

Equality check. Let A be a cell of J and let the points p2i−1, p2i (p2j−1, p2j for 2i <504

2j − 1) in the cell A encode the variable x (y, respectively). Suppose we want to make505

sure that always x = y. This is equivalent to saying that in any proper coloring ϕ, we have506

ϕ(p2i−1) + 1 = ϕ(p2i) whenever ϕ(p2j−1) + 1 = ϕ(p2j).507

Such an equivalence of two variables can be expressed by two clauses C1 = x ∨ ¬y508

and C2 = ¬x ∨ y. Thus, if we have an access to the reference coloring, we can ensure509

the equivalence using the clause-checking gadget. Observe that C1 and C2 are not variable-510

disjoint, so in fact we need to use two clause-checking gadgets. However, two clause-checking511

gadgets are enough to ensure the equivalence of any set of pairwise-disjoint pairs of variables512

represented in the single cell. Observe that A does not have to be a variable-assignment cell513

(i.e., does not have to carry a half of the reference coloring). In fact, we will use the equality514

checks for cells where each pair of points p2i−1, p2i corresponds to some variable, encoded in515

an analogous way as in variable-assignment cells.516

Consistency gadget. The last gadget, called the consistency gadget, will join every three517

cells A(v), A(w), R, where A(v) and A(w) are variable-assignment cells corresponding to518

http://jocg.org/

Journal of Computational Geometry jocg.org

adjacent cells v and w of I, and a R is a local reference cell associated with both A(v)519

and A(w). This gadget is responsible for ensuring that colorings of these three cells are520

consistent, that is:521

• each cell A(v), A(w) is colored with a standard coloring,522

• the equality constraints C(v, w) in the 2-grid 3-Sat instance I are satisfied,523

• R has exactly the reference coloring.524

For schematic picture of the gadget, refer to Figure 10. Suppose that A(v) is even, A(w) is525

odd, and v is above w in I (all other cases are symmetric). We denote the points of A(v)526

by p1, p2, . . . , p`, the points of A(w) by q1, q2, . . . , q`, and the points by R by r1, r2, . . . , r`527

(going from top-left to bottom-right). First, we introduce two forgetting gadgets and attach528

one of them to R and A(v), and the other one to R and A(w). The first gadget forgets the529

top half of the reference coloring, i.e., it ensures that in every coloring ϕ we have530

• {ϕ(p2i−1), ϕ(p2i)} = {ϕ(r2i−1), ϕ(r2i)} for i ∈ [k],531

• ϕ(p2i−1) = ϕ(r2i−1) and ϕ(p2i) = ϕ(r2i) for i ∈ [2k] \ [k].532

The second gadget forgets the bottom half of the reference coloring, i.e., it ensures that in533

every coloring ϕ we have534

• ϕ(q2i−1) = ϕ(r2i−1) and ϕ(q2i) = ϕ(r2i) for i ∈ [k],535

• {ϕ(q2i−1), ϕ(q2i)} = {ϕ(r2i−1), ϕ(r2i)} for i ∈ [2k] \ [k].536

We also introduce a new standard cell S. Let s1, s2, . . . , s` be the points in S. With537

two additional forgetting gadgets, one attached to S and A(v), and the other one attached538

to S and A(w), we ensure that in every coloring ϕ we have:539

• ϕ(s2i−1) = ϕ(p2i−1) and ϕ(s2i) = ϕ(p2i) for i ∈ [k],540

• ϕ(s2i−1) = ϕ(q2i−1) and ϕ(s2i) = ϕ(q2i) for i ∈ [2k] \ [k].541

Note that the cell S contains the information about the values of all variables in ζ(v) (first542

2k points) and in ζ(w) (second 2k points). Now consider the set of equality constraints543

C(v, w), recall that each of them is of the form vi = wj . Thus we want to ensure that in544

every coloring ϕ, we have ϕ(s2i−1) + 1 = ϕ(s2i) if and only if ϕ(s2k+2j−1) + 1 = ϕ(s2k+2j).545

We can easily do it by performing the equality check on S, using two clause gadgets and R546

as a reference coloring.547

Is is straightforward to observe that if I is satisfiable, then J can be colored with `548

colors, in a way described above. The opposite implication follows from the claims below.549

Claim 1. The coloring of each R(i, j) for i, j ∈ [g − 1] is exactly the same as the coloring550

of R̄ = R(1, 1).551

http://jocg.org/

Journal of Computational Geometry jocg.org

S

A(v)

A(w)

clause

wires

forget

local reference cell

combined
assignment

even variable
assignment cell

odd variable
assignment cell

variable
assignments

top of reference
coloring

bottom of
reference coloring

Figure 10: Overview of the consistency gadget. The clause gadgets serve to realize the
equality constraints C(v, w).

R(i− 1, j) R(i, j)

Figure 11: Two consistency gadgets ensure propagation of the reference coloring.

http://jocg.org/

Journal of Computational Geometry jocg.org

Proof. To show this, we will prove that the coloring of R(i, j) is the same as the coloring of552

R(i− 1, j) for each 2 6 i 6 g − 1 and j ∈ [g − 1]. The case for R(i, j − 1) is analogous, and553

the claim follows inductively.554

Let v = (i, j) and w = (i, j + 1) be cells of I. Note that v and w are adjacent and555

A(v) and A(w) are associated with both R(i− 1, j) and R(i, j). Without loss of generality556

assume that v is even and w is odd, see Fig. 11 for illustration.557

Intuitively, the consistency gadget corresponding to the edge vw and the left face558

bounded by vw (we shall call it the left consistency gadget) is responsible for copying one559

half of the coloring of R(i − 1, j) to A(v) and the other half to A(w). Analogously, the560

consistency gadget corresponding to vw and the right face bounded by vw (we shall call561

it the right consistency gadget) is responsible for copying these halves to R(i, j), making562

sure that the coloring of R(i, j) is exactly the same as the coloring of R(i − 1, j). More563

formally, for f ∈ [`], by pf , qf , rf , and r′f we denote, respectively, the points of A(v), A(w),564

R(i− 1, j), and R(i, j). By the correctness of the left consistency gadget, we know that for565

every coloring ϕ, we have:566

• ϕ(rf) = ϕ(qf) for all f ∈ [2k],567

• ϕ(rf) = ϕ(pf) for all f ∈ [4k] \ [2k].568

Analogously, by the correctness of the right consistency gadget, we know that for every569

coloring ϕ, we have:570

• ϕ(qf) = ϕ(r′f) for all f ∈ [2k],571

• ϕ(pf) = ϕ(r′f) for all f ∈ [4k] \ [2k].572

This shows that ϕ(rf) = ϕ(r′f) for every coloring ϕ and every f ∈ [`], which proves the573

claim.574

Claim 2. The following statements are true.575

1. The coloring of each A(v) is one of the standard colorings.576

2. For each pair of adjacent cells v, w of I, all local constraints C(v, w) are satisfied.577

3. For each cell v of I, all constraints C(v) are satisfied.578

The claim follows directly from Claim 1 and the correctness of forget, clause-checking,579

and consistency gadgets.580

Now, observe that the total number of points in F is n = O(g2`) = O(n′), where581

n′ = g2k is the total number of variables in I. Thus, the existence of an algorithm solving J582

in time 2o(
√
n`) could be used to solve I in time 2o(

√
n′k), which, by Theorem 7, contradicts583

the ETH.584

http://jocg.org/

Journal of Computational Geometry jocg.org

5 Higher Dimensional Lower Bounds585

Recall that in the hardness proof of 2-grid 3-Sat and Partial 2-grid Coloring (see586

Theorems 7 and 8) we started with a 3-Sat instance with N variables and Θ(N) clauses,587

we formed g = Θ(N/k) groups, each containing O(k) variables, and we arranged them on588

in such a way that every pair of groups met in a separate grid cell. This required O(g2) grid589

cells.590

Suppose we want to try a similiar approach to obtain a tight (i.e., matching the591

upper bound in Theorem 5 lower bound in d > 3 dimensions. We observe that the naive592

approach of creating Θ(N/k) groups is not enough. Indeed, a standard computation shows593

that the bound in Theorem 5 is attained for the grid R[g, d] with g = Θ((N/k)1/(d−1)) and k594

variables/points per cell. Thus we have to refine our reduction from 3-Sat to d-grid 3-Sat.595

5.1 Embeddings596

For integers g, d > 1, we denote by H[g, d] the d-dimensional Hamming grid, i.e., a graph597

whose vertices are all points from [g]d, and two vertices are adjacent if their Hamming598

distance is exactly one (in other words, they differ on exactly one coordinate).599

An embedding of a graph F into a graph G is a mapping f : V (F) → 2V (G), such600

that:601

• for each v ∈ V (F), the set f(v) is connected in G,602

• for each edge uv of G, the sets f(u) and f(v) touch, i.e., either they have a non-empty603

intersection or there is an edge in G joining a vertex from f(u) to a vertex of f(v).604

The depth of an embedding f is the maximum number of vertices of F mapped to sets605

containing the same vertex of G, that is max{|S| : S ⊆ V (F) and
⋂
v∈S f(v) 6= ∅}.606

Observe that if f is an embedding of G into F with depth D, and f ′ is an embedding607

of F into H with depth D′, then the composition f ′ ◦ f of f and f ′ is an embedding of F608

into H with depth D ·D′.609

Now we will present a series of results about graph embeddings. We start with610

embedding arbitrary graphs into Hamming grids.611

Theorem 9 (Marx, Sidiropoulos [25]). Let d > 2. For every graph G with m edges, no612

isolated vertices, and with maximum degree ∆, there is an embedding f from G to H[g, d−1]613

having depth O(d2∆), where g = O(m1/(d−1) · logm
log logm). Moreover, such an embedding can614

be found in deterministic polynomial time.615

The next step will be embedding a Hamming grid into another, smaller Hamming616

grid.617

Lemma 10. For every g, d > 1 and every k = O(gd), there exists g′ = O(g/k1/d) and an618

embedding f of H[g, d] into H[g′, d] with depth O(k). Moreover, this embedding can be found619

in deterministic polynomial time.620

http://jocg.org/

Journal of Computational Geometry jocg.org

Proof. Let s = bk1/dc and g′ = dg/se = O(g/k1/d). Let v = (a1, a2, . . . , ad) be a vertex of621

H[g, d]. We define f by mapping v to the singleton containing (1+ba1/sc, 1+ba2/sc, . . . , 1+622

bad/sc). Note that the number of vertices of H[g, d] mapped to a single vertex is sd = O(k)623

It is straightforward to verify that f is an embedding.624

Finally, Hamming grids can be embedded in grids.625

Theorem 11 (Marx, Sidiropoulos [25]). For every d, g > 1 there is an embedding f from626

H[g, d− 1] to R[g, d] having depth at most d. Moreover, such an embedding can be found in627

deterministic polynomial time.628

Now, by combining the above results, we show how we can efficiently embed an629

incidence graph of a 3-Sat formula into the grid.630

Lemma 12. Let Φ be a 3-Sat formula over the variable set V ar = {x1, x2 . . . , xN}, such631

that each variable appears in at most ∆ > 3 clauses, and let k = O(N) be an integer. There632

exists g = O(∆(∆N/k)1/(d−1) · log(∆N)
log log(∆N)) and a mapping ϕ of variables of Φ to subsets of633

vertices of R[g, d], such that:634

(i) for every x ∈ V ar, the set ϕ(x) is connected,635

(ii) for every v ∈ V (R[g, d]), the number of variables x such that v ∈ ϕ(x) is O(∆d3k),636

(iii) for every clause C, there exists a vertex v(C) ∈ V (R[g, d]) such that v(C) ∈
⋂
x∈C ϕ(x)637

(if there is more than one such vertex, we set v(C) to be any of them);638

(iv) if for two clauses C,C ′ it holds that v(C) = v(C ′), then C and C ′ are variable-disjoint.639

Moreover, such a mapping can be found in polynomial time.640

Proof. Let C = {C1, C2, . . . , CM} be the set of clauses of Φ. Consider an incidence graphG of641

Φ, i.e., the bipartite graph with the vertex set V ar∪C, and the edge set {xC : x ∈ V ar, C ∈ C,642

and x ∈ C}. Note that the maximum degree of G is ∆.643

By Theorem 9, we can find an embedding f from G to H[g′, d − 1] for g′ =644

O((∆N)1/(d−1) · log(∆N)
log log(∆N)), with depth O(d2∆). Now, by Lemma 10, there exists an embed-645

ding f ′ ofH[g′, d−1] intoH[g′′, d−1] for g′′ = O(g′/k1/(d−1)) = O((∆N/k)1/(d−1)· log(∆N)
log log(∆N))646

with depth O(k). By Theorem 11, there is an embedding f ′′ of H[g′′, d − 1] into R[g′′, d]647

with depth at most d.648

Let b = 3∆ + 1. Next, consider the following depth-1 embedding f ′′′ of R[g′′, d]649

into R[g, d], where g = bg′′ = O(∆(∆N/k)1/(d−1) · log(∆N)
log log(∆N)). For a = (a1, a2, . . . , ad) ∈650

V (G[g′′, d]), we define f ′′′(a) =
⋃d
q=1

⋃b−1
p=0{(ba1, ba2, . . . , bad) + peq}.651

The composition ϕ′ of f, f ′, f ′′, and f ′′′ is an embedding of G into R[g, d] with depth652

O(d3∆k).653

http://jocg.org/

Journal of Computational Geometry jocg.org

By the properties of f ′′′, we observe that for every clause C the set ϕ′(C) contains654

a vertex of the form ba, where a = (a1, a2, . . . , ad) for integers a1, a2, . . . , ad. We set v′(C)655

to be such a vertex (if there is more than one, we pick an arbitrary one).656

Consider a clause C and let v′(C) = ba for a = (a1, a2, . . . , ad). Let C′ be the set657

of clauses C ′, such that v′(C ′) = ba. We want to partition C′ into at most b − 1 = 3∆658

groups C′1, C′2, . . . , C′b−1, such that the clauses in one group are variable-disjoint. We can659

easily do it with a greedy algorithm – note that each clause may share a variable with at660

most 3(∆ − 1) < 3∆ other clauses. Now, for every clause C of C′i, for i ∈ [b − 1], we will661

extend ϕ′, by including v(C) := ba + ie1 + e2 in ϕ′(C). It is not hard to verify that ϕ′ is662

still an embedding of G into R[g, d] with depth O(d3∆k).663

Finally, for every x ∈ V ar, we define a mapping ϕ of variables of Φ to subsets of664

vertices of R[g, d] in the following way: ϕ(x) = ϕ′(x)∪
⋃
C : x∈C ϕ

′(C). Note that each ϕ(x)665

is connected, since ϕ′(x) and every ϕ′(C) is connected, and ϕ′(x) and ϕ′(C) touch whenever666

x ∈ C.667

Moreover, recall that the depth of ϕ′ is O(d3∆k). Since the number of variables668

mapped by ϕ to any fixed vertex of R[g′′, d] is at most three times larger, so it is O(d3∆k).669

The last two properties follow from the observation that v(C) belongs to ϕ(x) for every670

x ∈ C.671

Now we are ready to prove the following theorem, which is a generalization of The-672

orem 7 to higher dimensions.673

Theorem 13. For any integer d > 3 and reals ε > 0 and 0 6 α 6 1, there is no algorithm674

solving d-grid 3-Sat with n variables in total and k = Θ(nα) variables per cell in time675

2
O

(
n
d−1+α

d
−ε

)
= 2O(n1−1/d−εk1/d), unless the ETH fails.676

Proof. Let Φ be a 3-Sat instance with N variables and Θ(N) clauses, and let each variable677

appear in at most ∆ = 3 clauses. By the ETH and the Sparsification Lemma [19], there is678

no algorithm deciding the satisfability of Φ in time 2o(N).679

Let k = Θ

((
N1/(d−1) logN

log logN

)d/(1/(d−1)+1/α)
)
, g = O((N/k)1/(d−1) · logN

log logN), and let680

ϕ be the mapping of variables of Φ to the subsets of vertices of R[g, d] given by Lemma 12681

(recall that ∆ = 3).682

Now we construct an instance I(Φ) just as we did in the proof of Theorem 7. For683

every cell v of R[g, d] we add variables ϕ−1(v). For each clause C, we add the clause684

constraint to the cell v(C). Moreover, using equality constraints, we ensure that all copies685

of the same variable get the same truth assignment (recall that each set ϕ(x) is connected).686

It is clear that I(Φ) is a satisfiable instance of d-grid 3-Sat if and only if Φ is satisfiable.687

The number of cells in I(Φ) is gd = O

(
(N/k)d/(d−1)

(
logN

log logN

)d)
. The total number

http://jocg.org/

Journal of Computational Geometry jocg.org

of variables is thus

n =gdk = O

(
(N/k)d/(d−1)k ·

(
logN

log logN

)d)
= O

(
(Nd/k)1/(d−1) ·

(
logN

log logN

)d)
,

and a direct computation shows that k = Θ(nα).688

Suppose we have an algorithm solving d-grid 3-Sat in time 2
O

(
n
d−1+α

d
−ε

)
for some689

ε > 0. Applying it to I(Φ) gives a total running time exp
(
O(n

d−1+α
d
−ε)
)

= 2o(N). So we690

can use this algorithm to solve Φ in time 2o(N), thus refuting the ETH.691

5.2 Reduction from d-grid 3-Sat to Partial d-grid Coloring692

After establishing the hardness of d-grid 3-Sat, we can proceed to showing the hardness693

of Partial d-grid Coloring.694

Theorem 14. For any integer d > 3, and reals 0 6 α 6 1 and ε > 0, there is no695

2O(n1−1/d−ε`1/d) algorithm solving Partial d-grid Coloring on a total of n points and696

` = Θ(nα) points in each cell, unless the ETH fails.697

The proof of Theorem 14 is a consequence of Theorem 13 and of the gadgets con-698

structed in Section 4. The reduction is now from d-grid 3-Sat and we only have to very699

slightly adapt the construction. The overall picture is the grid-like structure of Figure 6700

extended to dimension d. From an instance I of d-grid 3-Sat produced by the reduction701

of Theorem 13 on the grid R[g, d] with k variables per cell, we build an equivalent instance702

J of Partial d-grid Coloring on a subgraph of R[g′, d] with g′ = Θ(g) with ` := 4k703

points (and colors), in the following way. A cell of I is again called even (resp. odd) if704

its coordinates sum up to an even integer (resp. odd integer). For each even/odd cell of705

I, we have a corresponding even/odd standard cell in J (in the grid R[g′, d]). We define706

similarly a standard cell as a cell in which the ` points p1, . . . , p` are in the main diagonal,707

i.e., pi = (i, i, . . . , i) ∈ [`]d for all i ∈ [`]. Observe that, as in the 2-dimensional case, two708

adjacent standard cells have to be colored in the same way (see Figure 12).709

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

Figure 12: A wire in dimension 3. The coloring of any cell forces the same coloring in the
others.

In each even/odd cell of J , the truth assignment of the k variables is encoded the710

same way as in the 2-dimensional case. Each of those cells are wired via a constant number711

(four is enough) of adjacent standard cells to one clause gadget (responsible for ensuring712

the satisfiability of the clauses on those very variables). One can notice that, planarity not713

http://jocg.org/

Journal of Computational Geometry jocg.org

Figure 13: Wiring the reference coloring (depicted in blue), to the place where it is needed.

being an obstacle anymore, bringing the reference coloring to the clause gadgets is no longer714

a delicate issue. We can therefore simplify a bit our reduction for d > 3.715

First, we do not require the local reference coloring cells of the planar case. Now, we716

only have one global reference coloring cell, and we wire this cell to every clause gadget. We717

can do it, as all gadgets are are embedded in a two-dimensional subspace, so we can always718

use extra dimensions to find place for wires (see Fig. 13).719

Secondly, we no longer need two consistency gadgets between two adjacent even and720

odd cells. Now, between every even cell (resp. every odd cell) and each of its 2d neighboring721

odd cells (resp. even cells), we have one consistency gadget. Each even/odd cell is attached722

to 2d wires as represented in Figure 14 in dimension 3.723

1
2
3
4
5
6

Figure 14: The 2d wires leaving a, say, even cell to reach each one of the 2d consistency
gadgets shared with the 2d adjacent odd cells. The cells in red are part of the wires to the
clause gadget.

http://jocg.org/

Journal of Computational Geometry jocg.org

Every consistency and clause gadget is embedded into a plane (subset of cells in724

an affine subspace of dimension 2) supported by say, e1 and e2, the first two vectors of725

the canonical basis. The wires which should be plugged to the corresponding gadget are726

naturally guided towards the plane (see Figure 15 where we give the example of the clause727

gadget). This construction can be realized with g′ = 100g. The soundness follows from the728

2-dimensional case.729

It is noteworthy that we are not using the extra dimensions for those crucial gadgets.730

The higher dimensional space is mainly needed and used in Section 5.1 to get Theorem 13.731

1

2

3

4

5

6

1

2

3

4

5

6

a

b

a

b

123456

1
3

52
4

6135246

c
[6] \ c

a
b

a
b

Figure 15: The clause gadget in dimension 3. The wires meet in a plane where the in-
formation is projected to 2 dimensions. The core of the gadget is then identical to the
2-dimensional case.

The final step in proving the lower bound in Theorem 3 is reducing Partial d-grid732

Coloring to `-Coloring of an intersection graph of d-dimensional unit balls. It is very733

similar to the one in Theorem 1 (see also [24, Theorem 3.1.]).734

5.3 Reduction from Partial d-grid Coloring to `-Coloring of unit d-ball graphs735

Proof of the third and last step of the lower bound of Theorem 3. There is a transparent re-736

duction from Partial d-grid Coloring to `-Coloring on intersection graphs of d-737

dimensional balls. Recall that the points of an instance of Partial d-grid Coloring738

are in [`]d in each cell, and that the cells created by the reduction of Theorem 14 are in [g′]d739

with g′ = Θ(g).740

One turns every point (x1, . . . , xd) ∈ [`]d of every cell at position (i1, . . . , id) ∈ [g′]d741

into a d-dimensional ball centered at ((2(d−1)`2 +0.1)i1 +x1, . . . , (2(d−1)`2 +0.1)id+xd).742

The common radius of all the balls is set to (d− 1)`2, and we set the number of colors to `.743

The correctness of this reduction is similar to the 2-dimensional case and is detailed in [25,744

http://jocg.org/

Journal of Computational Geometry jocg.org

Theorem 3.1.].745

6 Segments746

First we will present the hardness proof for the list coloring problem, and then we will show747

how to modify it to obtain the result for 6-coloring. The segments in our construction will748

be axis-parallel, the class of intersection graphs of such segments in denoted by 2-Dir. In749

the description, we will identify the vertices of the intersection graph with the segments.750

Theorem 15. There is no algorithm working in time 2o(n) for the list 6-coloring of 2-Dir751

graphs with n vertices, unless the ETH fails.752

Proof. We reduce from 3-coloring of graphs with maximum degree at most 4. Let G be a753

graph with n vertices and m = Θ(n) edges. It is a folklore result that, assuming the ETH,754

there is no algorithm solving this problem in time 2o(n) (see for instance Lemma 1 in [5]).755

Let the vertex set of G be V = {v1, v2 . . . , vn}. We construct a 2-Dir graph G′ with756

lists L of colors from the set {1, 2, 3, 4, 5, 6}, such that G is 3-colorable if and only if G′ is757

list-colorable with respect to the lists L.758

For each vertex vi we introduce two segments: a horizontal one, called xi, and a759

vertical one, called yi, so that they form a half of a n × n grid (see Figure 16). When i760

increases, xi becomes longer and yi shorter. One may observe that the intersection graph761

induced by those segments is not grid-like. We set the lists of each xi to {1, 2, 3} and the762

lists of each yi to {4, 5, 6}.763

Each color c ∈ {1, 2, 3} will be identified with the color c + 3. Thus, we want to764

ensure that in any feasible 6-coloring f of G′ we have:765

1. f(xi) + 3 = f(yi) for all i ∈ [n],766

2. f(xi) + 3 6= f(yi) for all i > j such that vivj is an edge of G.767

This is achieved by using equality gadgets and inequality gadgets. At the crossing point of768

xi and yi, we put an equality gadget (represented by a circle on Figure 16). Moreover, for769

each edge vivj of G, we put an inequality gadget at the crossing point of xi and yj , i > j770

(represented by a square on Figure 16).771

The equality gadget consists of 9 segments, arranged as depicted on Figure 17. Con-772

sider the equality gadget and suppose xi gets the color 1. Then a1 receives color 4, and b1773

and c1 colors 5 and 6, respectively. Thus the only choice for the color for yi is 4. This can774

be extended to remaining segments of the gadget e.g. by coloring a2 with color 2, a3 with775

color 3, b2, c2 with color 5, and b3, c3 with color 6. The other cases are symmetric.776

The inequality gadget consists of 7 segments, arranged as depicted on Figure 18. So777

now consider an inequality gadget and suppose the color of xi is 1. Then p1 and p2 get778

colors 5 and 6, respectively. Thus the only choice for x′ is 4, which prevent yj from receiving779

color 4. This coloring can be extended to remaining segments by coloring q1, q2 with color780

2 and r1, r2 with color 3. The other cases are again symmetric.781

http://jocg.org/

Journal of Computational Geometry jocg.org

v1 v2

v3 v4

v5 v6 x1

x2

x3

x4

x5

x6

y1 y2 y3 y4 y5 y6

Figure 16: A graph G (left) and a high-level construction of G′ (right). Circles denote
equality gadgets and squares denote inequality gadget

This proves that G′ has a coloring with lists L if and only if G is 3-colorable.

vertex list

xi

yi

a1

a2

a3

b1

b2

b3

c1

c2

c3

vertex list

1, 2, 3

4, 5, 6

1, 4

4, 5

4, 6

2, 5

4, 5

5, 6

3, 6

4, 6

5, 6

xi

yi

a1

b1
b2

a2

a3

b3
c3

c1
c2

Figure 17: Equality gadget.
782

The number of vertices of G′ is n′ = 2n︸︷︷︸
xi,yi

+ 9n︸︷︷︸
equality

+ 7m︸︷︷︸
inequality

= Θ(n).783

Now suppose we can find a list coloring of G′ in time 2o(n
′). This yields an algorithm784

for 3-coloring of G in time 2o(n
′) = 2o(n), which in turn contradicts the ETH.785

To obtain Theorem 2, we modify the construction above to simulate the lists of786

available colors.787

Theorem 2. There is no 2o(n) time algorithm for 6-Coloring the intersection graph of788

line segments in the plane, unless the ETH fails.789

Proof. We modify the construction from the proof of Theorem 15. We first introduce six790

overlapping segments R1, R2, . . . , R6, whose coloring will serve as a reference coloring. Since791

these segments are pairwise intersecting, each of them receives a different color. We will792

denote by i ∈ {1, 2, . . . , 6} the color assigned to Ri.793

Now, for each segment v of G′, we want to simulate the list L(v) from the instance794

of list 6-coloring constructed in the proof of Theorem 15. For every color i /∈ L(v), we want795

http://jocg.org/

Journal of Computational Geometry jocg.org

xi

yi

p1 p2 q1 q2 r1 r2

x′
vertex list

xi

yi

vertex list

1, 2, 3

4, 5, 6

1, 5

1, 6

2, 4

2, 6

3, 4

3, 5

x′

p1

p2

q1

q2

r1

r2

4, 5, 6

Figure 18: Inequality gadget.

to introduce a segment si intersecting v, which will always receive color i.796

To achieve this, we first need to transport the reference coloring to every gadget.797

We will do it using bundles of overlapping segments, the overall high-level idea is depicted798

in Figure 19. We make sure that a bundle consisting of overlapping segments colored 1,2,3799

intersects all yi’s, and a bundle consisting of overlapping segments colored 4,5,6 intersects800

all xi’s. Observe that this already simulates the lists for every xi, yi (i ∈ [n]).801

x1

x2

x3

x4

x5

x6

y1 y2 y3 y4 y5 y6

Figure 19: Reference coloring is transported to every gadget. Red and blue lines denote,
respectively, triples of overlapping segments with colors 1,2,3, and 4,5,6. Parallel lines
depicted close to each other are in fact overlapping. Segments R1, R2, . . . , R6 are positioned
in the lower left corner of the picture.

Such a construction relies on a constant-size gadget, which allows us to split, join,802

or turn the reference coloring. In other words, we want to be able to split a bundle into two803

http://jocg.org/

Journal of Computational Geometry jocg.org

perpendicular bundles, carrying the same information (splitting, see e.g. red bundles in the804

left of Figure 19), join two bundles carrying distinct sets of colors into a single one (joining,805

this happens next to the inequality gadgets), or change the orientation of a bundle from a806

horizontal to vertical (turning, see the top-right bundles in Figure 19). We always need to807

make sure that the color of each overlapping segment in the bundle is uniquely determined.808

The construction of the gadget for splitting a bundle of six segments is depicted in809

Figure 20. Turning a bundle or splitting a bundle of three colors can be easily realized810

by finishing unnecessary segments just after leaving the gadget. Also note that joining is811

actually the same as splitting. In order to join two perpendicular bundles, each carrying812

three colors, we add three segments to each of bundles (this will make sure that they receive813

the colors not appearing in the bundle), and attaching the extended bundles to a split814

gadget.815

Figure 20: Split gadget for 6 colors. The parallel segments depicted close to each other are
in fact overlapping. Observe that the depicted 6-coloring is the only possible (up to the
permutation of colors).

Note that the number of segments in this gadget is constant. Now, the only thing left816

is to connect every segment in every gadget to appropriate segments carrying the reference817

coloring. This can easily be done using a constant number of additional segments per gadget818

(see Figure 21).819

The total size of the construction increases by a constant factor, as we introduce820

O(n) constant-size split gadgets. Thus an algorithm for 6-coloring the constructed 2-Dir821

graph in time 2o(n
′) could be used to 3-color the input graph G in time 2o(n), contradicting822

the ETH.823

http://jocg.org/

Journal of Computational Geometry jocg.org

xi

yi

a1

b1
b2

a2

a3

b3
c3

c1
c2

xi

yi

p1 p2 q1 q2 r1 r2

x′

Figure 21: Simulation of lists for vertices in equality and inequality gadgets. Violet lines
denote tuples of overlapping segments, carrying the reference coloring. We finish unwanted
segments just after leaving the turning gadgets.

References824

[1] J. Alber and J. Fiala. Geometric separation and exact solutions for the parameterized825

independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004.826

[2] É. Bonnet and P. Rzążewski. Optimality program in segment and string graphs. CoRR,827

abs/1712.08907, 2017.828

[3] J. Cardinal. Computational geometry column 62. SIGACT News, 46(4):69–78, 2015.829

[4] R. H. Chitnis, M. Hajiaghayi, and D. Marx. Tight bounds for Planar Strongly Con-830

nected Steiner Subgraph with fixed number of terminals (and extensions). In SODA831

2014 Proc., pages 1782–1801, 2014.832

[5] M. Cygan, F. V. Fomin, A. Golovnev, A. S. Kulikov, I. Mihajlin, J. W. Pachocki, and833

A. Socała. Tight lower bounds on graph embedding problems. CoRR, abs/1602.05016,834

2016.835

[6] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,836

M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer Publishing Com-837

pany, Incorporated, 1st edition, 2015.838

[7] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Bidimensional839

parameters and local treewidth. SIAM J. Discrete Math., 18(3):501–511, 2004.840

[8] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Fixed-parameter841

algorithms for (k, r)-Center in planar graphs and map graphs. ACM Transactions on842

Algorithms, 1(1):33–47, 2005.843

[9] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential844

parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM,845

52(6):866–893, 2005.846

http://jocg.org/

Journal of Computational Geometry jocg.org

[10] E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic847

applications. Comput. J., 51(3):292–302, 2008.848

[11] E. D. Demaine and M. Hajiaghayi. Linearity of grid minors in treewidth with applica-849

tions through bidimensionality. Combinatorica, 28(1):19–36, 2008.850

[12] E. D. Demaine and M. T. Hajiaghayi. Fast algorithms for hard graph problems: Bidi-851

mensionality, minors, and local treewidth. In GD 2014 Proc., pages 517–533, 2004.852

[13] F. Dorn, F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Beyond bidimension-853

ality: Parameterized subexponential algorithms on directed graphs. In STACS 2010854

Proc., pages 251–262, 2010.855

[14] F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms.856

Computer Science Review, 2(1):29–39, 2008.857

[15] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact algorithms858

on planar graphs: Exploiting sphere cut decompositions. Algorithmica, 58(3):790–810,859

2010.860

[16] F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger. Tight bounds861

for parameterized complexity of cluster editing with a small number of clusters. J.862

Comput. Syst. Sci., 80(7):1430–1447, 2014.863

[17] F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Subexponential algorithms864

for partial cover problems. Inf. Process. Lett., 111(16):814–818, 2011.865

[18] F. V. Fomin and D. M. Thilikos. Dominating sets in planar graphs: Branch-width and866

exponential speed-up. SIAM J. Comput., 36(2):281–309, 2006.867

[19] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential868

complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.869

[20] P. N. Klein and D. Marx. Solving Planar k-Terminal Cut in O(nc
√
k) time. In ICALP870

2012 Proc., pages 569–580, 2012.871

[21] P. N. Klein and D. Marx. A subexponential parameterized algorithm for Subset TSP872

on planar graphs. In SODA 2014 Proc., pages 1812–1830, 2014.873

[22] D. Marx. Efficient approximation schemes for geometric problems? In ESA 2005 Proc.,874

pages 448–459, 2005.875

[23] D. Marx and M. Pilipczuk. Optimal parameterized algorithms for planar facility loca-876

tion problems using voronoi diagrams. In N. Bansal and I. Finocchi, editors, ESA 2015877

Proc., volume 9294 of LNCS, pages 865–877. Springer, 2015.878

[24] D. Marx and A. Sidiropoulos. The limited blessing of low dimensionality: When 1-1/d879

is the best possible exponent for d-dimensional geometric problems. SOCG 2014 Proc.,880

pages 67:67–67:76, New York, NY, USA, 2014. ACM.881

http://jocg.org/

Journal of Computational Geometry jocg.org

[25] D. Marx and A. Sidiropoulos. The limited blessing of low dimensionality: When882

1-1/d is the best possible exponent for d-dimensional geometric problems. CoRR,883

abs/1612.01171, 2016.884

[26] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-packings885

and nearest neighbor graphs. J. ACM, 44(1):1–29, Jan. 1997.886

[27] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen. Subexponential-887

time parameterized algorithm for Steiner Tree on planar graphs. In STACS 2013 Proc.,888

pages 353–364, 2013.889

[28] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen. Network sparsifica-890

tion for steiner problems on planar and bounded-genus graphs. In FOCS 2014 Proc.,891

pages 276–285. IEEE Computer Society, 2014.892

[29] W. D. Smith and N. C. Wormald. Geometric separator theorems. available online at893

https://www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz.894

[30] W. D. Smith and N. C. Wormald. Geometric separator theorems and applications.895

FOCS 1998 Proc., pages 232–243, Washington, DC, USA, 1998. IEEE Computer Soci-896

ety.897

[31] D. M. Thilikos. Fast sub-exponential algorithms and compactness in planar graphs. In898

ESA 2011 Proc., pages 358–369, 2011.899

[32] E. J. van Leeuwen and J. van Leeuwen. Convex Polygon Intersection Graphs, pages900

377–388. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.901

http://jocg.org/
https://www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz

	Introduction
	Algorithms
	Intermediate problems
	Two-Dimensional Lower Bounds
	Reduction from Partial 2-grid Coloring to -Coloring of unit disk graphs
	Reduction from �sat to 2-grid 3-Sat
	Reduction from 2-grid 3-Sat to Partial 2-grid Coloring

	Higher Dimensional Lower Bounds
	Embeddings
	Reduction from d-grid 3-Sat to Partial d-grid Coloring
	Reduction from Partial d-grid Coloring to -Coloring of unit d-ball graphs

	Segments

