
Fine-grained complexity of coloring unit disks and
balls∗

Csaba Biró1, Édouard Bonnet2, Dániel Marx2, Tillmann Miltzow2,
and Paweł Rzążewski2,3

1 Department of Mathematics, University of Louisville
2 Institute for Computer Science and Control,

Hungarian Academy of Sciences (MTA SZTAKI)
3 Faculty of Mathematics and Information Science,

Warsaw University of Technology
csaba.biro@louisville.edu, edouard.bonnet@dauphine.fr, dmarx@cs.bme.hu,
t.miltzow@gmail.com, p.rzazewski@mini.pw.edu.pl

Abstract
On planar graphs, many classic algorithmic problems enjoy a certain “square root phenomenon”
and can be solved significantly faster than what is known to be possible on general graphs: for
example, Independent Set, 3-Coloring, Hamiltonian Cycle, Dominating Set can be
solved in time 2O(

√
n) on an n-vertex planar graph, while no 2o(n) algorithms exist for general

graphs, assuming the Exponential Time Hypothesis (ETH). The square root in the exponent
seems to be best possible for planar graphs: assuming the ETH, the running time for these
problems cannot be improved to 2o(

√
n). In some cases, a similar speedup can be obtained

for 2-dimensional geometric problems, for example, there are 2O(
√
n logn) time algorithms for

Independent Set on unit disk graphs or for TSP on 2-dimensional point sets.
In this paper, we explore whether such a speedup is possible for geometric coloring problems.

On the one hand, geometric objects can behave similarly to planar graphs: 3-Coloring can be
solved in time 2O(

√
n) on the intersection graph of n unit disks in the plane and, assuming the

ETH, there is no such algorithm with running time 2O(
√
n). On the other hand, if the number `

of colors is part of the input, then no such speedup is possible: Coloring the intersection graph
of n unit disks with ` colors cannot be solved in time 2o(n), assuming the ETH. More precisely,
we exhibit a smooth increase of complexity as the number ` of colors increases: If we restrict the
number of colors to ` = Θ(nα) for some 0 6 α 6 1, then the problem of coloring the intersection
graph of n unit disks with ` colors

can be solved in time exp
(
O(n 1+α

2 logn)
)

= exp
(
O(
√
n` logn)

)
, and

cannot be solved in time exp
(
o(n 1+α

2)
)

= exp
(
o(
√
n`)
)
, unless the ETH fails.

More generally, we consider the problem of coloring d-dimensional unit balls in the Euclidean
space and obtain analogous results showing that the problem

can be solved in time exp
(
O(n d−1+α

d logn)
)

= exp
(
O(n1−1/d`1/d logn)

)
, and

cannot be solved in time exp
(
n
d−1+α
d −ε

)
= exp

(
n1−1/d−ε`1/d

)
for any ε > 0, unless the

ETH fails.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

∗ Supported by the ERC grant PARAMTIGHT: “Parameterized complexity and the search for tight
complexity results”, no. 280152.

© Csaba Biró, Édouard Bonnet, Dániel Marx, Tillmann Miltzow, and Paweł Rzążewski;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Fine-grained complexity of coloring unit disks and balls

Keywords and phrases unit disk graphs, unit ball graphs, coloring, exact algorithm

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

There are many examples of 2-dimensional geometric problems that are NP-hard, but can
be solved significantly faster than the general case of the problem: for example, there are
2O(
√
n logn) time algorithms for TSP on 2-dimensional point sets or for Independent Set

on the intersection graph of unit disks in the plane [1, 24, 31], while only 2O(n) time al-
gorithms are known for these problems on general metrics or on arbitrary graphs. There is
evidence that these running times are essentially best possible: under the Exponential Time
Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [19], the 2O(

√
n logn) time algorithms

for these 2-dimensional problems cannot be improved to 2o(
√
n), and the 2O(n) algorithms

for the general case cannot be improved to 2o(n). Thus running times with a square root in
the exponent seems to be the natural complexity behavior of many 2-dimensional geometric
problems. There is a similar “square root phenomenon” for planar graphs, where running
times of the form 2O(

√
n), 2O(

√
k) · nO(1), or nO(

√
k) are known for a number of problems

[3, 6–14, 16, 17, 20, 21, 24, 28, 29, 32]. More generally, for d-dimensional geometric prob-
lems, running times of the from 2O(n1−1/d) or nO(k1−1/d) appear naturally, and Marx and
Sidiropoulos [25] showed that, assuming the ETH, this form of running time is essentially
best possible for some problems.

In this paper, we explore whether such a speedup is possible for geometric coloring
problems. Deciding whether an n-vertex graph has an `-coloring can be done in time `O(n)

by brute force, or in time 2O(n) using dynamic programming. On planar graphs, we can
decide 3-colorability significantly faster in time 2O(

√
n), for example, by observing that planar

graphs have treewidth O(
√
n). Let us consider now the problem of coloring the intersection

graph of a set of unit disks in the 2-dimensional plane, that is, assigning a color to each disk
such that if two disks intersect, then they receive different colors. For a constant number of
colors, geometric objects can behave similarly to planar graphs: 3-Coloring can be solved
in time 2O(

√
n) on the intersection graph of n unit disks in the plane and, assuming the

ETH, there is no such algorithm with running time 2o(
√
n). However, while every planar

graph is 4-colorable, unit disks graphs can contain arbitrary large cliques, and hence the
`-colorability is a meaningful question for larger, non-constant, values of ` as well. We show
that if the number ` of colors is part of the input and can be up to Θ(n), then, surprisingly,
no speedup is possible: Coloring the intersection graph of n unit disks with ` colors cannot
be solved in time 2o(n), assuming the ETH. What happens between these two extremes
of constant number of colors and Θ(n) colors? Our main 2-dimensional result exhibits a
smooth increase of complexity as the number ` of colors increases.

I Theorem 1. For any fixed 0 6 α 6 1, the problem of coloring the intersection graph of n
unit disks with ` = Θ(nα) colors

can be solved in time 2O(n
1+α

2 logn) = 2O(
√
n` logn), and

cannot be solved in time 2o(n
1+α

2) = 2o(
√
n`), unless the ETH fails.

Let us remark that when we express the running time as a function two parameters
(number n of disks and number ` of colors) it is not obvious what we mean by claiming
that a running time is “best possible.” In the statement of Theorem 1, we follow Fomin et
al. [15], who studied the complexity of a two-parameter clustering problem in a similar way:

http://dx.doi.org/10.4230/LIPIcs...

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski XX:3

We restrict the parameter ` to be Θ(nα) for some fixed α, and determine the complexity
under this restriction as a univariate function of n.

The proof is not very specific to disks and can be easily adapted to, say, axis-parallel unit
squares or other fat objects. However, it seems that the requirement of fatness is essential
for this type of complexity behavior as, for example, the coloring of the intersection graphs
of line segments (of arbitrary lengths) does not admit any speedup compared to the 2O(n)

algorithm, even for a constant number of colors.

I Theorem 2. There is no 2o(n) time algorithm for 6-Coloring the intersection graph of
line segments in the plane, unless the ETH fails.

How does the complexity change if we look at the generalization of the coloring problem
into higher dimensions? It is known for some problems that if we generalize the problem from
two dimensions to d dimensions, then the square root in the exponent of the running time
changes to a 1− 1/d power, which makes the running time closer and closer to the running
time of the brute force as d increases. This may suggest that the d-dimensional generalization
of Theorem 1 should have (n`)1−1/d in the exponent instead of

√
n`. Interestingly, this is

not exactly what happens:1 the correct exponent seems to be n1−1/d times `1/d. That is,
as d increases, the running time becomes less and less sensitive to the number of colors and
approaches 2O(n), even for constant number of colors.

I Theorem 3. For any fixed 0 6 α 6 1 and dimension d > 2, the problem of coloring the
intersection graph of n unit balls in the d-dimensional Euclidean space with ` = Θ(nα) colors

can be solved in time 2
O

(
n
d−1+α
d logn

)
= 2O(n1−1/d`1/d logn), and

cannot be solved in time 2n
d−1+α
d

−ε
for any ε > 0, unless the ETH fails.

Techniques. The upper bounds of Theorems 1 and 3 follow fairly easily using standard
techniques. Clearly, the problem of coloring unit disks with ` colors makes sense only if
every point of the plane is contained in at most ` disks: otherwise the intersection graph
would contain a clique of size larger than ` and we would immediately know that there is no
`-coloring. On the other hand, if every point is contained in at most ` of the n unit disks,
then it is known that there is a balanced separator of size O(

√
n`) [27, 30, 31]. By finding

such a separator and trying every possible coloring on the disks of the separator, we can
branch into `O(

√
n`) smaller instances (here it is convenient to generalize the problem into the

list coloring problem, where certain colors are forbidden on certain disks). This recursive
procedure has the running time claimed in Theorem 1. We can use higher-dimensional
separation theorems and a similar approach to prove the upper bound of Theorem 3. This
part is entirely deferred to the appendix in Section 6.

For the lower bound, the first observation is that instances with the following structure
seem to be the hardest: the set of disks consists of g2 groups forming a g × g-grid and each
group consists of ` pairwise intersecting disks such that disks in group (i, j) can intersect
disks only from those other groups that are adjacent to (i, j) in the g × g-grid. Note that
this instance has n = g2` disks. As a sanity check, let us observe that the g` disks in
any given row have `g` possible different colorings, hence we can solve the problem by a
dynamic programming algorithm that sweeps the instance row by row in time in 2O(g` log `) =

1 The astute reader can quickly realize that 2O((n`)1−1/d) is certainly not the correct answer when, say,
` = Θ(n) and d = 3: then 2O((n`)1−1/d) = 2O(n4/3) is worse than the running time 2O(n) possible even
for general graphs!

XX:4 Fine-grained complexity of coloring unit disks and balls

2O(
√
n` log `), which is consistent with the upper bound of Theorem 1. We introduce the

Partial d-grid Coloring problem as a slight generalization of such grid-like instances
where some of the g × g groups can be missing.

To prove that instances of this form cannot be solved significantly faster, we reduce
from a restricted version of satisfiability where g2k variables are partitioned into g2 groups
forming a g × g-grid and there are two types of constraints: clauses of size at most 3 where
each variable comes from the same group and equality constraints forcing two variables from
two adjacent groups to be equal. It is not very difficult to show that any 3-SAT instance
with O(gk) variables and O(gk) clauses can be embedded into such a problem, hence the
ETH implies that the problem cannot be solved in time 2o(gk). We reduce such instances
of 3-SAT to the coloring problem by representing each group of k variables with a group
of ` = O(k) disks and make the following correspondence between truth assignments and
colorings: if the i-th variable of the group is true, then we represent it by giving color 2i− 1
to the (2i − 1)-st disk and color 2i to the 2i-th disk, and we represent false by swapping
these two colors. Then we implement gadgets that enforce the meaning of the clauses and
the equality constraints. This way, we create an equivalent instance with O(g2) groups of
` = O(k) disks in each group, hence an algorithm with running time 2o(g`) = 2o(gk) would
violate ETH, which is what we wanted to show.

The d-dimensional lower bound of Theorem 3 goes along the same lines, but we first
prove a lower bound for a d-dimensional version of 3-SAT, where there are gd groups
of variables of size k each, arranged into a g × · · · × g-grid. Based on earlier results by
Marx and Sidiropoulos [25], we prove an almost tight lower bound for this d-dimensional
3-SAT by embedding a 3-SAT instance with roughly gd−1k variables and clauses into the
d-dimensional g × · · · × g-grid. Then the reduction from this problem to coloring unit balls
in d-dimensional space is very similar to the 2-dimensional case.

2 Intermediate problems

In this section, we introduce two technical problems, which will serve as an intermediate
step in our hardness reductions. Let us start with some notation and definitions. For an
integer n, we denote by [n] the set {1, 2, . . . , n}. For a set S, we denote by 2S the family
of all subsets of S. For a fixed dimension d and i ∈ [d], we denote by ei the d-dimensional
vector, whose i-th coordinate is equal to 1 and all remaining coordinates are equal to 0. For
two positive integers g, d, we denote by R[g, d] the d-dimensional grid, i.e., a graph whose
vertices are all vectors from [g]d, and two vertices are adjacent if they differ on exactly one
coordinate, and exactly by one (on that coordinate). In other words, a and a′ are adjacent
if a = a′ ± ei for some i ∈ [d]. We will often refer to vertices of a grid as cells.

Problem: d-grid 3-Sat
Input: A d-dimensional grid G = R[g, d], a positive integer k, a function ζ : v ∈
V (G) 7→ {v1, v2, . . . , vk} mapping each cell v to k fresh boolean variables, and a set C
of constraints of two kinds:
clause constraints: for a cell v, a set C(v) of pairwise variable-disjoint disjunctions of

at most 3 literals on ζ(v);
equality constraints: for adjacent cells v and w, a set C(v, w) of pairwise variable-

disjoint constraints of the form vi = wj (with i, j ∈ [k]).
Question: Is there an assignment of the variables such that all constraints are satisfied?

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski XX:5

Not all variables need to appear in some constraint. The size of the instance I =
(G, k, ζ, C) of d-grid 3-Sat is the total number of variables, i.e., gdk.

Problem: Partial d-grid Coloring
Input: An induced subgraph G of the d-dimensional grid R[g, d], a positive integer `,
and a function ρ : v ∈ V (G) 7→ {pv1, pv2, . . . , pv`} ∈ ([`]d)` mapping each cell v to a set of
` points in [`]d.
Question: Is there an `-coloring of all the points such that:

two points in the same cell get different colors;
if v and w are adjacent in G, say, w = v + ei (for some i ∈ [d]), and p ∈ ρ(v)
and q ∈ ρ(w) receive the same color, then p[i] 6 q[i] where a[i] := a · ei is the i-th
coordinate of a?

Here the size of the instance is the total number of points, i.e., |V (F)|` 6 gd`.

3 Two-Dimensional Lower Bounds

In this section, we discuss how to obtain a lower bound for the complexity of coloring unit
disk graphs. We do it using a three-step reduction and the intermediate problems introduced
in the previous section. Thanks to introducing these two intermediate steps, our construction
is easy to generalize to higher dimensions (see Section 4).

First we reduce 3-Sat to 2-grid 3-Sat. See Section 7.1 in the appendix for the proof.

I Theorem 4. For any 0 6 α 6 1 there is no algorithm solving 2-grid 3-Sat with total
size n and k = Θ(nα) variables per cell in time 2o(

√
nk) = 2o(n

1+α
2), unless the ETH fails.

The next step is reducing 2-grid 3-Sat to Partial 2-grid Coloring. This step is the
most important part of the proof.

I Theorem 5. For any 0 6 α 6 1, there is no 2o(
√
n`) algorithm solving Partial 2-grid

Coloring on a total of n points and ` = Θ(nα) points in each cell (that is n/` cells), unless
the ETH fails.

Proof. We present a reduction from 2-grid 3-Sat to Partial 2-grid Coloring. Let
I = (G, k, ζ, C) be an instance of 2-grid 3-Sat, where G = R[g, 2] and each cell contains
k variables. We think of G as embedded in the plane in a natural way, with edges being
horizontal or vertical segments. We construct an equivalent instance J = (F, `, ρ) of Partial
2-grid Coloring with |V (F)| = Θ(|V (G)|) = Θ(g2) and ` := 4k points per cell, where F
is an induced subgraph of R[g′, 2] with g′ = Θ(g).

First, we will explain the most basic building blocks of our construction, i.e., standard
cells, reference cell, variable-assignment cells, local reference cells, and wires. Then we are
ready to give an overview of the whole reduction. We finish with an elaborate explanation
of more complicated gadgets and proof of their correctness.
Standard cells. A standard cell is a cell where the points p1, . . . , p` are on the main
diagonal, that is pi = (i, i) for every i ∈ [`] (see cells A and B of Figure 2a). When we
talk about the ordering of the points in a standard cell, we always mean the left-to-right (or
equivalently, top-to-bottom) ordering. Standard cells will be used for the basic pieces of the
construction, i.e., variable-assignment cells, local reference cells, and wires (see below).

XX:6 Fine-grained complexity of coloring unit disks and balls

Reference coloring. Later in the construction we will choose one standard cell R̄, which
will be given a special function. We will refer to the coloring of R̄ as the reference coloring.
For each i ∈ [`], we define the color i to be the color used for the point pi is R̄. Now, saying
that a point somewhere else has color i, has an absolute meaning; it means using the same
color as used for point pi in R̄.
Variable-assignment cells. For each cell v = (i, j) ∈ V (G), we introduce in F a standard
cell A(v) = (δi, δj), where δ is a large constant. The cells A(v) for v ∈ V (G) are responsible
for encoding the truth assignment of variables in ζ(v). Therefore we call them variable-
assignment cells. We will partition variable-assignment cells into two types. The cell A(v)
for v = (i, j) of I is called even if i+ j is even. Otherwise A(v) is odd. Note that if v and w
are adjacent cells in I, then A(v) and A(w) have different parity.

A1
2
4
3

5
6
7
8

x1

x2

bottom of
reference
coloring

B

y1

y2

top of
reference
coloring

1
2
3
4

6
5

7
8

Figure 1 Cells of even parity contain the bottom half of the reference coloring as in cell A and
cells of odd parity contain the top part of the reference coloring, as in cell B.

As each variable-assignment cell contains ` = 4k points, there are `! = 2O(` log `) ways
to color these points with ` colors. We will only make use of 2`/4 colorings among those.
In our construction, we will make sure that each variable-assignment cell receives one of
the standard colorings. If the cell A(v) is even, the coloring ϕ of A(v) is standard if
{ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for i ∈ [k] and ϕ(pi) = i for i ∈ [4k] \ [2k]. If the
cell A(v) is odd, its standard colorings ϕ are the ones with ϕ(pi) = i for i ∈ [2k] and
{ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for i ∈ [2k] \ [k]. The choice of the particular standard
coloring for the points in A(v) defines the actual assignment of variables in ζ(v). If A(v) is
even, then for each i ∈ [k], we interpret the coloring in the following way:

p2i−1 7→ 2i− 1 , p2i 7→ 2i as setting the variable vi to true;
p2i−1 7→ 2i , p2i 7→ 2i− 1 as setting the variable vi to false.

If A(v) is odd, for each i ∈ [k], we interpret it in that way:

p2k+2i−1 7→ 2i− 1 , p2k+2i 7→ 2i as setting the variable vi to true;
p2k+2i−1 7→ 2i , p2k+2i 7→ 2i− 1 as setting the variable vi to false.

Observe that in even (odd, respectively) cells A(v) the assignment of variables is only
encoded by the coloring of the first (last, respectively) 2k points in A(v). The colors of
the remaining points are exactly the same as in the reference coloring, so each cell contains
exactly one half of the reference coloring.
Local reference cells. For all i, j ∈ [g − 1], we introduce a new standard cell R(i, j) =
(δi + δ/2, δj + δ/2), called a local reference cell. Moreover, we set the reference R̄ to be
R(1, 1). In the construction, we will ensure that the coloring of each local reference cell is
exactly the same, i.e., is exactly the reference coloring.

Consider the variable-assignment cell A(v) for v = (i, j). We say that a local reference
cell R(i′, j′) is associated with A(v), if j − j′ ∈ {0, 1} and i − i′ ∈ {0, 1}. Note that each

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski XX:7

variable-assignment cell has one, two, or four associated local reference cells. Moreover, if
v, w are adjacent cells of I, then A(v) and A(w) share at least one associated local reference
cell.
Wires. If two standard cells are adjacent, then they must be colored in the same way;
thus having a path of standard cells, allows us to transport the information from one cell to
another. Let us prove that claim. Let A and B be two adjacent standard cells, such that A
is left of B (see Figure 2a; the argument is similar if the cells are vertically adjacent).

p1
p2

A

p3
p4

q1
q2

B

q3
q4

(a) If two standard cells are adjacent, they
must have the same coloring. (b) Wires can be used to create many copies

of the same cell.

Figure 2 Construction and usage of wires.

Let p1, . . . , p` be the points of the cell A and q1, . . . , q` be the points of the cell B. Note
that the color of q1 is necessarily equal to the color of p1, because the x-coordinates of points
p2, p3, . . . , p` exceed the x-coordinate of q1. Inductively, we can show that for every i > 2,
the color of qi is the same as the color of pi. Indeed, the colors used for pi+1, pi+2, . . . , p`
are not available for qi, because these points are too close to qi. On the other hand, by
the inductive assumption, all colors used on p1, p2, . . . , pi−1 are already used for points
q1, q2, . . . , qi−1. Thus the only possible choice for the color of qi is the color of pi.

Observe that with the use of wires allows us to create many copies of the same cell (see
Fig. 2b). We say two cells are the same, if the point configuration and their coloring must
be necessarily the same.

clause checking gadget

local reference cell

consistency checking
gadget

wires

even variable assignment cell

odd variable assignment cell

Figure 3 Illustration of the instance J . Each blue square represents a cell A(v) corresponding
to the cell v of I (light blue cells represent even cells and dark blue ones represent odd cells).
The orange squares are local reference cells, which contain the reference coloring. Gray and brown
squares represent, respectively, clause-checking and consistency gadgets.

Overview of the construction Before we move on to describe more complicated gadgets,

XX:8 Fine-grained complexity of coloring unit disks and balls

we explain the overview of the construction. Figure 3 presents the arrangement of the cells
in F . For each variable-assignment cell A(v), we introduce a clause-checking gadget, which is
responsible for ensuring that all clauses in C(v) are satisfied. This gadget requires an access
to the reference coloring, which can attain from the local reference cells (we can choose any
of the local reference cells associated with A(v)). For each edge vw of G, we introduce a
consistency gadget. In fact, for inner edges of G (i.e., the ones not incident with the outer
face) we introduce two consistency gadgets, one for each face incident with vw. This gadget
is responsible for ensuring the consistency on three different levels:

to force all equality constraints C(v, w) to be satisfied,
to ensure that each of A(v) and A(w) receives one of the standard colorings,
to ensure that the local reference cell contains exactly the reference coloring.

This gadget also requires access to the reference coloring, so we join it with the appropriate
local reference cell (see Fig. 3).

To join the variable-assignment cells and local reference cells with appropriate gadgets,
we will use wires. Notice that each cell A can interact with at most four other cells, which
may not be enough, if we want to attach several gadgets to A. However, since wires allow
us to create an exact copy of A, we can attach any constant number of gadgets to A, adding
only a constant number of additional cells. Moreover, we can do it in a way that ensures
that no two gadgets interact with each other (anywhere but on A). Thus, when we say that
we attach some gadget to a cell, we will not discuss how exactly we do this.

Every gadget uses only constant number of cells. Thus, making the constant δ large
enough and using wires, we can make sure that different gadgets do not interact with each
other (except for the shared cells). The total size of the construction is clearly increased
only by a constant factor.
Permuting points and colors. Recall that when describing wires, we have not used the
second coordinate of the points p1, . . . , p` and q1, . . . , q`. In fact, those coordinates can be
chosen at our convenience, and the argument supporting the claim in the paragraphs on the
wires would still work. Combining this observation horizontally and vertically, we can force
any permutation of the colors (see Figure 4a). The gadget is realized as follows. Let σ be
our target permutation. To the right of a standard cell A, we put a cell B. We place the
points in B at the positions of 1’s in the permutation matrix of σ. Below the cell B, we put
a standard cell C. Is is straightforward to verify that in any feasible coloring of those three
cells, for every i ∈ [`], the points pi and qσ(i) have the same color, where pi (resp. qi) is the
point in (i, i) in the cell A (resp. cell C).
Forgetting color assignment. Besides permuting points and colors, it is also possible to
forget the color assignment of some points. Figure 4b shows a forgetting gadget attached
to standard cells A and C. In the cell A we have the coloring from left to right a, b, c, d.
In the cell C, the first two points can be colored either a, b or b, a. In particular, if A is an
even variable-assignment cell, then by looking at C we cannot distinguish anymore whether
the variable was set to true or to false. Thus, using a forgetting gadget attached to two
standard cells, we may force equality of colors of some corresponding points, while giving
some freedom of choosing the others. This concept will be used in the next paragraph.
Parallelism. As we may have hinted in the previous paragraph, subparts of a given cell
can act independently. In particular, this means that we can choose to forget any subset
of information but preserve the rest. It is important to note that this is a more general
phenomenon. Let `1, . . . , `t be positive integers summing up to `. Consider an arrangement
of cells where the points of each cell are all contained in the same square boxes of side lengths
respectively `1, . . . , `t, along the diagonal as shown in Figure 5a. For each h ∈ [t], the h-th

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski XX:9

a

b

c

d

a

b

c

d

d

c

a

b

A B

C

(a) The coloring of C is the coloring of A
with the permutation σ = (3, 4, 1, 2) applied.

a

b

c

d

a|b

c

d

d

c

a|b

a|b
a|b

A B

C

(b) In the cell C, colors a and b are now
interchangeable.

Figure 4 Permutation gadget (left) and forgetting gadget (right), attached to cells A and C.

box (of side length `h) contains exactly `h points.

`1

`2

`3

`4

`5

`1

`2

`3

`4

`5

(a) The sets of colors used within corresponding
boxes of A and B are equal.

R

A

(b) If R contains the reference coloring, then
A receives one of standard colorings (for an
even cell).

Figure 5 Boxes in adjacent cells with the same box-structure act independently from each other.

One may observe that a slight generalization of the argument given in the paragraph on
wires shows that if A and B are adjacent cells with the same box-structure, i.e., each has
points grouped in t boxes of sizes `1, . . . , `t, then for each h ∈ [t], the set of colors used on
points in h-th box in A is exactly the same as the set of colors used in h-th box in B (see
Figure 5a).

We point out that the combination of this observation and the forgetting gadget attached
to a local reference cell and a variable-assignment cell A can be used to ensure that A receives
one of the standard colorings (see Fig. 5b). The construction of the forgetting gadget varies
depending on the parity of A. In general the gadget preserves the colors of 2k points
containing the copy of one half of the reference coloring, and allows any permutation of
colors within two-element boxes representing the variables. We will use a similar approach
to check several clauses in parallel within the same group of a constant number of cells.

Clause gadget. We detail how a disjunction of three literals is encoded (see the left part of
Figure 6). Clauses with fewer literals are just a simplification of what comes next. First, we
will explain how to express a clause C, whose variables x1, x2, x3 are contained in a (6× 6)-
box of a variable-assignment cell A. In the next paragraph we will show how to check several
variable-disjoint clauses in one constant-size gadget. In general, in what follows, one should

XX:10 Fine-grained complexity of coloring unit disks and balls

re
fe
re
n
ce

co
lo
ri
n
g 1

2
3
4
5
6

1

2

3

4
6

5

1

2

3

4
6

5

p

x1

x2

x3

[6] \ c

va
ria

b
le

assig
n
m
en
t

R S

T

UB

Aa
b

a
b

re
fe
re
n
ce

co
lo
ri
n
g

va
ria

b
le

assig
n
m
en
t

R S

T

UB

AC1

C2

Figure 6 Illustration of the clause-checking gadget. To the left, one clause x1 ∨ ¬x2 ∨ x3 is
represented. To the right, two clauses are checked in parallel. Only cell B actually depends on the
clause.

think of the coordinates that we will specify as coordinates within a box part of the cell,
rather than as coordinates in the cell. The same applies to the colors, we should always look
at the set of colors appearing in the particular box. Obviously, the clause-checking gadget
needs to interact with variable-assignment encoding the values of x1, x2, x3. For simplicity of
notation assume that x1 is encoded by coloring points p1, p2 with colors 1, 2; x2 is encoded by
coloring points p3, p4 with colors 3, 4 and; x3 is encoded by coloring points p5, p6 with colors
5, 6. Our clause-checking gadget needs also an access to the reference coloring contained in
the cell R. This is necessary to be able to distinguish between colors e.g. 1 and 2, and thus
between setting x1 to true or to false.

First consider cells S, T , and U . The cell R contains the reference coloring and we
force the order of the colors in cell T to be from top to bottom 1, 3, 5, 2, 4, 6, using the
permutation gadget. Consider now cell U . It has one point at position p = (3, 3) and 5
points superimposed at position (6, 6). Now, because of cell T , the point p can only have a
color in {1, 3, 5}. All the other colors should be given to the 5 superimposed points. Then,
consider cells A and B.

The cell A contains the variable assignment. Recall that for each variable we use two
points. If a variable occupying rows 2i− 1 and 2i in the cell A occurs positively in C, then
we place in cell B a point in row 2i − 1 to the left of the box (say, the third column) and
a point in the row 2i to the right of the box (the sixth column); if the variable appears
negatively, we do the opposite: we place in cell B a point in the row 2i − 1 to the right
of the box (sixth column) and a point in row 2i to the left of the box (third column). By
construction, the colors to the right are not available to the point p. Therefore, the point p
(and henceforth the whole set of cells) can be colored if and only if at least one literal is set
to true by the truth assignment.
Checking clauses in parallel. Consider the cell v of 2-grid 3-Sat. Let C1, . . . , Cf be
the clauses of C(v) and recall that these clauses are pairwise variable-disjoint. Let σ be a

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski XX:11

permutation of points in A(v), such that the 2|C1| points encoding the variables of C1 appear
on positions 1, 2, . . . , 2|C1|, the 2|C1| points encoding the variables of C2 appear on positions
2|C1|+ 1, 2|C1|+ 2, . . . , 2|C1|+ 2|C2| and so on. The points encoding variables which do not
appear in any clause from C(v) and the points which do not encode any variable (i.e., the
points carrying a half of the reference coloring) appear on the last position, in any order.

We introduce a new standard cell A, and using a permutation gadget we ensure that
it contains the copies of points of A(v) in permutation σ. In the same way we introduce
a standard cell R, which contains the reference coloring with the permutation σ applied.
An illustration on how two clauses can be checked simultaneously is shown on the right
part of Figure 6. Observe that since the clauses in C(v) are pairwise variable-disjoint, one
clause-checking gadget is enough to ensure the satisfiability of all clauses in C(v).

Thus, for each cell A(v) and its associated local reference cell R, we introduce a clause-
checking gadget corresponding to the clauses in C(v), and join it with A(v) and R.
Equality check. Let A be a cell of J and let the points p2i−1, p2i (p2j−1, p2j for 2i <
2j − 1) in the cell A encode the variable x (y, respectively). Suppose we want to make sure
that always x = y. This is equivalent to saying that in any proper coloring ϕ, we have
ϕ(p2i−1) + 1 = ϕ(p2i) whenever ϕ(p2j−1) + 1 = ϕ(p2j).

Such an equivalence of two variables can be expressed by two clauses C1 = x ∨ ¬y
and C2 = ¬x ∨ y. Thus, if we have an access to the reference coloring, we can ensure
the equivalence using the clause-checking gadget. Observe that C1 and C2 are not variable-
disjoint, so in fact we need to use two clause-checking gadgets. However, two clause-checking
gadgets are enough to ensure the equivalence of any set of pairwise-disjoint pairs of variables
represented in the single cell. Observe that A does not have to be a variable-assignment cell
(i.e., does not have to carry a half of the reference coloring). In fact, we will use the equality
checks for cells where each pair of points p2i−1, p2i corresponds to some variable, encoded
in an analogous way as in variable-assignment cells.
Consistency gadget. The last gadget, called the consistency gadget, will join every three
cells A(v), A(w), R, where A(v) and A(w) are variable-assignment cells corresponding to
adjacent cells v and w of I, and a R is a local reference cell associated with both A(v)
and A(w). This gadget is responsible for ensuring that colorings of these three cells are
consistent, that is:

each cell A(v), A(w) is colored with a standard coloring,
the equality constraints C(v, w) in the 2-grid 3-Sat instance I are satisfied,
R has exactly the reference coloring.

Suppose that A(v) is even, A(w) is odd, and v is above w in I (all other cases are sym-
metric). We denote the points of A(v) by p1, p2, . . . , p`, the points of A(w) by q1, q2, . . . , q`,
and the points by R by r1, r2, . . . , r` (going from top-left to bottom-right). First, we intro-
duce two forgetting gadgets and attach one of them to R and A(v), and the other one to R
and A(w). The first gadget ensures that in every coloring ϕ we have
{ϕ(p2i−1), ϕ(p2i)} = {ϕ(r2i−1), ϕ(r2i)} for i ∈ [k],
ϕ(p2i−1) = ϕ(r2i−1) and ϕ(p2i) = ϕ(r2i) for i ∈ [2k] \ [k].

The second one ensures that in every coloring ϕ we have
ϕ(q2i−1) = ϕ(r2i−1) and ϕ(q2i) = ϕ(r2i) for i ∈ [k]
{ϕ(q2i−1), ϕ(q2i)} = {ϕ(r2i−1), ϕ(r2i)} for i ∈ [2k] \ [k].

We also introduce a new standard cell S. Let s1, s2, . . . , s` be the points in S. With two
additional forgetting gadgets, one attached to S and A(v), and the other one attached to S
and A(w), we ensure that in every coloring ϕ we have:

XX:12 Fine-grained complexity of coloring unit disks and balls

ϕ(s2i−1) = ϕ(p2i−1) and ϕ(s2i) = ϕ(p2i) for i ∈ [k],
ϕ(s2i−1) = ϕ(q2i−1) and ϕ(s2i) = ϕ(q2i) for i ∈ [2k] \ [k].

Note that the cell S contains the information about the values of all variables in ζ(v)
(first 2k points) and in ζ(w) (second 2k points). Now consider the set of equality constraints
C(v, w), recall that each of them is of the form vi = wj . Thus we want to ensure that in
every coloring ϕ, we have ϕ(s2i−1) + 1 = ϕ(s2i) if and only if ϕ(s2k+2j−1) + 1 = ϕ(s2k+2j).
We can easily do it by performing the equality check on S, using two clause gadgets and R
as a reference coloring. The whole consistency gadget is displayed schematically in Figure 7.

S

A(v)

A(w)

clause

wires

forget

local reference cell

combined
assignment

even variable
assignment cell

odd variable
assignment cell

variable
assignments

top of reference
coloring

bottom of
reference coloring

Figure 7 Overview of the consistency gadget. The clause gadgets serve to realize the equality
constraints C(v, w).

Is is straightforward to observe that if I is satisfiable, then J can be properly colored
with ` colors, in a way described above. The opposite implication follows from the claims
below.

I Claim 1. The coloring of each R(i, j) for i, j ∈ [g− 1] is exactly the same as the coloring
of R̄ = R(1, 1).

Proof. To show this, we will prove that the coloring of R(i, j) is the same as the coloring of
R(i− 1, j) for each 2 6 i 6 g − 1 and j ∈ [g − 1]. The case for R(i, j − 1) is analogous, and
the claim follows inductively.

Let v = (i, j) and w = (i, j + 1) be the cells of I. Note that v and w are adjacent and
A(v) and A(w) are associated with both R(i− 1, j) and R(i, j). Without loss of generality
assume that v is even and w is odd. For f ∈ [`], by pf , qf , rf , and r′f we denote, respectively,
the points of A(v), A(w), R(i − 1, j), and R(i, j). By the correctness of forget gadget, we
know that for every coloring ϕ, we have:

ϕ(rf) = ϕ(qf) = ϕ(r′f) for all f ∈ [2k],
ϕ(rf) = ϕ(pf) = ϕ(r′f) for all f ∈ [4k] \ [2k].

This proves the claim. J

I Claim 2. 1. The coloring of each A(v) is one of the standard colorings.
2. For each pair of adjacent cells v, w of I, all local constraints C(v, w) are satisfied.
3. For each cell v of I, all constraints C(v) are satisfied.

The claim follows directly from Claim 1 and the correctness of forget, clause-checking,
and consistency gadgets.

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski XX:13

Now, observe that the total number of points in F is n = O(g2`) = O(n′), where n′ = g2k

is the total size of I. Thus, the existence of an algorithm solving J in time 2o(
√
n`) could be

used to solve I in time 2o(
√
n′k), which, by Theorem 4, contradicts the ETH. J

Now, to prove the lower bound in Theorem 1, we need to show a reduction from 2-grid
3-Sat to the problem of coloring unit disk graphs. This reduction is fairly standard and
uses a well-known approach [23, Theorems 1 and 3]. The detailed proof can be found in
Section 7.2 in the appendix.

4 Higher Dimensional Lower Bounds

The proofs of the theorems stated in this section can be found in Section 8 in the appendix.
The following result is a generalization of Theorem 4 to higher dimensions (see Section 8.1
for a proof).

I Theorem 6. For any integer d > 3 and reals ε > 0 and 0 6 α 6 1, there is no algorithm
solving d-grid 3-Sat with total size n and k = Θ(nα) variables per cell in time 2n1−1/d−εk1/d ,
unless the ETH fails.

After establishing the hardness of d-grid 3-Sat, we can proceed to showing the hardness
of Partial d-grid Coloring. We prove the following theorem in Section 8.2.

I Theorem 7. For any integer d > 3, and reals 0 6 α 6 1 and ε > 0, there is no 2n1−1/d−εχ1/d

algorithm solving Partial d-grid Coloring on a total of n points and ` = Θ(nα) points
in each cell, unless the ETH fails.

The final step in proving the lower bound in Theorem 3 is reducing Partial d-grid
Coloring to `-Coloring of intersection graph of d-dimensional unit balls, and can be
found in Section 8.3. It is very similar to the one in Theorem 1 (see also [25, Theorem 3.1.]).

5 Segments

In this section, we show that fatness is indeed necessary to obtain subexponential-time
algorithm for coloring. We prove that a subexponential algorithm for coloring intersection
graphs of segments (i.e., convex non-fat objects) with 6 colors would contradict the ETH.

Our construction works even if we use only horizontal or vertical segments. This class is
known as 2-Dir. Note that if all segments are parallel, the intersection graph is an interval
graph and, as such, can be colored in polynomial time. Moreover, we can even assume that
the representation of the input graph is given. This is an important assumption, since the
recognition of 2-Dir graphs is NP-complete (see Kratochvíl and Matoušek [22]).

The whole proof of Theorem 2 can be found in Section in the appendix, here we present
only the sketch.

Sketch of proof of Theorem 2. We reduce from 3-coloring of graphs with maximum degree
at most 4. Let G be a graph with n vertices and m = Θ(n) edges. It is a folklore result
that, assuming the ETH, there is no algorithm solving this problem in time 2o(n) (see for
instance Lemma 1 in [4]).

Let the vertex set of G be V = {v1, v2 . . . , vn}. We construct a 2-Dir graph G′ with
lists L of colors from the set {1, 2, 3, 4, 5, 6}, such that G is 3-colorable if and only if G′ is
list-colorable with respect to the lists L.

XX:14 REFERENCES

For each vertex vi we introduce two segments: a horizontal one, called xi, and a vertical
one, called yi, so that they form a half of a n× n grid (see Figure 8). When i increases, xi
becomes longer and yi shorter.

Using appropriate gadgets we ensure that each xi can only receive colors {1, 2, 3}, while
each yi can only receive colors {4, 5, 6}. Each color c ∈ {1, 2, 3} will be identified with the

v1 v2

v3 v4

v5 v6

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

Figure 8 A graph G (left) and a high-level construction of G′ (right). Circles denote equality
gadgets and squares denote inequality gadgets.

color c+ 3. Thus, we want to ensure that in any feasible 6-coloring f of G′ we have:

1. f(xi) + 3 = f(yi) for all i ∈ [n],
2. f(xi) + 3 6= f(yi) for all i > j such that vivj is an edge of G.
This is achieved by using constant-size equality gadgets and inequality gadgets. At the
crossing point of xi and yi, we put an equality gadget (represented by a circle on Figure 8).
Moreover, for each edge vivj of G, we put an inequality gadget at the crossing point of xi
and yj , i > j (represented by a square on Figure 8).

The number of vertices of G′ is n′ = Θ(n), so the theorem follows. J

References

1 J. Alber and J. Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004.

2 J. Cardinal. Computational geometry column 62. SIGACT News, 46(4):69–78, 2015.
3 R. H. Chitnis, M. Hajiaghayi, and D. Marx. Tight bounds for Planar Strongly Connected

Steiner Subgraph with fixed number of terminals (and extensions). In SODA 2014 Proc.,
pages 1782–1801, 2014.

4 M. Cygan, F. V. Fomin, A. Golovnev, A. S. Kulikov, I. Mihajlin, J. W. Pachocki, and
A. Socała. Tight lower bounds on graph embedding problems. CoRR, abs/1602.05016,
2016.

5 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilip-
czuk, and S. Saurabh. Parameterized Algorithms. Springer Publishing Company, Incor-
porated, 1st edition, 2015.

6 E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Bidimensional
parameters and local treewidth. SIAM J. Discrete Math., 18(3):501–511, 2004.

7 E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Fixed-parameter
algorithms for (k, r)-Center in planar graphs and map graphs. ACM Transactions on
Algorithms, 1(1):33–47, 2005.

REFERENCES XX:15

8 E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM,
52(6):866–893, 2005.

9 E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic
applications. Comput. J., 51(3):292–302, 2008.

10 E. D. Demaine and M. Hajiaghayi. Linearity of grid minors in treewidth with applications
through bidimensionality. Combinatorica, 28(1):19–36, 2008.

11 E. D. Demaine and M. T. Hajiaghayi. Fast algorithms for hard graph problems: Bidi-
mensionality, minors, and local treewidth. In GD 2014 Proc., pages 517–533, 2004.

12 F. Dorn, F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Beyond bidimen-
sionality: Parameterized subexponential algorithms on directed graphs. In STACS 2010
Proc., pages 251–262, 2010.

13 F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms.
Computer Science Review, 2(1):29–39, 2008.

14 F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact algorithms
on planar graphs: Exploiting sphere cut decompositions. Algorithmica, 58(3):790–810,
2010.

15 F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger. Tight bounds for
parameterized complexity of cluster editing with a small number of clusters. J. Comput.
Syst. Sci., 80(7):1430–1447, 2014.

16 F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Subexponential algorithms for
partial cover problems. Inf. Process. Lett., 111(16):814–818, 2011.

17 F. V. Fomin and D. M. Thilikos. Dominating sets in planar graphs: Branch-width and
exponential speed-up. SIAM J. Comput., 36(2):281–309, 2006.

18 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? In FOCS 1998 Proc., pages 653–662, Nov 1998.

19 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

20 P. N. Klein and D. Marx. Solving Planar k-Terminal Cut in O(nc
√
k) time. In ICALP

2012 Proc., pages 569–580, 2012.
21 P. N. Klein and D. Marx. A subexponential parameterized algorithm for Subset TSP on

planar graphs. In SODA 2014 Proc., pages 1812–1830, 2014.
22 J. Kratochvíl and J. Matoušek. Intersection graphs of segments. Journal of Combinat-

orial Theory, Series B, 62(2):289 – 315, 1994.
23 D. Marx. Efficient approximation schemes for geometric problems? In ESA 2005 Proc.,

pages 448–459, 2005.
24 D. Marx and M. Pilipczuk. Optimal parameterized algorithms for planar facility location

problems using voronoi diagrams. In N. Bansal and I. Finocchi, editors, ESA 2015 Proc.,
volume 9294 of LNCS, pages 865–877. Springer, 2015.

25 D. Marx and A. Sidiropoulos. The limited blessing of low dimensionality: When 1-1/d
is the best possible exponent for d-dimensional geometric problems. SOCG 2014 Proc.,
pages 67:67–67:76, New York, NY, USA, 2014. ACM.

26 D. Marx and A. Sidiropoulos. The limited blessing of low dimensionality: When
1-1/d is the best possible exponent for d-dimensional geometric problems. CoRR,
abs/1612.01171, 2016.

27 G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-packings
and nearest neighbor graphs. J. ACM, 44(1):1–29, Jan. 1997.

XX:16 REFERENCES

28 M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen. Subexponential-time
parameterized algorithm for Steiner Tree on planar graphs. In STACS 2013 Proc., pages
353–364, 2013.

29 M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen. Network sparsification
for steiner problems on planar and bounded-genus graphs. In FOCS 2014 Proc., pages
276–285. IEEE Computer Society, 2014.

30 W. D. Smith and N. C. Wormald. Geometric separator theorems. available online at
https://www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz.

31 W. D. Smith and N. C. Wormald. Geometric separator theorems and applications. FOCS
1998 Proc., pages 232–, Washington, DC, USA, 1998. IEEE Computer Society.

32 D. M. Thilikos. Fast sub-exponential algorithms and compactness in planar graphs. In
ESA 2011 Proc., pages 358–369, 2011.

33 E. J. van Leeuwen and J. van Leeuwen. Convex Polygon Intersection Graphs, pages
377–388. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

https://www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz

REFERENCES XX:17

Appendix

6 Algorithms

The ply (also called thickness) of a family of sets is the maximum number of sets that cover
a single point. Fix d > 2 and let S be a family of n d-dimensional convex objects. Note
that the ply of S is at most the chromatic number of the intersection graph of S. Indeed, a
subfamily of objects covering a same point forms a clique.

The diameter of a geometric object S is the supremum of the distance between any pair
of points of S. The width of S is the infimum of distances between to parallel hyperplanes
H1, H2, such that S lies between H1 and H2. A family S of geometric objects is B-fat if for
each S ∈ S it holds that diameter(S)

width(S) 6 B.
The theorem below is a special case of Theorem 26 in the manuscript of Smith and

Wormald [30], which was informally announced in the extended abstract presented at FOCS
1998 [31].

I Theorem 8 (Smith, Wormald [30]). For every d > 1 and B > 0, there exists a constant
c = c(d,B), such that for every B-fat collection S of n d-dimensional convex sets with ply
at most `, there exists a d-dimensional sphere Q, such that:

(i) at most d+1
d+2 n elements of S are entirely inside Q,

(ii) at most d+1
d+2 n elements of S are entirely outside Q,

(iii) at most cn1−1/d`1/d elements of S intersect Q.

Now, using a fairly standard divide-and-conquer approach we prove the main result of
this section, which implies the upper bounds in Theorems 1 and 3.

I Theorem 9. Let G be an intersection graph of a B-fat collection S = {S1, S2, . . . , Sn} of
n d-dimensional convex objects. For any integer ` 6 n and lists L : S → 2[`], we can decide
whether G can be properly colored with lists L in time nO(n1−1/d`1/d) = 2O(n1−1/d`1/d logn),
using polynomial space.

Proof. First, we will exhaustively check if G contains an (` + 1)-clique. If so, we can
immediately terminate, as ` colors are clearly not sufficient to color G. We can do it in time:

n`+1 · nO(1) = n` · nO(1) = 2` logn · nO(1) = 2O(n1−1/d`1/d log `).

Indeed, ` logn 6 n1−1/d`1/d log ` is equivalent to `1−1/d
/log ` 6 n1−1/d

/logn; which holds when
n is sufficiently large (n > 8) since ` 6 n and x→ x1−1/d

/log x is increasing for x > 8.
From now on, we can assume that there is no (` + 1)-clique in G and thus the ply of S

is at most `. By Theorem 8, there exists a set S ⊆ S of at most cn1−1/d`1/d objects (or,
equivalently, a subset of vertices of G) such that S \ S is split into two parts S1,S2, each of
size at most d+1/d+2 n and such that no object of S1 intersects an object of S2.

We can find such a set in an exhaustive way in time:

ncn
1−1/d`1/d

· nO(1) = 2O(n1−1/d`1/d logn).

Now, for every coloring of S with lists L, we can try to extend this coloring to S1 and S2
recursively, using the standard divide-and-conquer approach (note that the lists of objects
in S \ S are updated according to the coloring of S). This gives us the total running time

T (n) 6 2O(n1−1/d`1/d log `) · 2 T
(
d+ 1
d+ 2 n

)
.

XX:18 REFERENCES

Solving this recursion we obtain the running time 2O(n1−1/d`1/d log `).
Thus, the total running time of the algorithm is 2O(n1−1/d`1/d logn). Observe that the

space used is polynomial. J

Since finding a proper geometric representation of many types of intersection graphs is
NP-hard [33] (or even ∃R-hard [2]), we are often interested in designing robust algorithms.
An algorithm is robust if its input is a graph (without a geometric representation), and the
algorithm either gives a correct answer, or reports that the input graph is not an intersection
graph.

We point out that the above coloring procedure is robust. If G is not an intersection
graph of fat convex objects, then the algorithm either gives the correct answer (if G happens
to have appropriate separators), or we can correctly report that the input is invalid (the
exhaustive search step fails to find any separator).

Note that the running time could be slightly improved to 2O(n1−1/d`1/d log `) should we
have a faster algorithm for finding separators. It is worth noting that such (polynomial)
algorithms exist for d-dimensional balls, cubes, and many other shapes [27, 31]. In particular,
we obtain the following result for disks in a plane.

I Corollary 10. Given a set S of n disks in the plane, the existence of a `-coloring of an
intersection graph of S can be decided in time 2O(

√
n` log `), using polynomial space.

7 Complete proofs of the theorems in Section 3

7.1 Reduction from SAT to 2-grid 3-Sat
I Theorem 4. For any 0 6 α 6 1 there is no algorithm solving 2-grid 3-Sat with total
size n and k = Θ(nα) variables per cell in time 2o(

√
nk) = 2o(n

1+α
2), unless the ETH fails.

Proof. The ETH together with the Sparsification Lemma [18] implies that there is no
2o(N+M) algorithm to decide satisfiability of a 3-Sat formula with N variables and M

clauses.
Let Φ be a 3-Sat formula Φ with the variable set V ar and the clause set C, let N := |V ar|

andM := |C|. There is a simple polynomial-time procedure to modify Φ so that each variable
appears at most 3 times. Indeed, first note that we can assume that no variable appears
more than once within a clause. For each variable v appearing ∆ > 3 times, we introduce ∆
new variables v1, v2, . . . , v∆ and substitute each appearance of v with a different vi. We also
add clauses (v1 ∨ ¬v2), (v2 ∨ ¬v3), . . . , (v∆−1 ∨ ¬v∆), (v∆ ∨ ¬v1) to C. This chain of clauses
enforces that all vi’s have the same truth-value in any satisfying assignment. Note that each
newly introduced variable has exactly 3 occurrences. Thus we introduced at most 3M new
variables and 3M new clauses.

We choose k = Θ(N2α/1+α) (actual constants will follow from the description below).
Now we want to cover the set of variables by g = 7 d6N/ke = Θ(k(1−α)/2α) groups V1, . . . ,Vg
such that the following conditions hold:

for each clause C, there exists a group Vi, such that all variables of C belong to Vi; we
say this group contains the clause C;
if two clauses C,C ′ share a variable, then they are contained in different groups;
each group contains at most k/2 variables.

To form this partition, we first construct a partition P0 of the clauses into g′ = g/7 = d6N/ke
groups of size at most bN/g′c 6 k/6. As each variable occurs in at most three variables, and
thus every clause shares some variable with at most six other clauses, we can easily define a

REFERENCES XX:19

second refined partition P1 of the clauses into g = 7g′ groups, such that no two clauses that
share a variable are contained in the same group. We denote these groups by C1, . . . , Cg.
Now, we set Vi to be exactly the set of variables contained in the set of clauses Ci. As each
clause has at most three variables, each group Vi contains at most 3 · k/6 = k/2 variables.
Now, we construct an instance I(Φ) of 2-grid 3-Sat. Let G = R[g, 2] with k variables in

V1

V2

V3

V4

V5

V1 V2 V3 V4 V5

x

x

x

x x x

Figure 9 Allocation of the variables. Each color corresponds to a set of variables. Note that the
set of cells containing the variable x is connected.

each cell. Note that the total size n of I(Φ) is g2k = Θ(k1/α).
The cell (i, j) should contain the information about truth assignment of Vi∪Vj . As each

group Vi contains at most k/2 variables, each cell has enough space to accommodate all
this information. To make all cells contain exactly k variables, we can add some dummy
variables, which will not appear in any constraints. The total number of dummy variables
added is at most nk. Observe that the variable group Vi is contained exactly in the i-th row
and i-th column of G. Now, we add each clause C ∈ Ci to the set of clause constraints of the
cell (i, i). If a single variable x appears in two cells, we want to add additional constraints to
ensure that the truth assignments are consistent. As the cells containing x form a connected
set (see Fig. 9), this can be realized with equality constraints.

It is easy to see that Φ is satisfiable if and only if I(Φ) is satisfiable. Furthermore
N = O(gk) = O(

√
g2k2) = O(

√
nk). This implies that a 2o(

√
nk) algorithm for 2-grid

3-Sat refutes the ETH. J

7.2 Reduction from Partial 2-grid Coloring to `-Coloring of unit disk
graphs

Proof of the third and last step of the lower bound of Theorem 1. There is a transpar-
ent reduction from Partial 2-grid Coloring to `-Coloring on unit disk graphs. We
follow, for instance, Theorems 1 and 3 in [23]. In that paper, a reduction is given from a
problem called Grid Tiling to Independent Set on unit disk graphs. The same reduction
applies from Partial 2-grid Coloring which can be seen as a coloring variant of Grid
Tiling to `-Coloring on unit disk graphs.

Recall that the points of an instance of Partial 2-grid Coloring are in [`]2 in each
cell, and that the cells created by the reduction of Theorem 5 are in [g′]2 with g′ = Θ(g).

XX:20 REFERENCES

One turns every point (x, y) ∈ [`]2 of every cell at position (i, j) ∈ [g′]2 into a disk centered
at ((2`2 + 0.1)i + x, (2`2 + 0.1)j + y). The common radius of all the disks is set to `2, and
we set the nmber of colors to ` (see Figure 10). This way, the fact that two disks coming
from adjacent cells along the x-axis (resp. y-axis) intersect is only determined by their x-
coordinate (resp. y-coordinate). Indeed, the disks are big enough compared to the cells
containing the points so that in the region where the disks of adjacent cells may intersect,
their boundaries are close to horizontal or vertical straight lines (see the red rectangle in
Figure 10). A formal explanation is detailed in Theorem 14.34 of [5]. J

Figure 10 Illustration of how the disks are spaced out. In the region marked by the red rectangle,
where disks of two different cells may intersect, the boundary of each disk is close to a horizontal
straight line. So, two disks do not intersect if and only if the y-coordinate of the center in the top
cell is at most the y-coordinate of the center in the bottom cell.

I Remark. Note that we do not actually require that the relation of the number n of disks
and the number ` of colors is ` = Θ(nα) for some α. The claim holds also for other functions
` = `(n) = O(n), e.g. ` = Θ(logn).

8 Complete proofs of the theorems in Section 4

Recall that in the hardness proof of 2-grid 3-Sat and Partial 2-grid Coloring (see
Theorems 4 and 5) we started with a 3-Sat instance with N variables and Θ(N) clauses,
we formed g = Θ(N/k) groups, each containing O(k) variables, and we arranged them on in

REFERENCES XX:21

such a way, that every pair of groups met in a separate grid cell. This required O(g2) grid
cells.

Suppose we want to try a similiar approach to obtain a tight (i.e., matching the upper
bound in Theorem 9 lower bound in d > 3 dimensions. We observe that the naive approach
of creating Θ(N/k) groups is not enough. Indeed, a standard computation shows that
the bound in Theorem 9 is attained for the grid R[g, d] with g = Θ((N/k)1/(d−1) and
k variables/points per cell. Thus we have to refine our reduction from 3-Sat to d-grid
3-Sat.

8.1 Embeddings
For integers g, d > 1, we denote by H[g, d] the d-dimensional Hamming grid, i.e., a graph
whose vertices are all points from [g]d, and two vertices are adjacent if their Hamming
distance is exactly one (in other words, they differ on exactly one coordinate).

An embedding of a graph F into a graph G is a mapping f : V (F)→ 2V (G), such that:
for each v ∈ V (F), the set f(v) is connected in G,
for each edge uv of G, the sets f(u) and f(v) touch, i.e., either they have a non-empty
intersection or there is an edge in G joining a vertex from f(u) to a vertex of f(v).

The depth of an embedding f is the maximum number of vertices of F mapped to sets
containing the same vertex of G, that is max{|S| : S ⊆ V (F) and

⋂
v∈S f(v) 6= ∅}.

Observe that of f is an embedding of G into F with depth D, and f ′ is an embedding
of F into H with depth D′, then the composition f ′ ◦ f of f and f ′ is an embedding of F
into H with depth D ·D′.

Now we will present a series of results about graph embeddings. We start with embedding
arbitrary graphs into Hamming grids.

I Theorem 11 (Marx, Sidiropoulos [26]). Let d > 2. For every graph G with m edges, no
isolated vertices, and with maximum degree ∆, there is an embedding f from G to H[g, d−1]
having depth O(d2∆), where g = O(m1/(d−1) · logm

log logm). Moreover, such an embedding can
be found in deterministic polynomial time.

The next step will be embedding a Hamming grid into another, smaller Hamming grid.

I Lemma 12. For every g, d > 1 and every k = O(gd), there exists g′ = O(g/k1/d) and
an embedding f of H[g, d] into H[g′, d] with depth O(k). Moreover, this embedding can be
found in polynomial time.

Proof. Let s = bk1/dc and g′ = dg/se = O(g/k1/d). Let v = (a1, a2, . . . , ad) be a vertex of
H[g, d]. We define f by mapping v to the singleton containing (1+ba1/sc, 1+ba2/sc, . . . , 1+
bad/sc). Note that the number of vertices of H[g, d] mapped to a single vertex is sd = O(k)
It is straightforward to verify that f is an embedding. J

Finally, Hamming grids can be embedded in grids.

I Theorem 13 (Marx, Sidiropoulos [26]). For every d, g > 1 there is an embedding f from
H[g, d− 1] to R[g, d] having depth at most d. Moreover, such an embedding can be found in
deterministic polynomial time.

Now, by combining the above results, we show how we can efficiently embed an incidence
graph of a 3-Sat formula into the grid.

XX:22 REFERENCES

I Lemma 14. Let Φ be a a 3-Sat formula over the variable set V ar = {x1, x2 . . . , xN},
such that each variable appears in at most ∆ > 3 clauses, and let k = O(N) be an integer.
There exists g = O(∆(N/k)1/(d−1) · logN

log logN) and a mapping ϕ of variables of Φ to subsets
of vertices of R[g, d], such that:

(i) for every x ∈ V ar, the set ϕ(x) is connected,
(ii) for every v ∈ V (R[g, d]), the number of variables x such that v ∈ ϕ(x) is O(∆d3k),
(iii) for every clause C, there exists a vertex v(C) ∈ V (R[g, d]) such that v ∈

⋂
x∈C ϕ(x)

(if there is more than one such vertex, we set v(C) to be any of them);
(iv) if for two clauses C,C ′ it holds that v(C) = v(C ′), then C and C ′ are variable-disjoint.
Moreover, such a mapping can be found in polynomial time.

Proof. Let C = {C1, C2, . . . , CM} be the set of clauses of Φ. Consider an incidence graph
G of Φ, i.e., the bipartite graph with the vertex set V ar ∪ C, and the edge set {xC : x ∈
V ar, C ∈ C, and x ∈ C}. Note that the maximum degree of G is ∆.

By Theorem 11, we can find an embedding f from G to H[g′, d−1] for g′ = O(N1/(d−1) ·
logN

log logN), with depthO(d2∆). Now, by Lemma 12, there exists an embedding f ′ ofH[g′, d−1]
into H[g′′, d− 1] for g′′ = O(g′/k1/(d−1)) = O((N/k)1/(d−1) · logN

log logN) with depth O(k). By
Theorem 13, there is an embedding f ′′ of H[g′′, d− 1] into R[g′′, d] with depth at most d.

Let b = 3∆ + 1. Next, consider the following depth-1 embedding f ′′′ of R[g′′, d] into
R[g, d], where g = bg′′ = O(∆(N/k)1/(d−1) · logN

log logN). For a = (a1, a2, . . . , ad) ∈ V (G[g, d]),
we define f ′′′(a) =

⋃d
q=1

⋃b−1
p=0{(a1, a2, . . . , ad) + peq} ∈ ϕ.

The composition ϕ′ of f, f ′, f ′′, and f ′′′ is an embedding of G into R[g, d] with depth
O(d3∆k).

For every clause C, let v′(C) be an arbitrary vertex from ϕ′(C). By the properties of
f ′′′, we can assume that each v′(C) = (ba1, ba2, . . . , bad) for integers a1, a2, . . . , ad. Consider
a clause C and let v′(C) = a. Let C′ be the set of clauses C ′, such that v′(C ′) = a. We
want to partition C′ into at most b − 1 = 3∆ groups C′1, C′2, . . . , C′b−1, such that the clauses
in one group are variable-disjoint. We can easily do it with a greedy algorithm – note that
each clause may share a variable with at most 3(∆− 1) < 3∆ other clauses. Now, for every
clause C of C′i, for i ∈ [b− 1], we will extend ϕ′, by including v(C) := a+ ie1 + e2 in ϕ′(C).
It is not hard to verify that ϕ′ is still an embedding of G into R[g, d] with depth O(d3∆k).

Finally, for every x ∈ V ar, we define a mapping ϕ of variables of Φ to subsets of vertices
of R[g, d] in the following way: ϕ(x) = ϕ′(x) ∪

⋃
C : x∈C ϕ

′(C). Note that each ϕ(x) is
connected, since ϕ′(x) and every ϕ′(C) is connected, and ϕ′(x) and ϕ′(C) touch whenever
x ∈ C.

Moreover, recall that the depth of ϕ′ is O(d3∆k). Since the number of variables mapped
by ϕ to any fixed vertex of R[g′′, d] is at most three times larger, so it is O(d3∆k). The last
two properties follow from the observation that v(C) belongs to ϕ(x) for every x ∈ C. J

Now we are ready to prove the following theorem.

I Theorem 6. For any integer d > 3 and reals ε > 0 and 0 6 α 6 1, there is no algorithm
solving d-grid 3-Sat with total size n and k = Θ(nα) variables per cell in time 2n1−1/d−εk1/d ,
unless the ETH fails.

Proof. Let Φ be a 3-Sat instance with N variables and Θ(N) clauses, and let each variable
appear in at most 3 clauses. By the ETH and the Sparsification Lemma [18], there is no
algorithm deciding the satisfability of Φ in time 2o(N).

REFERENCES XX:23

Let k = Θ
((

N1/(d−1) logN
log logN

)d/(1/(d−1)+1/α)
)
, g = O((N/k)1/(d−1) · logN

log logN), and let ϕ be

the mapping of variables of Φ to the subsets of vertices of R[g, d] given by Lemma 14.
Now we construct an instance I(Φ) just as we did in the proof of Theorem 4. For every

cell v of R[g, d] we add variables ϕ−1(v). For each clause C, we add the clause constraint
to the cell v(C). Moreover, using equality constraints, we ensure that all copies of the same
variable get the same truth assignment (recall that each set ϕ(x) is connected). It is clear
that I(Φ) is a satisfiable instance of d-grid 3-Sat if and only if Φ is satisfiable.

The number of cells in I(Φ) is gd = O

(
(N/k)d/(d−1)

(
logN

log logN

)d)
. The total size is thus

n =gdk = O

(
(N/k)d/(d−1)k ·

(
logN

log logN

)d)
= O

(
(Nd/k)1/(d−1) ·

(
logN

log logN

)d)
.

Suppose we have an algorithm solving d-grid 3-Sat in time 2n1−1/d−εk1/d for some ε > 0.
Applying it to I(Φ) gives a total running time:

exp
(
n1−1/d−εk1/d

)
= exp

(
O

(
N · n−ε ·

(
logN

log logN

)d−1
))

= 2o(N).

So we can use this algorithm to solve Φ in time 2o(N), thus refuting the ETH. J

8.2 Reduction from d-grid 3-Sat to Partial d-grid Coloring
After establishing the hardness of d-grid 3-Sat, we can proceed to showing the hardness
of Partial d-grid Coloring. We prove the following theorem in Section 8.2.

I Theorem 7. For any integer d > 3, and reals 0 6 α 6 1 and ε > 0, there is no 2n1−1/d−εχ1/d

algorithm solving Partial d-grid Coloring on a total of n points and ` = Θ(nα) points
in each cell, unless the ETH fails.

The proof of Theorem 7 is a consequence of Theorem 6 and of the gadgets constructed
in Section 3. Nonetheless, we have to very slightly adapt the construction. The reduction is
now from d-grid 3-Sat. The overall picture is the grid-like structure of Figure 3 extended
to dimension d.

We define similarly the standard cells as cells where the ` points p1, . . . , p` are in the
main diagonal, i.e., pi = (i, i, . . . , i) ∈ [`]d for all i ∈ [`]. Two adjacent standard cells have
to be colored in the same way (see Figure 11).

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

Figure 11 A wire in dimension 3. The coloring of the leftmost cell forces the same coloring in
the other cells.

Every consistency and clause gadget is embedded into a plane (subset of cells in an affine
subspace of dimension 2) supported by e1 and e2, the first two vectors of the canonical
basis. The wires which should be plugged to the corresponding gadget are naturally guided
towards the plane (see Figure 12 where we give the example of the clause gadget).

XX:24 REFERENCES

It is noteworthy that we are not using the extra dimensions for those crucial gadgets.
The higher dimensional space is mainly needed and used in Section 8.1 to get Theorem 6.

1
2

3
4

5
6

1
2

3
4

5
6

a

b

a

b

123456
1 3 52 4 6135246

c
[6] \ c

a
b

a
b

Figure 12 The clause gadget in dimension 3. The wires meet in a plane where the information
is projected to 2 dimensions. The core of the gadget is then identical to the two-dimensional case.

The final step in proving the lower bound in Theorem 3 is reducing Partial d-grid
Coloring to `-Coloring of intersection graph of d-dimensional unit balls, and can be
found in Section 8.3. It is very similar to the one in Theorem 1 (see also [25, Theorem 3.1.]).

8.3 Reduction from Partial d-grid Coloring to `-Coloring of unit d-ball
graphs

Proof of the third and last step of the lower bound of Theorem 3. There is a transpar-
ent reduction from Partial d-grid Coloring to `-Coloring on intersection graphs of
d-dimensional balls. Recall that the points of an instance of Partial d-grid Coloring
are in [`]d in each cell, and that the cells created by the reduction of Theorem 7 are in [g′]d
with g′ = Θ(g).

One turns every point (x1, . . . , xd) ∈ [`]d of every cell at position (i1, . . . , id) ∈ [g′]d into
a d-dimensional ball centered at ((2(d − 1)`2 + 0.1)i1 + x1, . . . , (2(d − 1)`2 + 0.1)id + xd).
The common radius of all the balls is set to (d− 1)`2, and we set the number of colors to `.
The correctness of this reduction is similar to the 2-dimensional case and is detailed in [26,
Theorem 3.1.]. J

9 Complete proofs of the theorems in Section 5

First we will present the hardness proof for the list coloring problem, and then we will show
how to modify it to obtain the result for 6-coloring. In the description, we will identify the
vertices of the intersection graph with the segments.

I Theorem 15. There is no algorithm working in time 2o(n) for the list 6-coloring of 2-Dir
graphs with n vertices, unless the ETH fails.

REFERENCES XX:25

Proof. We reduce from 3-coloring of graphs with maximum degree at most 4. Let G be a
graph with n vertices and m = Θ(n) edges. It is a folklore result that, assuming the ETH,
there is no algorithm solving this problem in time 2o(n) (see for instance Lemma 1 in [4]).

Let the vertex set of G be V = {v1, v2 . . . , vn}. We construct a 2-Dir graph G′ with
lists L of colors from the set {1, 2, 3, 4, 5, 6}, such that G is 3-colorable if and only if G′ is
list-colorable with respect to the lists L.

For each vertex vi we introduce two segments: a horizontal one, called xi, and a vertical
one, called yi, so that they form a half of a n × n grid (see Figure 8). When i increases,
xi becomes longer and yi shorter. One may observe that the intersection graph induced by
those segments is not grid-like. We set the lists of each xi to {1, 2, 3} and the lists of each
yi to {4, 5, 6}. Each color c ∈ {1, 2, 3} will be identified with the color c+ 3. Thus, we want
to ensure that in any feasible 6-coloring f of G′ we have:

1. f(xi) + 3 = f(yi) for all i ∈ [n],
2. f(xi) + 3 6= f(yi) for all i > j such that vivj is an edge of G.
This is achieved by using equality gadgets and inequality gadgets. At the crossing point of
xi and yi, we put an equality gadget (represented by a circle on Figure 8). Moreover, for
each edge vivj of G, we put an inequality gadget at the crossing point of xi and yj , i > j

(represented by a square on Figure 8).
The equality gadget consists of 9 segments, arranged as depicted on Figure 13. Consider

the equality gadget and suppose xi gets the color 1. Then a1 receives color 4, and b1 and c1
colors 5 and 6, respectively. Thus the only choice for the color for yi is 4 (it is easy to check
that this coloring can be extended to remaining segments of the gadget). The other cases
are symmetric.

The inequality gadget consists of 7 segments, arranged as depicted on Figure 14. So now
consider an inequality gadget as suppose the color of xi is 1. Then p1 and p2 get colors 5
and 6, respectively. Thus the only choice for x′ is 4, which prevent yj from receiving color 4.
It is easy to check that the coloring can be extended to the remaining segments. The other
cases are again symmetric.

This proves that G′ has a coloring with lists L if and only if G is 3-colorable.

xi

yi

a1

b1c1

a2

b2 c2

a3

b3
c3

vertex list
xi 1,2,3
yi 4,5,6
a1 1,4
b1 4,5
c1 4,6
a2 2,5
b2 4,5
c2 5,6
a3 3,6
b3 4,6
c3 5,6

Figure 13 Equality gadget.

The number of vertices of G′ is n′ = 2n︸︷︷︸
xi,yi

+ 9n︸︷︷︸
equality

+ 7m︸︷︷︸
inequality

= Θ(n).

Now suppose we can find a list coloring of G′ in time 2o(n′). This yields an algorithm for
3-coloring of G in time 2o(n′) = 2o(n), which in turn contradicts the ETH. J

XX:26 REFERENCES

xi

yj

x′

p1p2q1 q2 r1 r2

vertex list
xi 1,2,3
yj 4,5,6
x′ 4,5,6
p1 1,5
p2 1,6
q1 2,4
q2 2,6
r1 3,4
r2 3,5

Figure 14 Inequality gadget.

To obtain Theorem 2, we modify the construction above to simulate the lists of available
colors.

I Theorem 2. There is no 2o(n) time algorithm for 6-Coloring the intersection graph of
line segments in the plane, unless the ETH fails.

Proof. We modify the construction from the proof of Theorem 15. We first introduce six
overlapping segments R1, R2, . . . , R6, whose coloring will serve as a reference coloring. Since
these segments are pairwise intersecting, each of them receives a different color. We will
denote by i ∈ {1, 2, . . . , 6} the color assigned to Ri.

Now, for each segment v of G′, we want to simulate the list L(v) from the instance of
list 6-coloring constructed in the proof of Theorem 15. For every color i /∈ L(v), we want to
introduce a segment si intersecting v, which will always receive color i.

To achieve this, we first need to transport the reference coloring to every gadget. The
overall high-level idea is depicted in Figure 15. Observe that this already simulates the lists
for every xi, yi (i ∈ [n]).

Such a construction relies on a constant-size gadget, which allows us to turn or split the
reference coloring. The construction of this gadget is depicted in Figure 16. Note that the
number of segments in this gadget is constant. Moreover, turning or splitting the reference
coloring of three colors can be easily realized by finishing unnecessary segments just after
leaving the gadget. Also the part when we have two reference coloring of triples of colors
and we join then into a reference coloring of six colors (e.g. next to the inequality gadgets)
can be seen and splitting the reference coloring of six colors into two reference colorings,
each of three colors.

Now, the only thing left is to connect every segment in every gadget to appropriate
segments carrying the reference coloring. This can easily be done using a constant number
of additional segments per gadget (see Figure 17).

The total size of the construction increases by a constant factor, as we introduce O(n)
constant-size turning gadgets. Thus an algorithm for 6-coloring the constructed 2-Dir
graph in time 2o(n′) could be used to 3-color the input graph G in time 2o(n), contradicting
the ETH. J

REFERENCES XX:27

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

Figure 15 Reference coloring is transported to every gadget. Red and blue lines denote, re-
spectively, triples of overlapping segments with colors 1,2,3, and 4,5,6. Segments R1, R2, . . . , R6 are
positioned in the lower left corner of the picture.

Figure 16 Split/turn gadget for 6 colors. The parallel segments depicted close to each other are
in fact overlapping. Observe that the depicted 6-coloring is the only possible (up to the permutation
of colors).

XX:28 REFERENCES

xi

yi

a1

b1
c1

a2

b2
c2

a3

c3
b3 xi

yi

x′

p1 p2 q1 q2 r1 r2

Figure 17 Simulation of lists for vertices in equality and inequality gadgets. Violet lines denote
tuples of overlapping segments, carrying the reference coloring. We finish unwanted segments just
after leaving the turning gadgets.

	Introduction
	Intermediate problems
	Two-Dimensional Lower Bounds
	Higher Dimensional Lower Bounds
	Segments
	Algorithms
	Complete proofs of the theorems in Section 3
	Reduction from SAT to 2-grid 3-Sat
	Reduction from Partial 2-grid Coloring to -Coloring of unit disk graphs

	Complete proofs of the theorems in Section 4
	Embeddings
	Reduction from d-grid 3-Sat to Partial d-grid Coloring
	Reduction from Partial d-grid Coloring to -Coloring of unit d-ball graphs

	Complete proofs of the theorems in Section 5

