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Abstract
We present a 1.8334-approximation algorithm for Vertex Cover on string graphs given with
a representation, which takes polynomial time in the size of the representation; the exact approx-
imation factor is 11

6 . Recently, the barrier of 2 was broken by Lokshtanov et al. [SoGC ’24] with
a 1.9999-approximation algorithm. Thus we increase by three orders of magnitude the distance of
the approximation ratio to the trivial bound of 2. Our algorithm is very simple. The intricacies
reside in its analysis, where we mainly establish that string graphs without odd cycles of length
at most 11 are 8-colorable. Previously, Chudnovsky, Scott, and Seymour [JCTB ’21] showed that
string graphs without odd cycles of length at most 7 are 80-colorable, and string graphs without
odd cycles of length at most 5 have bounded chromatic number.

1 Introduction

The Vertex Cover problem1 is one of Karp’s 21 NP-complete problems [11]. While it
admits several easy polynomial-time 2-approximation algorithms, it is an open question if an
approximation factor of 2− ε can be achieved for some ε > 0. If the unique games conjecture
(UGC) holds, then the answer to the latter question is negative [14]. Under the sole P 6= NP
assumption, it is currently only known that Vertex Cover cannot be approximated within
ratio less than

√
2 [8, 12, 13].

On several graphs classes, better approximation algorithms of Vertex Cover exist. For
instance, this problem can be exactly solved in polynomial-time on bipartite graphs, as it
reduces to a maximum flow problem [15]. It also admits a polynomial-time approximation
scheme (PTAS) on planar graphs by Baker’s technique [2]. On the contrary, a (2 − ε)-
approximation algorithm for Vertex Cover with ε ∈ (0, 1/2] on triangle-free graphs would
imply the same holding for general graphs. Indeed, one can observe that any vertex cover
intersects each triangle on at least two vertices. One can thus repeatedly include all three
vertices of a triangle in the approximate solution. Once the input graph has no triangle
left, one calls the (2 − ε)-approximation algorithm. This strategy can be seen to achieve
approximation factor max(3/2, 2− ε) on general graphs. In particular, the former algorithm
on triangle-free graphs would refute the UGC. Thus we say that (2 − ε)-approximating
Vertex Cover on triangle-free graphs is UGC-hard. It would be interesting to establish
a dichotomy splitting the hereditary2 graph classes on which we know a (2−ε)-approximation
algorithm from those on which this task is UGC-hard.

The class of string graphs consists of every intersection graph of connected sets in a planar
graph. Alternatively string graphs are the intersection graphs of (non-self-intersecting,

1 As an optimization problem, given a graph G, find a smallest possible vertex subset S such that G− S
(i.e., the subgraph of G induced by all the vertices not in S) is edgeless.

2 closed under vertex removals
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non-closed) curves in the planes, called strings. The set of strings is called a geometric
representation or string representation. The geometric representation may be convenient for
drawing and in the proofs, but it is not so easy to handle as input. For that, we will also adopt
a more combinatorial approach, based on the first definition of string graphs. A representation
of a string graph G is a planar graph P and as many connected vertex subsets of P as G
has vertices; two vertices are joined by an edge if and only if their corresponding subsets
intersect. A caveat here is that finding such a representation is NP-hard [18]. Furthermore,
some string graphs G require representations P whose number of vertices is exponential in
|V (G)| [19].

Recently Lokshtanov, Panolan, Saurabh, Xue, and Zehavi [23] presented a (2 − ε)-
approximation algorithm for Vertex Cover on string graphs, for some small positive
ε ≈ 10−4. In this paper, we give a simpler algorithm with improved approximation factor
11/6 = 1.8333 . . .

I Theorem 1. Vertex Cover admits an 11
6 -approximation algorithm in string graphs

given with a representation, whose running time is polynomial in the size of a representation.

Our algorithm works as follows. We first get rid of all the odd cycles of length at most 11.
This is done as in the abovementioned reduction to triangle-free graphs. While there is an
odd cycle C with |V (C)| 6 11, any vertex cover contains at least 6 vertices of C. We thus
include all vertices of C in our approximate solution, and remove them from the graph. This
ensures a 11/6 approximation factor, if such a factor can be achieved in the resulting graph.
We can thus assume that our input graph has odd girth3 more than 11. As the standard
linear-programming (LP) formulation of Vertex Cover is half-integral [26], we can further
assume that the vertex cover contains at least half of the vertices. Note that these opening
steps are also present in the paper of Lokshtanov et al. [23].

We now deviate from the previous algorithm, and simply bound the chromatic number of
string graphs of odd girth larger than 11.

I Theorem 2. Every string graph of odd girth larger than 11 is 8-colorable, and given
a representation, an 8-coloring can be found in time polynomial in the representation.

A largest color class in a proper 8-coloring has size at least n/8 in an n-vertex graph. Thus,
its complement is a vertex cover of size at most 7n/8. As the optimum solution has size
at least n/2, this yields a 7/4 = 1.75 factor, and we conclude. Therefore, the main technical
content of the paper is the proof of Theorem 2.

Outline of the proof of Theorem 2. Our strategy goes as follows. We make a breadth-first
search (BFS) from some arbitrary vertex u0 in each connected component of the graph G.
We reserve colors 1, 2, 3, 4 for the even-indexed BFS layer, and 5, 6, 7, 8 for the odd-indexed
BFS layer. We thus need to 4-color each connected component X of each subgraph induced
by a single layer. Let R be a string representation of the entire graph, and R[X] its restriction
to X. As any face in the arrangement R[X] can be made the infinite face, we can assume that
the string of u0 lies on the infinite face of R[X]. Now R[X] has a nice property: The minimal
topological disk D that contains it is such that each string of R[X] intersects at least one
string (in R \R[X]) that itself crosses ∂D, the boundary of D. Indeed, such a string is given
by a neighbor in the previous layer.

3 The (odd) girth of a graph G is the length of a shortest (odd) cycle of G.
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We now consider the string representation RH made by X and at least one neighbor of
the previous layer for each vertex of X, and intersect it by D. Each string of X remains in
one piece, whereas the strings of the previous layer are possibly split into several strings in D.
Let H be the intersection graph of RH . We further layer X with the distance in H to a fixed
vertex w ∈ V (H) \ V (X). Let Xk be the vertices of H at distance exactly k from w in H.

We are left with proving that H[Xk] is bipartite. For the sake of contradiction, we assume
that there is an odd cycle C in H[Xk]. Our goal is to show that this odd cycle is contained
in a ball of small radius around some vertex, yielding a contradiction in the form of a short
odd cycle. For that, we establish that there is another odd cycle C ′ (built from C) such that
the string of w is contained in a face F made by few strings of NH [C ′], with most of the rest
of C ′ not intersecting F . A string defining F is then at a small distance of every string of C ′
since a (shortest) path from w to a vertex of the rest of C ′ has to cross the boundary of F .
After which, the path has only a constant number of steps to reach its target since vertices
of NH [C ′] are at distance k − 1, k, or k + 1 from w. The short odd cycle in H implies the
existence of a short odd cycle in G, a contradiction.

Chromatic number of intersection graphs without short (odd) cycles. The chromatic
number of intersection graphs of a given girth has a long history. Erdős and Gyárfás asked if
girth-4 (i.e., triangle-free) segment intersection graphs have bounded chromatic number [9].
Kostochka and Nešetřil [16] raised the same question for 1-string graphs.4 Both questions
were answered in the negative by Pawlik et al. [27]. It was further shown by Walczak [29] that
there are triangle-free segment intersection graphs without independent sets of size linear in
the number of vertices. Nevertheless, Kostochka and Nešetřil [17] proved that 1-string graphs
of girth at least 8 are 3-colorable, and asked [17, Problem 3] whether 8 could be replaced
by 5. This has been confirmed for outer 1-strings by Das, Mukherjee, and Sahoo [6].

More relevant to our Vertex Cover application, the chromatic number of (1-)string
graphs of a given odd girth has also been considered. (Note indeed that, in the design
of a (2 − ε)-approximation algorithm for Vertex Cover, whereas one can remove odd
cycles up to any fixed size, the same trick does not apply to 4-vertex cycles.) McGuinness
established that 1-string graphs of odd girth at least 7 have bounded chromatic number [24, 25].
Chudnovsky, Scott, and Seymour [5] further showed that string graphs of odd girth at least 9
are 80-colorable, and string graphs of odd girth at least 7 have bounded chromatic number.
With proper adjustments, the former result can be turned into an algorithm that inputs
a representation of any string graph G of odd girth at least 9, and outputs an 80-coloring of
G in time polynomial in the representation. However, this would yield a significantly worse
approximation factor for Vertex Cover.

Limits of the method. The following observation summarizes the trade-off between required
odd girth and effective upper bound on the chromatic number, in how they impact the
approximation ratio.

I Observation 3. Let C be a class such that there is a polynomial-time algorithm to c-color
the graphs of C of odd girth at least an odd positive integer g. Then Vertex Cover admits
a polynomial-time 2 max( g−2

g−1 ,
c−1

c )-approximation in C.

4 The 1-strings are strings every pair of which intersects at most once; note that it is not a property of
particular objects but rather their arrangement.
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We apply Observation 3 on represented string graphs with g = 13 and c = 8. Showing
a counterpart of Theorem 2 with g = 11 and c 6 10 would improve the ratio to 9/5 = 1.8,
and with g = 9 and c 6 8, to 7/4 = 1.75. Past this point, our 8-coloring starts being the
bottleneck. The last possible step of this method would be to get parameters g = 7 and
c 6 6, for a ratio of 5/3 = 1.666 . . . Indeed we recall that string graphs of odd girth at least 5
have unbounded chromatic number [27], and do not necessarily have linear-size independent
sets [29]. On the complexity side, we do not expect that Vertex Cover is APX-hard (i.e.,
NP-hard to approximate within some constant ratio r > 1) on represented string graphs as
a quasipolynomial-time approximation scheme (QPTAS) exists [1, 10]. However, if a PTAS
also exists, it will have to be found with a different approach than ours.

Let us emphasize that Theorem 2 is the only place where our algorithm actually requires
a representation of the input to be given. Thus, an algorithm coloring string graphs with no
short odd cycles, that works directly on the input graph G (not its representation), would
yield an approximation algorithm for Vertex Cover in string graphs whose complexity
is polynomial in the number of vertices of G. However, if we are only interested in the
decision variant of the problem, the existential statement in Theorem 2 is sufficient to get
the following result.

I Theorem 4. Given a graph G and an integer k, in time polynomial in |V (G)| we can
distinguish the following cases:
1. G is a string graph and Vertex Cover(G) 6 k, and
2. G is a string graph and Vertex Cover(G) > 11k/6.
If none of the cases applies, the algorithm terminates but its output is unspecified.

Theorem 4 can be seen as a polynomial-time solution to the promise variant of Vertex
Cover, where the input is guaranteed to satisfy one of the above conditions; see [20, 28].

Let us remark that Lokshtanov et al. [23] claim that their algorithm can actually return
a 1.9999-approximate solution in time polynomial in the number of vertices of the input
graph but this is, unfortunately, not true. Indeed, one of the crucial steps in their argument
is the application of a result of Lee [22, Theorem 4.2], whose proof has recently been realized
to be flawed5 [3, 21]. Seemingly the result [22, Theorem 4.2] can be reproven in a different
way but only for region intersection graphs (a generalization of string graphs) [7], and the
new approach requires that the representation is given (and still the final approximation ratio
is much closer to 2 than the one given by Theorem 1). Similarly, Lokshtanov et al. [23] claim
that their approach applies for all proper induced-minor-closed classes, but the problem lies
in the same place: we are not aware of any way to fix the proof of Lee [22, Theorem 4.2] in
such a general setting.

We leave as open questions if Vertex Cover admits, for some constant ε > 0, a (2− ε)-
approximation algorithm on string graphs given without representation (which is very likely
to be the case), and on classes excluding a fixed graph H as an induced minor.6

Further discussion and questions. An interesting notion to attack our question of which
classes admit a less-than-2 approximation factor is that of r-controlledness (see [5]). For
an integer r > 1, a class C is r-controlled if there exists a function f : N → N, such that
for every G ∈ C, the chromatic number of G is bounded by f(χr(G)), where χr(G) is the
maximum chromatic number of a ball Br(v) of radius r centered at a vertex v of G (i.e.,

5 The inequality at the sixth line of the proof of Lemma 4.14 need not hold.
6 i.e, H cannot be obtained from graphs of the class by removing vertices and contracting edges
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the graph induced by the vertices at distance at most r from v). The function f is in the
definition above is called a binding function.

In particular, every χ-bounded class C, i.e., a class whose chromatic number χ is upper
bounded by a function of its clique number ω, is 1-controlled. Indeed, if f is a χ-binding
function for C, we have χ1(G) > ω(G) and χ(G) 6 f(ω(G)) for every G ∈ C. Thus
χ(G) 6 f(χ1(G)) (note that f can be chosen non-decreasing). We further say that C is
effectively r-controlled if there is a polynomial-time algorithm that turns any χr(G)-coloring
of Br(v) for any G ∈ C and each v ∈ V (G), into an f(χr(G))-coloring of G. Note that C
is r-controlled and G ∈ C has odd girth larger that 2r + 1, then for every v ∈ V (G), the
subgraph induced by Br(v) is bipartite. Consequently, similarly to Observation 3, we obtain
the following.

I Observation 5. Vertex Cover admits a polynomial-time max( 2r+1
r+1 , 2(1− 1

f(2) ))-approxi-
mation algorithm on any effectively r-controlled class with binding function f .

Being r-controlled for at least some r is quite an inclusive property among “structured”
graph classes [5]. Thus we wonder the following.

I Question 1. Which hereditary classes C are not (effectively) r-controlled for any r, and
yet Vertex Cover admits a polynomial-time (2 − ε)-approximation algorithm in C, for
some constant ε > 0?

A candidate class for Question 1 is made by all graphs of girth at least 5. There is no r for
which this class is r-controlled, and to our knowledge, no (2− ε)-approximation algorithm
nor UGC-hardness proof.

As we already mentioned, intersection graphs of 1-strings with girth at least 8 are
3-chromatic [17]. Indeed, these graphs are 2-degenerate, i.e., (all their induced subgraphs)
have a vertex of degree at most 2, which gives a recursive 3-coloring strategy. While string
graphs of large odd girth are not d-degenerate for any d (they contain arbitrarily large
bipartite complete graphs), we conjecture that they are nevertheless 3-colorable.

I Conjecture 6. There is an integer k such that the class of string graphs of odd girth
at least k is 3-chromatic.

A stronger form of Conjecture 6 is that it holds for k = 7.

2 Definitions and preparatory lemmas

If i 6 j are two non-negative integers, we denote by [i, j] the set {i, i+ 1, . . . , j − 1, j}, and
[i] is a short-hand for [1, i].

Graphs and odd cycles We denote by V (G) and E(G) the set of vertices and edges of a
graph G, respectively. A graph H is an induced subgraph (resp. subgraph) of a graph G if
H can be obtained from G by vertex deletions (resp. by vertex and edge deletions). For
S ⊆ V (G), the subgraph of G induced by S, denoted G[S], is obtained by removing from
G all the vertices that are not in S. Then G − S is a short-hand for G[V (G) \ S]. A set
X ⊆ V (G) is connected (in G) if G[X] has a single connected component.

If C is a cycle, once a direction along the cycle is fixed, we may denote by C[x→ y] the
subpath of C from x ∈ V (C) to y ∈ V (C), turning in this direction.

I Lemma 7. Let G be a graph that has an induced odd cycle C, and let v ∈ V (G) \ V (C)
have at least two neighbors in V (C). Then there is a subpath of C that forms with v an
induced odd cycle of G.
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Proof. Let v1, . . . , vh list the neighbors of v on C, starting at an arbitrary fixed vertex
and turning in a fixed (arbitrary) direction. The cycles C1, . . . , Ch, each with vertex set
{v} ∪ C[vi → vi (mod h)+1] for i ∈ [h], respectively, have a combined number of edges of
|V (C)|+ 2h; an odd number since |V (C)| is odd. Hence at least one of C1, . . . , Ch has odd
length. J

Let G be a graph and v ∈ V (G). We denote by NG(v) and NG[v], the open, respect-
ively closed, neighborhood of v in G. For a non-negative integer r, we denote by N6r

G (v)
(resp. N=r

G (v)) the set of vertices of G at distance at most r (resp. exactly r) from v. We
may call N6r

G (v) the ball of radius r around v (in G). We will rely on the observation that if
a possibly long odd cycle is contained in a ball of small radius, then there is also a short odd
cycle (in this ball).

I Lemma 8. Let G be a graph, v ∈ V (G), and r be a positive integer. Suppose G[N6r
G (v)]

contains an odd cycle C. Then G (even G[N6r
G (v)]) has an odd cycle of length at most 2r+ 1.

Furthermore, if N=r
G (v) ∩ V (C) is an independent set of G, then G (even G[N6r−1

G (v)]) has
an odd cycle of length at most 2r − 1.

Proof. Perform a breadth-first search (BFS) starting at v in G[N6r
G (v)]. By definition,

this breadth-first search has exactly r + 1 layers L0, L1, . . . , Lr, with Li := N=i
G (v) for each

i ∈ [0, r]. At least one Li is not an independent set, otherwise G[N6r
G (v)] would be bipartite,

and would not contain any odd cycle. Say x, y ∈ Li are adjacent, and let z ∈ Li′ be their
lowest common ancestor in the BFS tree (possibly z = v and i′ = 0). Then, there is a cycle
of length 2(i− i′) + 1 6 2r + 1 in G[N6r

G (v)], consisting of the edge xy and the paths from
z to x and from z to y in the BFS tree. Furthermore, if N=r

G (v) ∩ V (C) is an independent
set of G, then the odd cycle C has at least one of its edges with both endpoints in some
Li 6= Lr, which makes an odd cycle of length at most 2r − 1. J

String representations, and some useful notions and properties A string is a subset of
R2 homeomorphic to a closed segment. We may call substring of a string s a path-connected
subset of s. If R is a collection of strings in the plane, we denote by GR their intersection
graph, with one vertex per string, and an edge between every pair of intersecting strings. For
any vertex v ∈ V (GR), we denote by sR(v) the string representing v in R. Conversely, we
may denote by vR(s) the vertex represented by the string s. We typically drop the subscript
when R is clear from the context. If X is an induced subgraph of GR, we may denote by
R[X] the subset of strings of R corresponding to vertices of X.

A face of a geometric arrangement made by a collection S of strings, or more generally
of curves, in R2 is a connected component of R2 \

⋃
s∈S s. A closed face is the topological

closure of a face. If D is a topological disk, and more generally a face, we denote by ∂D its
boundary. For instance, the curve ∂D defines two faces, one of which is finite (D \ ∂D), and
admits D as a closed face. We may denote by F the closure of an (open) face F .

If P is an induced path represented by strings s1, . . . , sh (i.e., si and sj intersect whenever
|i − j| = 1), a ∈ s1 and b ∈ sh, we denote by s[a, P, b] a minimal path-connected subset
of

⋃
i∈[h] si containing a and b. In particular s[a, P, b] is a string with endpoints a and b,

coinciding with each si on a substring of positive length. Although s[a, P, b] is not necessarily
uniquely defined, every further claim will hold regardless of the actual choice for s[a, P, b]. It
can thus be thought as a short-hand for: fix any minimal path-connected subset of

⋃
i∈[h] si

containing a and b, and denote it s[a, P, b].
It will be convenient to extend the latter notation to induced cycles, that is, to allow

s1 and sh to be adjacent. If P may be a cycle, then s[a, P, b] is defined more specifically in
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a b
P

a b
s[a, P, b]

Figure 1 Left: 5-vertex path as the intersection graph of strings, where the first string of the path
contains point a, and the last string of the path contains point b. Right: illustration of s[a, P, b].

the case when s1 and sh indeed intersect. If there is a point c ∈ s1 ∩ sh and two substrings
s′1 ⊆ s1, s

′
h ⊆ sh with endpoints a, c and b, c, respectively, such that (s′1∪s′h)∩

⋃
26i6h−1 si = ∅,

then s[a, P, b] := s′1 ∪ s′h. If not, then there is a (non-self-intersecting) string that starts at a,
follows non-empty substrings of s1, . . . , sh in this order, and ends at b. We fix, as before,
s[a, P, b] to be any such string.

We will need the following lemma.

I Lemma 9. Let D be a topological disk in the plane. Let V ]W be a set of strings all
contained in D, whose intersection graph is a cycle C, such that
|W | > 2,
every string of W has one or both endpoints in ∂D,
no other point of a string of V ∪W intersects ∂D, and
no two strings of (V ∪)W intersect at a point of ∂D.

Let sp be a string contained in D with at least one endpoint p in ∂D, such that sp does not
intersect any string of V ∪W .

Then there are two strings s 6= s′ ∈W , and h strings s1, . . . , sh ∈ V with v(s), v(s1), . . . ,
v(sh), v(s′) a subpath of C (or C itself), and sp is contained in a closed face F of the
arrangement {∂D, s, s1, . . . , sh, s

′} such that F does not intersect any string of V ∪ W
outside of s, s1, . . . , sh, s

′, the string s−1 6= s1 ∈ V ∪ W intersecting s, and the string
sh+2 6= sh ∈ V ∪W intersecting s′.

Proof. Let t, t′ be two distinct strings of W , with q ∈ t ∩ ∂D and q′ ∈ t′ ∩ ∂D. Let
P1, P2 be the two paths from v(t) to v(t′) in C. We define the strings t1 := s[q, P1, q

′] and
t2 := s[q, P2, q

′]. We denote by 〈q, q′〉 and 〈q′, q〉 the two minimal path-connected subsets of
∂D containing q and q′. Let F1, F

′
1 be the two finite (open) faces with boundary 〈q, q′〉 ∪ t1

and 〈q′, q〉 ∪ t1, respectively. Similarly let F2, F
′
2 be the two finite faces with boundary

〈q, q′〉 ∪ t2 and 〈q′, q〉 ∪ t2, respectively.
As C is an induced cycle, at most one of F1, F ′1 intersects the string of some vertex in

V (C) \NC [P1]. Without loss of generality, suppose that F1 does not intersect any string of
V (C) \NC [P1]. As sp does not intersect t1, it is contained in the closed face F1 or in the
closed face F ′1. If sp is contained in F1, we set P := P1 − {v(t), v(t′)} and F := F1, and
proceed to the next paragraph. Otherwise, we observe that sp is contained in F ′2, and F ′2
does not intersect any string of V (C) \NC [P2]. In which case we set P := P2 − {v(t), v(t′)}
and F := F ′2.

At this point, we have all the requirements of the lemma except that some strings of
P may be in W . Let P be v1, . . . , v` with v1 a neighbor of v(t), and v` a neighbor of v(t′).
While there is some string t′′ ∈ W with v(t′′) = vi ∈ V (P ), we let q′′ ∈ t′′ ∩ ∂D and
distinguish two cases. If q, p, q′′ turn along ∂D in the same direction as q, p, q′, we set t′ := t′′

and P := v1, . . . , vi−1. Otherwise we set t := t′′ and P := vi+1, . . . , v`. (Note that |V (P )|
decreases by at least one in each case.) When we exit the while loop, s := t, s′ := t′ ∈W , and
the subpath P of C (now only made of strings of V ) satisfy the lemma statement. A visual
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∂D

q

q′

q′′t

t′

t′′

p

sp

C

Figure 2 Illustration of the proof of Lemma 9. The strings of W are in blue. Say, we initially pick
t 6= t′ ∈W as depicted. The v(t)–v(t′) subpath of C enclosing sp contains a string in W , namely t′′.
As qpq′′ turns as qpq′ along ∂D, t′ will be set to t′′, and the new P (green strings) is entirely in V ,
so the process stops. The strings s := t, s′ := t′′, the green strings, and ∂D form a closed face
containing sp that, among the strings of the rest of C, only the two purple strings (may) intersect.

recap is provided by Figure 2. J

3 String graphs of odd girth larger than 11 are 8-colorable

This section is devoted to the proof of Theorem 2. Let G be a string graph of odd girth
strictly greater than 11, and R be a string representation of G. We may color each connected
component of G independently, thus assume that G is connected. Let u0 ∈ V (G) be an
arbitrary vertex. For each i > 0, let Li := N=i

G (u0) ⊆ V (G) be the set of vertices at distance
exactly i from u0. Note that {u0} = L0, L1, L2, . . . partition V (G), and that there may be
an edge between x ∈ Li and y ∈ Lj only if |i− j| 6 1.

Our goal is to 4-color G[Li] for each non-negative integer i. We are then done, since we
can use two disjoint 4-color palettes for G[

⋃
i is odd Li] and G[

⋃
i is even Li]. We fix i, and

assume that i > 2 since L0 is a singleton, and L1 is an independent set, due to the condition
on the odd girth. Note that it is sufficient to 4-color each connected component of G[Li].
Let X be the vertex set of any connected component of G[Li].

Definition of the topological disk D. Let R[X] be the string representation of G[X]
obtained by keeping the strings of R corresponding to vertices of X. Let D0 be the
topological disk whose boundary is the boundary of the infinite face in the arrangement R[X].
If s(u0) is contained in D0, we draw R on a sphere, place any free point (i.e., not occupied
by a string of R) of the face containing s(u0) in R[X] at its north pole, and consider the
stereographic projection of this string representation. The latter is such that s(u0) is on the
infinite face of the string arrangement R[X]. Thus we can in fact assume that s(u0) is not
contained in D0.

Note that every string of R[X] is contained in D0, and apart from those of Li−1∪Li+1∪X
no string of R intersects ∂D0. Let D ⊃ D0 be a very slightly augmented topological disk
such that ∂D0 ⊂ D \ ∂D and the property that no string outside Li−1 ∪ Li+1 ∪X intersects
∂D is preserved. We can also ensure that no intersection of two strings of R lies on ∂D, and,
for any point q ∈ ∂D, no string of R intersects ∂D at q without crossing it at q. We observe
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that every string of Li−1 with a neighbor in V (X) intersects ∂D, and that every vertex of X
has a neighbor in Li−1.

Definition of the auxiliary graph H. Let RH be the set of strings formed by D∩R[(Li−1∩
NG(V (X)))∪V (X)], and H its intersection graph. Every vertex of X corresponds to a single
vertex in H, whereas each vertex of Li−1 ∩NG(V (X)) may split in several strings in H as
the corresponding string in R may enter and exit D several times. However, the strings of
RH that correspond to the same vertex in Li−1 ∩NG(V (X)) are pairwise non-intersecting
and thus they form an independent set in H. Fix an arbitrary vertex w ∈ Li−1 ∩NG(V (X)).
Let Xj be the subset of vertices of X at distance exactly j from w in H. Again, X1, X2, . . .

partition X. By the previous remarks, it is sufficient to show that that for any positive
integer k, the graph G[Xk] = H[Xk] is bipartite. We fix k, and show this fact in the next
section.

3.1 G[Xk] is bipartite
For the sake of contradiction assume that there is an induced odd cycle C in G[Xk]. We
denote by v1, . . . , vh the vertices of C. For every ` ∈ [h], we fix some w` ∈ NH(v`) \X. Such
a vertex exists since every vertex of Li has at least one neighbor in Li−1 (possibly split into
several strings in RH , at least one of which intersects s(v`)). Observe that w1, . . . , wh are
not necessarily pairwise distinct. We set W := {w1, . . . , wh}, with 1 6 |W | 6 h. We say that
string s(vi) (and, by extension, vertex vi) is simply attached in a cycle C ′ containing vi if
wi has only one neighbor in V (C ′), namely vi. We denote by r(wi) one (arbitrary, if both
endpoints are in ∂D) endpoint of wi that is in ∂D.

Our plan is to show that there is an odd cycle C ′ contained in the ball of radius 6
around some vertex z in H such that N=6

H (z) ∩ V (C ′) is an independent set. This implies,
by Lemma 8, the existence of an odd cycle of length at most 11 in H, which in turn implies,
as we will see, that the same happens in G. To do this, we exhibit a path P̂ in H[V (C)∪W ]
on at most four vertices, whose strings define with ∂D a (finite) closed face F containing s(w)
(recall that w is the arbitrary BFS root in H), and an odd cycle C ′ in H[V (C)∪W ] “mostly”
contained in D \ F . We then show that z can be chosen among the vertices of P̂ .

Let us first establish the following lemma.

I Lemma 10. There is an induced odd cycle C ′ in H such that V (C ′) ⊆ V (C) ∪W , such
that one of the following items holds

C ′ = C and every string of V (C ′) is simply attached in C ′, or
V (C ′) ∩W = {wi}, for some wi ∈ W , and V (C ′) \ {wi} induces a subpath of C whose
internal vertices are all simply attached in C ′, or
|V (C ′)∩W | > 2, and there is a subpath x, vi, . . . , vj , y of C ′ (or C ′) such that x 6= y ∈W ,
{vi, . . . , vj} ⊂ V (C) may be empty, s(vi+1), . . . , s(vj−1) are all simply attached in C ′,
and s(w) is contained in a closed face of {∂D, s(x), s(vi), s(vi+1), . . . , s(vj−1), s(vj), s(y)}
that does not intersect any string of C ′ but s(x), s(vi), s(vi+1), . . . , s(vj−1), s(vj), s(y) and
the other neighbor in C ′ of x and of y.

Proof. If all the strings of C are simply attached, we are done as the first item holds.
Otherwise there is some wi ∈W with at least two neighbors in V (C). By Lemma 7, there is
an induced odd cycle C1 such that V (C1) comprises wi and a subpath of C.

Let p > 1, and suppose we have defined Cp. If Cp satisfies the second or the third item of
the lemma, we are done; so we assume otherwise. We will show that we can find an induced
cycle Cp+1 in H[V (C) ∪W ] with fewer vertices in V (C) than Cp has.
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First, suppose that V (Cp) ∩W is a singleton {x}. As Cp does not satisfy the second
outcome, there is a vertex vi ∈ V (Cp) \ {x} ⊆ V (C) that is not simply attached nor adjacent
to x in Cp. We then obtain Cp+1 by applying Lemma 7 to the pair Cp, wi.

Suppose instead that Cp has at least two vertices inW . By Lemma 9, s(w) is contained in
a closed face F of the arrangement {∂D, s(x), s(vi), s(vi+1), . . . , s(vj−1), s(vj), s(y)} with x 6=
y ∈W such that F does not intersect any string of C ′ outside s(x′), s(x), s(vi), s(vi+1), . . . ,
s(vj−1), s(vj), s(y), s(y′) where x′, y′ are the unique vertices in NC′(x) \ {vi}, NC′(y) \ {vj},
respectively. As Cp does not satisfy the third item, |j − i| > 2 and there is some vi′ with
i + 1 6 i′ 6 j − 1 such that s(vi′) is not simply attached in Cp. We then obtain Cp+1 by
applying Lemma 7 to the pair Cp, wi′ ; see Figure 3.

In both cases, the number of vertices of V (C) present in the current odd cycle drops by
at least one when going from Cp to Cp+1. Thus, after at most h = |V (C)| iterations, the
procedure will return an odd cycle Cq in H[V (C) ∪W ] that satisfies the second or the third
statement of the lemma. J

∂D

s(w)

Cp
Cp+1 wi′

vi′
x

y

Figure 3 The string wi′ ∈ W with several neighbors in V (Cp), and the new odd induced
cycle Cp+1 obtained by Lemma 7. Lemma 9 will then locate s(w) as enclosed by x, wi′ and some
(here, three) strings of V . For legibility, a string may be labeled by its corresponding vertex.

We can then obtain the announced milestone.

I Lemma 11. There is an induced odd cycle C ′ in H[V (C) ∪W ], two vertices x 6= y ∈W ,
possibly part of C ′, and a subpath P of C ′ on 0, 1, or 2 vertices, all in V (C), such that

if V (P ) 6= ∅, then x is adjacent to one endpoint of P , and y, to the other (possibly equal)
endpoint of P , and if V (P ) = ∅, then x and y are adjacent,
one finite closed face F1 of the arrangement {∂D, s[r(x), xPy, r(y)]} contains s(w), and
the other finite closed face F2 contains every string of V (C ′) \NC′ [V (P ) ∪ {x, y}].

Proof. By Lemma 10, there is an induced odd cycle C ′ in H[V (C) ∪ W ], two vertices
x′ 6= y′ ∈W , possibly part of C ′, and a possibly-empty subpath P of C ′ such that

V (P ) ⊂ V (C) and each internal vertex of P is simply attached in C ′,
x′Py′ is a path or a cycle (we allow x′ and y′ to be adjacent, even when V (P ) 6= ∅),
{∂D, s[r(x′), x′Py′, r(y′)]} has two finite closed faces F1 ⊃ s(w), and
F2 containing every string of V (C ′) \NC′ [V (P ) ∪ {x′, y′}].

Indeed, we directly get this outcome if the third item of Lemma 10 holds. If instead the
first item of Lemma 10 holds, we set x′ := wi and y′ := wj for any vi 6= vj ∈ V (C) =
V (C ′) such that wiwj /∈ E(H). This is possible to ensure since H is triangle-free and
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|V (C)| > 3. The path P is then chosen as the subpath of C from vi to vj such that
∂D ∪ s(x′) ∪

⋃
u∈V (P ) s(u) ∪ s(y′) separates s(w) from V (C) \NC [P ]. If finally the second

item of Lemma 10 holds, we set x′ := wi for any vi ∈ V (C ′) such that wi /∈ V (C ′), and y′ is
defined as the only vertex of W ∩ V (C ′). We then set P as previously.

Now, while the path P has at least three vertices and s[r(x′), x′Py′, r(y′)] passes through
the strings of P , let vi be an internal vertex of P . By construction, s(vi) is simply attached
in C ′. Let P ′ be the subpath of P going from the endpoint of P neighboring x′ to vi, and
P ′′ be the subpath of P going from vi to its other endpoint (neighboring y′). Then, either P ′
and the pair x′ 6= wi ∈W or P ′′ and the pair wi 6= y′ satisfy the four items of the previous
paragraph. In the former case, we set P := P ′ and y′ := wi, whereas in the latter, we set
P := P ′′ and x′ := wi; see Figure 4.

∂D
s(w)

C ′

r(x′)
r(y′) = r(y)

r(x)

x

x′

y′ = y

Figure 4 Example of strings x′ 6= y′ ∈ W and the subpath P (three green strings) of C′. The
internal node of P is simply attached to C′. This is the case when x′ should be updated (to the
vertex of the cyan string). The new path P (darker green) has two vertices, thus the process stops.

We are done when |V (P )| 6 2 or when s[r(x′), x′Py′, r(y′)] is contained in s(x′) ∪ s(y′).
In both cases, we set x := x′ and y := y′, and in the latter case, we set P to be empty. J

Following the notations of Lemma 11, we define z as the neighbor of x in P if V (P ) 6= ∅,
and as x otherwise.

I Lemma 12. V (C ′) ⊆ N66
H (z).

Proof. We keep the notations of Lemma 11. First we observe that any vertex in NC′ [V (P )∪
{x, y}] is at distance at most 3 of z in H. It remains to see that every vertex z′ of C ′ such
that s(z′) is contained in F2 is at distance at most 6 from z in H.

Note that every vertex of W is at distance k − 1, k, or k + 1 from w in H, since every
vertex of C is at distance exactly k from w in H, and every vertex of W has a neighbor
in V (C). As s(w) is in F1, a (shortest) path from w to z′ has to contain a vertex y′ such
that s(y′) intersects s[r(x), xPy, r(y)]. Since vertices of V (P )∪{x, y} are at distance at least
k − 1 from w, vertex y′ is at distance at least k − 2 from w. Now, as vertices of C ′ are at
distance at most k + 1 from w, vertex y′ is at distance at most 3 from z′. In turn, z is at
distance at most 3 from y′, and we conclude. J

We further show that no edge of C ′ can lie within N=6
H (z).

I Lemma 13. N=6
H (z) ∩ V (C ′) is an independent set of H or H admits an odd cycle of

length at most 9.
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Proof. The proof of Lemma 12 shows that for some vertex z′ ∈ V (C ′) to be at distance 6
from z in H, there should be a 4-edge path from y to z′. Thus two vertices z′, z′′ adjacent in
C ′ and at distance 6 from z in H entail an odd cycle of length at most 9 in H, built from y,
the corresponding two (non-necessarily edge-disjoint) 4-edge paths, z′, and z′′. J

Lemmas 8, 12, and 13 imply the existence of an odd cycle Co of length at most 11 in H.
We finally see that this yields a contradiction, as we can build an odd cycle of at most the
same length in G.

I Lemma 14. Let Co be an odd cycle in H. Then G has an odd cycle of length at most |V (Co)|.

Proof. We initialize a represented odd cycle Ĉ to Co realized by the corresponding strings
of RH . We make an induction on the number of strings of Ĉ not part of the representation
R of G. When this number is 0, we conclude since G contains the cycle Ĉ as a subgraph.
Let y1, . . . , yq ∈ V (Ĉ) be all the vertices of Ĉ whose strings are substrings of s(y) for some
y ∈ Li−1 ∩NG(V (X)).

We further assume that starting at y1 ∈ V (Ĉ), and turning in some fixed (arbitrary)
direction along Ĉ, one encounters y1, y2, . . . , yq in this order. Let, for every a ∈ [q], `a be
the number of edges of Ĉ[ya → ya (mod q)+1]. As, |V (Ĉ)| =

∑
a∈[q] `a, at least one `a is

odd. Recall that {y1, . . . , yq} is an independent set in H, hence every `a is strictly greater
than 1. Then the string s(y) and those of the internal vertices in the path between ya and
ya (mod q)+1 form an odd cycle of length at least 3 and at most |V (Ĉ)|. This defines the new
represented odd cycle Ĉ, and concludes the proof. J

3.2 8-coloring algorithm
To claim Theorem 2, we finally need to check that, given a representation P,S of a string
graph G of odd girth larger than 11, one can compute an 8-coloring of G in time polynomial
in |V (P )|. Recall that P is a planar graph and S is a set of non-empty connected sets in P
in one-to-one correspondence with V (G) such that two distinct connected sets of S intersect
if and only if the corresponding vertices of G are adjacent. Note that, as G is in particular
triangle-free, |V (G)| 6 2|V (P )|.

We remind the reader that we compute one BFS in G, and less than |V (G)| BFSes in
auxiliary graphs H of size at most (|V (P )|+ 1)|V (G)|. After this we simply 2-color bipartite
graphs whose combined number of vertices is at most |V (G)|. Thus, we shall just detail how
to compute each auxiliary graph H.

Let X be the connected component of G[Li] giving rise to H. We start by adding every
vertex of X to V (H). We compute the set Y ⊆ V (P ) of all the vertices contained in an
element of S corresponding to a vertex of X. Let u′ ∈ V (P ) be a vertex in the connected set
of u0. Let Y ′ ⊆ Y be the vertices v ∈ Y for which there is a path in P from u′ to v whose
internal vertices are all in V (P ) \ Y . Note that Y ′ can be computed in polynomial time in
|V (P )| by checking if u′ and y are in the same connected component of P − (Y \ {v}). The
set Y ′ is the combinatorial counterpart of ∂D. In particular, we do not need to change the
representation if u′ is in a finite face “made by Y .” This was merely helpful in the proof
correctness.

For each vertex v ∈ Li−1 ∩ NG(V (X)) (alternatively we can only keep at least one
neighbor per vertex of X), we add to V (H) one vertex for each connected component of
S ∩ Y in P , where S is the connected set of v. Note that S′ ∩ Y ′ 6= ∅ for every vertex set S′
of such a connected component. This step adds to H fewer than |V (G)| · |V (P )| vertices.
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Graph H is finally defined as the intersection graph of all the connected sets of vertices in
V (H), which can be computed in time polynomial in |V (P )|.

4 Approximation algorithm for Vertex Cover

For a graph G, let vc(G) denote the size of a minimum vertex cover in G. We will use
the following result of Chlebík and Chlebíková [4], which is a slight strengthening of the
well-known Nemhauser–Trotter theorem [26].

I Theorem 15 (Chlebík and Chlebíková [4], Nemhauser and Trotter [26]). Given a graph G,
one can compute in polynomial time a partition of V (G) into V0, V1/2, V1, such that
1. there are no edges between V0 and V1/2 or within V0,
2. vc(G[V1/2]) > 1

2 |V1/2|, and
3. every minimum vertex cover S of G satisfies V1 ⊆ S ⊆ V1 ∪ V1/2.

Finally, we are ready to prove Theorem 1, which we restate for convenience.

I Theorem 1. Vertex Cover admits an 11
6 -approximation algorithm in string graphs

given with a representation, whose running time is polynomial in the size of a representation.

Proof. Let G be the input graph, given along with a representation. The algorithm has
three phases.

Phase one. We initialize X = ∅. If G contains an odd cycle of length at most 11, we include
all its vertices into X and remove them from the graph. We repeat this step exhaustively;
clearly this can be done in polynomial time. Let G′ be the graph obtained after the last
iteration of the process.

Phase two. We call the algorithm from Theorem 15 on the graph G′ in order to obtain
three sets V0, V1/2, and V1. We denote Y = V1 and G′′ = G′[V1/2]. Note that G′′ is a string
graph with odd girth larger than 11 and the representation of G′′ can be easily obtained from
the representation of G by removing strings (or connected sets) corresponding to vertices in
V (G) \ V (G′′).

Phase three. We apply the algorithm from Theorem 2 to find a proper coloring of G′′ with
at most 8 colors. Let c be the color that appears most frequently, and let Z be set of vertices
of G′′ not colored c. Clearly |Z| 6 7

8 |V (G′′)|, so |V (G′′)| > 8
7 |Z|. The algorithm returns

Q = X ∪ Y ∪ Z.

Analysis. First, let us argue that Q is indeed a vertex cover. Since X ⊆ Q, it is enough
to show that Q ∩ V (G′) = Y ∪ Z is a vertex cover of G′. Note that by the first property in
Theorem 15 and since V1 = Y , all edges of G′ not contained in G′′ are covered by Q. So we
are left with showing that Q ∩ V (G′′) = Z is a vertex cover of G′′. This is clearly true, as
the complement of Z in G′′ is an independent set (of color c).

Now let us analyze the approximation factor. Let S be an optimum solution, i.e., a vertex
cover of G of size vc(G). Note that for each odd cycle C removed in the first phase, S ∩ C
must contain at least |C|2 vertices in order to cover all the edges of C. As each removed cycle
has at most 11 vertices, we conclude that |S ∩X| > 6

11 |X|.
Note that S′ \X is a vertex cover of G′. By the third property in Theorem 15 we observe

that Y = V1 ⊆ S, and so S \ (X ∪ Y ) is a vertex cover of G′′. By the second property in
Theorem 15 we obtain that |S \ (X ∪ Y )| > 1

2 |V (G′′)|.
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Summing up, we obtain

|S| = |S ∩X|+ |S ∩ Y |+ |S \ (X ∪ Y )| > 6
11 |X|+ |Y |+

1
2 |V (G′′)|

>
6
11 |X|+ |Y |+

4
7 |Z| >

6
11 |X ∪ Y ∪ Z| =

6
11 |Q|,

which means that |Q| 6 11
6 |S| =

11
6 vc(G). This completes the proof. J

The proof above is easily adapted to show Theorem 4. The first two phases remain
unchanged. Let C be the family of odd cycles found in phase one and let Y be the set
found in phase two. Once we reach phase three, we do not call the coloring algorithm
on G′′, as its running time might not be polynomial in |V (G)|. Instead, we check if∑

C∈Cd|V (C)|/2e + |Y | + |V (G′′)|/2 > k and, if so, we reject the instance. Note that the
sum in the expression above is a lower bound on vc(G), so this step is correct. Otherwise, we
accept the instance. The approximation guarantee is estimated as in the proof of Theorem 1.
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