Small But Unwieldy

<u>Édouard Bonnet</u>, Julien Duron, John Sylvester, Viktor Zamaraev, and Maksim Zhukovskii

ENS Lyon, LIP

September 18th 2023, CoA 2023, Paris

Labeling Schemes

Given a graph G, an injective labeling $\ell : V(G) \to \{0,1\}^*$ and a decoder $A : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ such that: for every pair $u, v \in V(G)$, $A(\ell(u), \ell(v)) = 1 \Leftrightarrow uv \in E(G)$. Given a graph G, an injective labeling $\ell : V(G) \to \{0,1\}^*$ and a decoder $A : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ such that: for every pair $u, v \in V(G)$, $A(\ell(u), \ell(v)) = 1 \Leftrightarrow uv \in E(G)$.

Main goal: make $\max_{u \in V(G)} |\ell(u)|$ as low as possible Example: Louis's talk An infinite family of graphs G_1, G_2, \ldots such that: every *n*-vertex graph of \mathcal{C} (\mathcal{C}_n) is an induced subgraph of G_n . An infinite family of graphs G_1, G_2, \ldots such that: every *n*-vertex graph of \mathcal{C} (\mathcal{C}_n) is an induced subgraph of G_n .

Main goal: make $|V(G_n)|$ as low as possible a function of *n*

 u_n -universal graph for C: u_n -vertex graph *representing* every graph of C_n

Link between Labeling Schemes and Universal Graphs

f(n)-bit labeling schemes $\Leftrightarrow 2^{f(n)}$ -universal graphs.

Link between Labeling Schemes and Universal Graphs

f(n)-bit labeling schemes $\Leftrightarrow 2^{f(n)}$ -universal graphs.

Growth of Graph Classes

Number of unlabeled *n*-vertex graphs of C up to isomorphism, or Number of labeled *n*-vertex graphs of C

Growth of Graph Classes

Number of unlabeled *n*-vertex graphs of C up to isomorphism, or Number of labeled *n*-vertex graphs of C

Factorial: growth $2^{O(n \log n)}$ (interval graphs) **Small:** labeled growth $n!2^{O(n)}$ (graphs of bounded twin-width) **Tiny:** unlabeled growth $2^{O(n)}$ (same examples)

Heredity and monotonicity

A graph class is

- hereditary if it is closed under taking induced subgraphs
- monotone if it is closed under taking subgraphs

A counting observation

A u_n -universal graph represents at most $\binom{u_n}{n}$ graphs on n vertices.

Hence, classes with $n^{O(1)}$ -universal graphs (or $O(\log n)$ -bit labeling schemes) are factorial.

Implicit Graph Conjecture

Kannan–Naor–Rudich '92, Spinrad '03 Every hereditary factorial graph class has O(log n)-bit schemes. Kannan–Naor–Rudich '92, Spinrad '03 Every hereditary factorial graph class has O(log n)-bit schemes.

"The Implicit Graph Conjecture is [Completely] False": There are such classes without $O(n^{0.499})$ -bit adjacency schemes [Hamed and Pooya Hatami, '21]. Scaled-Down Implicit Graph Conjecture

Every hereditary small graph class has $(1 + o(1)) \log n$ -bit schemes. Question attributed to [Gavoille and Labourel, '07]

Scaled-Down Implicit Graph Conjecture

Every hereditary small graph class has $(1 + o(1)) \log n$ -bit schemes. Question attributed to [Gavoille and Labourel, '07]

Equivalent to $n^{1+o(1)}$ -universal graphs Shown for planar graphs [DujmovicEGJMM '21] Tiny Classes with Polynomially-Large Universal Graphs

Theorem (B., Duron, Sylvester, Zamaraev, Zhukovskii '23) For every *s*, there is a monotone tiny class without universal graphs of size n^s .

Or equivalently, without *s* log *n*-bit labeling scheme.

Subset counting trick [Hatami & Hatami]

Counting observation:

A single u_n-vertex graph represents only so many graphs

Subset counting trick: All u_n -vertex graphs combined represent only so many κ_n -subsets of graphs

$$2^{u_n^2} \cdot \begin{pmatrix} \binom{u_n}{n} \\ \kappa_n \end{pmatrix}$$

Subset counting trick [Hatami & Hatami]

Counting observation: A single u_n-vertex graph represents only so many graphs

Subset counting trick: All u_n -vertex graphs combined represent only so many κ_n -subsets of graphs

$$2^{u_n^2} \cdot \binom{\binom{u_n}{n}}{\kappa_n} \leqslant 2^{u_n^2 + n\kappa_n \log u_n}$$

Subset counting trick [Hatami & Hatami]

Counting observation: A single u_n-vertex graph represents only so many graphs

Subset counting trick: All u_n -vertex graphs combined represent only so many κ_n -subsets of graphs

$$2^{u_n^2} \cdot \binom{\binom{u_n}{n}}{\kappa_n} \leqslant 2^{u_n^2 + n\kappa_n \log u_n} = 2^{n^{2s}(1+s\log n)}$$

With $u_n = n^s$ and $\kappa_n = n^{2s-1}$, \rightarrow too many κ_n -subsets of *n*-vertex graphs among tiny classes With $\kappa_n = n^{2s-1}$, $\rightarrow \#\kappa_n$ -subsets of *n*-vertex graphs in tiny classes $> 2^{n^{2s}(1+s\log n)}$

$$n^{2s-1}$$
 graphs
chosen among $n^{(s+1)n}$

vertex count

$$2^{(s+1)n^{2s}\log n}$$
 choices $> 2^{n^{2s}(1+s\log n)}$

vertex count

п

 $n^{(s+1)n}$ graphs on *n* vertices with a *tiny cone*

But we have to stack (even sparsely) infinitely many cones

G is monotone *c*-tiny: $\forall k, G$ has $\leq c^k$ unlabeled *k*-subgraphs

G is monotone *c*-tiny: $\forall k$, *G* has $\leq c^k$ unlabeled *k*-subgraphs

At most $n^{2s-1}c^k$ unlabeled k-subgraphs from one layer

G is monotone *c*-tiny: $\forall k$, *G* has $\leq c^k$ unlabeled *k*-subgraphs

Below "log n" the subgraphs should all fall in a same tiny class

G is monotone *c*-tiny: $\forall k$, *G* has $\leq c^k$ unlabeled *k*-subgraphs

We need monotone *c*-tiny graphs with "log *n*" threshold property

Key: A polynomial fraction of graphs of average degree d := 2s + 3 are monotone *c*-tiny with the "log *n*" threshold property

...and numerous enough

Key: A polynomial fraction of graphs of average degree d := 2s + 3 are monotone *c*-tiny with the "log *n*" threshold property

...and numerous enough

Analysis on G(n, p) with $p = \frac{d}{n}$

 $G(n, \frac{d}{n})$ has the "log n" threshold property

Connected k-subgraphs of G(n, O(1/n)) with $k \leq \log n$ have only at most $k - 1 + \frac{k}{\log k}$ edges

making a monotone and tiny class (central blue strip)

 $G(n, \frac{d}{n})$ are monotone *c*-tiny

$$\mathbb{E}[\#k\text{-subgraphs of } G(n, d/n) \text{ with } m \text{ edges}] \leqslant \binom{n}{k} \binom{\binom{k}{2}}{m} \left(\frac{d}{n}\right)^m$$

 $G(n, \frac{d}{n})$ are monotone *c*-tiny

$$\mathbb{E}[\#k\text{-subgraphs of } G(n, d/n) \text{ with } m \text{ edges}] \leqslant \binom{n}{k} \binom{\binom{k}{2}}{m} \left(\frac{d}{n}\right)^m$$

Single-exponential in k when $m \ge k - 1 + \frac{k}{\log k}$

Open questions

- Refuting the Implicit Graph Conjecture with a small class?
- (1 + o(1)) log *n*-bit labeling schemes for classes of bounded clique-width? bounded twin-width?
- Is small and tiny equivalent for hereditary classes?

Open questions

- Refuting the Implicit Graph Conjecture with a small class?
- (1 + o(1)) log *n*-bit labeling schemes for classes of bounded clique-width? bounded twin-width?
- Is small and tiny equivalent for hereditary classes?

Thank you for your attention!

Spring school "Graphs and Algorithms: Conjectures" in May 13–17, 2024, in Aussois

https://perso.ens-lyon.fr/edouard.bonnet/springSchool.htm