On the Parameterized Complexity of Red-Blue Points Separation

Édouard Bonnet, Panos Giannopoulos, and Michael Lampis

Middlesex University, London
September 6, 2017, IPEC, Vienna

Red-Blue Separation

Given a set \mathcal{R} of red points and \mathcal{B} of blue points...

Red-Blue Separation

...find at most k lines making each cell monochromatic.

A few words on the problem

- motivated by machine learning applications
- natural geometric separation problem
- NP-hard [Meggido '88]
- APX-hard for the variant with axis-parallel lines...
- ...with an LP-based 2-approximation [Calinescu et al. '05]
- we will forbid the selected lines to contain any input point

Discretization of the problem

There is an easy $\left(4 n^{2}\right)^{k}=n^{O(k)}$-time algorithm

Discretization of the problem

There is an easy $\left(4 n^{2}\right)^{k}=n^{O(k)}$-time algorithm

Discretization of the problem

There is an easy $\left(4 n^{2}\right)^{k}=n^{O(k)}$-time algorithm

Discretization of the problem

There is an easy $\left(4 n^{2}\right)^{k}=n^{O(k)}$-time algorithm

$O(n)$ for $k=1$ and $O(n \log n)$ for $k=2$ [Hurtado et al. '04].

Parameterized complexity?

A line arrangement created by k lines has $O\left(k^{2}\right)$ cells.
YES-instances are well-strucured: decomposable into $f(k)=O\left(k^{2}\right)$ convex monochromatic regions.

Parameterized complexity?

A line arrangement created by k lines has $O\left(k^{2}\right)$ cells.
YES-instances are well-strucured: decomposable into $f(k)=O\left(k^{2}\right)$ convex monochromatic regions.

Maybe FPT algorithm based on a kernel...

Parameterized complexity?

A line arrangement created by k lines has $O\left(k^{2}\right)$ cells. YES-instances are well-strucured: decomposable into $f(k)=O\left(k^{2}\right)$ convex monnochromatic regions.

Maybe EPT aborithm based on a kernel...

Our main result

Red-Blue Separation cannot be solved in time $f(k) n^{o(k / \log k)}$ unless the ETH fails.

It almost matches the brute-force $n^{O(k)}$:
Red-Blue Separation is not part of those geometric problems solvable in $n^{O(\sqrt{k})}$.

Intermediate problems worth knowing

..to design parameterized lower bounds of geometric problems

- Grid Tiling [Marx '05] \rightarrow no $f(k) n^{\circ(\sqrt{k})}$ for several geometric packing and covering problems
- Many classical optimisation problems on multiple-interval graphs [Jiang '10, Jiang and Zhang '12]: typically W[1]-hardness on (unit) 2-track interval and (unit) 2-interval graphs

Intermediate problems worth knowing

...to design parameterized lower bounds of geometric problems

- Grid Tiling [Marx '05] \rightarrow no $f(k) n^{\circ(\sqrt{k})}$ for several geometric packing and covering problems
- Many classical optimisation problems on multiple-interval graphs [Jiang '10, Jiang and Zhang '12]: typically W[1]-hardness on (unit) 2-track interval and (unit) 2-interval graphs

The latter can potentially give $f(k) n^{o(k / \log k)}$-lower bounds (and confirm the absence of square-root phenomenon)

Structured 2-Track Hitting Set

2-elements: $\forall i \in[t], \forall j \in[k]\left(a_{i}^{j}, b_{i}^{j}\right)$
Total orderings of the a-elements and the b-elements
Sets: A-intervals and B-intervals
Goal: Find k 2-elements thats hits all the sets

Structured 2-Track Hitting Set

Theorem (B. \& Miltzow, ESA'16)
Unless the ETH fails, Structured 2-Track Hitting Set cannot be solved in time $f(k) n^{o(k / \log k)}$.

Deconstructing Structured 2-Track Hitting Set

To reduce from this problem, we need to encode:

- intervals; usually easy
- the interclass permutation σ (on k elements)
- intraclasses permutations σ_{j} (on $t \gg k$ elements); trickier

Deconstructing Structured 2-Track Hitting Set

To reduce from this problem, we need to encode:

- intervals; usually easy
- the interclass permutation σ (on k elements)
- intraclasses permutations σ_{j} (on $t \gg k$ elements); trickier

Why such an intermediate problem is convenient?
The non geometricity is pushed to mere permutations; easier to simulate than arbitrary binary relations (reduction from a graph problem) or arbitrary ternary relations (reduction from a 3-CSP)

Enforcing near axis-parallelism with long alleys

Enforcing near axis-parallelism with long alleys

How we will in fact use them

Encoding of an interval

Encoding of an interval

Encoding of an interval and choice propagation

only solutions with a budget of 2 almost axis-parallel lines

Intervals put together to form the whole track

Intervals put together to form the whole track

budget of k horizontal and k vertical lines

Encoding the interclass permutation σ

Encoding the interclass permutation σ

Encoding the interclass permutation σ

Half-encoding the intraclass permutation σ_{j}

73285164

Half-encoding the intraclass permutation σ_{j}

12345678
73285164

Half-encoding the intraclass permutation σ_{j}

Half-encoding the intraclass permutation σ_{j}

Half-encoding the intraclass permutation σ_{j}

A budget of one line forces a line with the correct slope

Half-encoding the intraclass permutation σ_{j}

A budget of one line forces a line with the correct slope or higher

Simple fix: use two half-encodings; the second track

Gray areas correspond to possible lines; the only way to make the two lines meet at the diagonal is to take the boundary lines

The full picture

An FPT algorithm for the Axis-Parallel case ${ }^{1}$

Axis-Parallel Red-Blue Separtion can be solved in $O^{*}\left(9^{|\mathcal{B}|}\right)$.

The number of blue points $k:=|\mathcal{B}|$ is small

Imagine the $2 k$ axis-parallel lines crossing them

Guess in time $3^{2(k+1)}$ how many lines of a solution each of the $k+1$ rows and the $k+1$ columns contain: it can be 0,1 , or 2

The problematic case is with 1 : the lines are only floating

Each of the potential conflict can be expressed as a 2-clause: VerticalLine3RightOfp or HorizontalLine1Belowp

Consistency can be ensured with 2-clauses

VerticalLineiRightOfp' \rightarrow VerticalLineiRightOfp HorizontalLinejBelowp \rightarrow HorizontalLinejBelowp'

Consistency can be ensured with 2-clauses

VerticalLineiRightOfp' \rightarrow VerticalLineiRightOfp HorizontalLinejBelowp \rightarrow HorizontalLinejBelowp'

For each of the $3^{2(k+1)}$ guesses, conclude by solving a 2-SAT instance in linear time.

Open questions

The algorithm breaks with a third direction, or a third dimension, or with the natural parameter

- Is Axis-Parallel Red-Blue Separation FPT parameterized by k the number of lines?
- Is Red-Blue Separation with a fixed number of allowed slopes FPT in $|\mathcal{B}|$? in k ?
- What happens in higher dimensions?

Best candidate to be FPT: Red-Blue Separation with 3 allowed slopes and parameterized by $|\mathcal{B}|$.

