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Red-Blue Separation

Given a set R of red points and B of blue points...
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Red-Blue Separation

...find at most k lines making each cell monochromatic.
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A few words on the problem

I motivated by machine learning applications
I natural geometric separation problem
I NP-hard [Meggido ’88]
I APX-hard for the variant with axis-parallel lines...
I ...with an LP-based 2-approximation [Calinescu et al. ’05]
I we will forbid the selected lines to contain any input point
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Discretization of the problem
There is an easy (4n2)k = nO(k)-time algorithm

O(n) for k = 1 and O(n log n) for k = 2 [Hurtado et al. ’04].
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Parameterized complexity?

A line arrangement created by k lines has O(k2) cells.
YES-instances are well-strucured:
decomposable into f (k) = O(k2) convex monochromatic regions.

Maybe FPT algorithm based on a kernel...
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Our main result

Red-Blue Separation cannot be solved in time f (k)no(k/ log k)

unless the ETH fails.

It almost matches the brute-force nO(k):

Red-Blue Separation is not part of those geometric problems
solvable in nO(

√
k).



Introduction Parameterized Hardness An Algorithm for the Axis-Parallel case

Intermediate problems worth knowing

...to design parameterized lower bounds of geometric problems

I Grid Tiling [Marx ’05] → no f (k)no(
√

k) for several geometric
packing and covering problems

I Many classical optimisation problems on multiple-interval
graphs [Jiang ’10, Jiang and Zhang ’12]: typically
W[1]-hardness on (unit) 2-track interval and (unit) 2-interval
graphs

The latter can potentially give f (k)no(k/ log k)-lower bounds
(and confirm the absence of square-root phenomenon)
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Structured 2-Track Hitting Set

2-elements: ∀i ∈ [t],∀j ∈ [k] (aj
i , b

j
i )

Total orderings of the a-elements and the b-elements
Sets: A-intervals and B-intervals
Goal: Find k 2-elements thats hits all the sets
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Structured 2-Track Hitting Set
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Theorem (B. & Miltzow, ESA’16)
Unless the ETH fails, Structured 2-Track Hitting Set
cannot be solved in time f (k)no(k/ log k).
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Deconstructing Structured 2-Track Hitting Set

To reduce from this problem, we need to encode:
I intervals; usually easy
I the interclass permutation σ (on k elements)
I intraclasses permutations σj (on t � k elements); trickier

Why such an intermediate problem is convenient?

The non geometricity is pushed to mere permutations;
easier to simulate than
arbitrary binary relations (reduction from a graph problem) or
arbitrary ternary relations (reduction from a 3-CSP)
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Enforcing near axis-parallelism with long alleys

G
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How we will in fact use them

insert reduction
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Encoding of an interval

and choice propagation

a1
a2
a3
a4
a5
a6
a7
a8
a9

only solutions with a budget of 2 almost axis-parallel lines
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Encoding of an interval and choice propagation

a1
a2
a3
a4
a5
a6
a7
a8
a9

only solutions with a budget of 2 almost axis-parallel lines
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Intervals put together to form the whole track

budget of k horizontal and k vertical lines
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Encoding the interclass permutation σ
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Half-encoding the intraclass permutation σj

12345678 123 45 67 8

A budget of one line forces a line with the correct slope or higher
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Half-encoding the intraclass permutation σj
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Simple fix: use two half-encodings; the second track

Gray areas correspond to possible lines; the only way to make the
two lines meet at the diagonal is to take the boundary lines
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The full picture
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An FPT algorithm for the Axis-Parallel case1

Axis-Parallel Red-Blue Separtion can be solved in O∗(9|B|).

1with a larger parameter
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pb

p

The number of blue points k := |B| is small
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pb

p

Imagine the 2k axis-parallel lines crossing them
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pb

p

Guess in time 32(k+1) how many lines of a solution each of the
k + 1 rows and the k + 1 columns contain: it can be 0, 1, or 2
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pb

p

The problematic case is with 1: the lines are only floating

a
a
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pb

p

Each of the potential conflict can be expressed as a 2-clause:
VerticalLine3RightOfp or HorizontalLine1Belowp
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Consistency can be ensured with 2-clauses

p p′

p

p′

VerticalLineiRightOfp’ → VerticalLineiRightOfp
HorizontalLinejBelowp → HorizontalLinejBelowp’

For each of the 32(k+1) guesses, conclude by solving a 2-SAT
instance in linear time.
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Open questions

The algorithm breaks with a third direction, or a third dimension,
or with the natural parameter

I Is Axis-Parallel Red-Blue Separation FPT parameterized by k
the number of lines?

I Is Red-Blue Separation with a fixed number of allowed slopes
FPT in |B|? in k?

I What happens in higher dimensions?

Best candidate to be FPT: Red-Blue Separation with 3 allowed
slopes and parameterized by |B|.
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