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Subexponential algorithms

NP-hardness:
your problem is not solvable in polynomial, unless 3-SAT is.
very widely believed but do not give evidence against
algorithms running in say, 2n1/100 .

a

ETH-hardness:
stronger assumption than P6=NP is ETH asserting that no
2o(n) algorithm exists for 3-SAT
Allows to prove stronger conditional lower bounds
linear reduction from 3-SAT: no 2o(n) algorithm for your
problem, quadratic reduction: no 2o(

√
n) algorithm, etc.
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Biased viewpoint of this talk

2O(
√

n) (or at least 2O(nc) with c < 1) vs no 2o(n) under ETH?
For optimisation problems: nO(

√
k) vs no no(k) (or no(k/ log k))?

we will not care about the log factors in the exponent.

nO(
√

k) often
 2O(

√
n log n) because k

often
6 n.

Notable exception: Chordal Completion can even be solved in
2O(
√

k log k) but not in 2o(n) under ETH (k can be Ω(n2)).
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Biased viewpoint of this talk

2O(
√

n) (or at least 2O(nc) with c < 1) vs no 2o(n) under ETH?
For optimisation problems: nO(

√
k) vs no no(k) (or no(k/ log k))?

we will not care about the log factors in the exponent.

We will focus on geometric non necessarily sparse graphs:
intersection graphs: disks, balls, segments, strings, etc.
visibility graphs.

We will not discuss about...
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Dynamic programming would spare a log n in the exponent.
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Bidimensionality

Theorem (Robertson & Seymour, Graph Minors)
A planar graph with treewidth > 5k admits a k × k-grid minor.

If tw < 5
√

k  algorithm in 2O(tw)nO(1) = 2O(
√

k)nO(1).
If tw > 5

√
k  ∃

√
k ×
√

k-grid minor  always yes (always no).
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Unit disks can be packed in time nO(
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Theorem (Alber & Fiala, J. Alg.’04)
Unit disks can be packed in time nO(

√
k).

Those instances can be solved by DP in nO(
√

k) due to their width.



Packing disks
Idea of Sariel Har-Peled to get geometric QPTAS:
use the Voronoi diagram of an assumptive solution.

Theorem (Marx & Pilipczuk, ESA ’15)
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Packing disks

Theorem (Marx & Pilipczuk, ESA ’15)
Disks can be packed in time nO(

√
k).

For non unit disks, use distance d(c, p) := ||c − p||2 − r(p).



Covering points with disks

Theorem (Marx & Pilipczuk, ESA ’15)
Selecting k objects among a set of disks covering a set of points
can be solved in time nO(

√
k).

With more subtle rules to make the inside and outside independent.



Essentially best algorithms: Grid Tiling
Theorem (Chen et al., CCC ’04)
k-Clique cannot be solved in time f (k)no(k) under ETH.

Grid Tiling: Embed k-Clique in a k-by-k grid.
In each cell select one pair among a prescribed subset of [n]× [n].

Two horizontally (vertically) adjacent cells should agree on their
first (second) coordinate.

Theorem (Marx, ESA ’05)
MIS on UDG cannot be solved in time f (k)no(

√
k) under ETH.

Syntactical reduction to MIS on UDG.
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Actually more general

Theorem (Smith & Wormald, FOCS ’98)
For every d ≥ 1 and B ≥ 0, there exists a constant c = c(d ,B),
such that for every B-fat collection S of n d-dimensional convex
sets with ply at most `, there exists a d-dimensional sphere Q,
such that:

at most d+1
d+2n elements of S are entirely inside Q,

at most d+1
d+2n elements of S are entirely outside Q,

at most cn1−1/d`1/d elements of S intersect Q.



Simple algorithm for `-coloring disks

Win-win based on the value of the ply:

p > `  answer NO.

p 6 `  balanced separator of size O(
√

n`)  
treewidth Õ(

√
n`)  coloring in time 2Õ(

√
n`)

For `-coloring d-dimensional balls, the same argument gives
running time 2Õ(n1−1/d`1/d ).
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Essentially best algorithms: Grid Coloring

Theorem (Biro et al., SoCG ’17)
For any α ∈ [0, 1], coloring n unit disks with ` = Θ(nα) colors
cannot be solved in time 2o(n

1+α
2 ) = 2o(

√
n`), under the ETH.

a
Constant number of colors  square root phenomenon.
Linear number of colors  no subexponential-time algorithm.

And everything in between (hard part).
For instance,

√
n-coloring cannot be done in 2o(n3/4).
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Essentially best algorithms: Grid Coloring

k-by-k Grid Tiling instance with t legal pairs in each cell.

a

Instead of selecting one center in each small grid...

Grid Coloring cannot be solved in time 2o(tk) under ETH.
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The subexponential algorithm generalizes to other fat objects.

Theorem (Rzążewski)
4-coloring on 2-DIR cannot be solved in time 2o(n).

No subexponential algorithms even for a constant number of colors.



Segment intersection graphs

The subexponential algorithm generalizes to other fat objects.

Theorem (Rzążewski)
4-coloring on 2-DIR cannot be solved in time 2o(n).

No subexponential algorithms even for a constant number of colors.



3-coloring on segments?

Subexponential algorithm even on string graphs!

String graphs: intersection graphs of curves in the plane.

Theorem (B. et al.)
3-coloring on strings can be solved in time 2O(n2/3).
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Subexponential algorithms on string graphs

Important fact: string graphs have separators of size O(
√

m).

Win-win:
high maximum degree: good branching
low maximum degree: small separator

Theorem (Fox & Pach, SODA ’11)
Max Independent Set has a subexponential algorithm on
string graphs.

What about Min Dominating Set? Min Independent
Dominating Set? Max Clique? No, No, No
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Theorem (B. & Miltzow, ESA ’16)
No algorithm in time f (k)no(k/ log k) unless the ETH fails.

two instances of min hitting set of intervals
taking a point in instance A forces a specific point in instance B
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Terrain Guarding
Guarding an x -monotone polygonal curve with k vertices.
Theorem (Ashok et al. SoCG’17)
Terrain Guarding is solvable in nO(

√
k), hence in 2O(

√
n log n).

A planar graph with domination number k has treewidth O(
√

k).

Non-trivial divide-and-conquer based on this separator.
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Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a small separator relative to
a hypothetical solution (Voronoi diagram, planar graph, etc.),
separator theorems (for disk graph, string graphs; generalizing
the planar separator theorem), win-win approach.
ETH-based lowerbounds: reductions from Grid Tiling,
Grid Coloring, 2-Track Hitting Set.

Separator-based techniques also lead to approximation algorithms:
Instead of brute-forcing on the separator, ignore it.

Some open questions:
Optimal complexity of MIS, 3-coloring, on string graphs?
Lowerbound or better algorithm for Terrain Guarding?

Thanks for your attention!
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