
Subexponential algorithms in non sparse classes
of graphs

Édouard Bonnet

Department of Computer Science, Middlesex University, London

LAMSADE, April 28th, 2017

Subexponential algorithms

NP-hardness:
your problem is not solvable in polynomial, unless 3-SAT is.
very widely believed but do not give evidence against
algorithms running in say, 2n1/100 .

a

ETH-hardness:
stronger assumption than P6=NP is ETH asserting that no
2o(n) algorithm exists for 3-SAT
Allows to prove stronger conditional lower bounds
linear reduction from 3-SAT: no 2o(n) algorithm for your
problem, quadratic reduction: no 2o(

√
n) algorithm, etc.

Subexponential algorithms

NP-hardness:
your problem is not solvable in polynomial, unless 3-SAT is.
very widely believed but do not give evidence against
algorithms running in say, 2n1/100 .

a

ETH-hardness:
stronger assumption than P6=NP is ETH asserting that no
2o(n) algorithm exists for 3-SAT
Allows to prove stronger conditional lower bounds
linear reduction from 3-SAT: no 2o(n) algorithm for your
problem, quadratic reduction: no 2o(

√
n) algorithm, etc.

Biased viewpoint of this talk

2O(
√

n) (or at least 2O(nc) with c < 1) vs no 2o(n) under ETH?
For optimisation problems: nO(

√
k) vs no no(k) (or no(k/ log k))?

we will not care about the log factors in the exponent.

nO(
√

k) often
 2O(

√
n log n) because k

often
6 n.

Notable exception: Chordal Completion can even be solved in
2O(
√

k log k) but not in 2o(n) under ETH (k can be Ω(n2)).

Biased viewpoint of this talk

2O(
√

n) (or at least 2O(nc) with c < 1) vs no 2o(n) under ETH?
For optimisation problems: nO(

√
k) vs no no(k) (or no(k/ log k))?

we will not care about the log factors in the exponent.

nO(
√

k) often
 2O(

√
n log n) because k

often
6 n.

Notable exception: Chordal Completion can even be solved in
2O(
√

k log k) but not in 2o(n) under ETH (k can be Ω(n2)).

Biased viewpoint of this talk

2O(
√

n) (or at least 2O(nc) with c < 1) vs no 2o(n) under ETH?
For optimisation problems: nO(

√
k) vs no no(k) (or no(k/ log k))?

we will not care about the log factors in the exponent.

We will focus on geometric non necessarily sparse graphs:
intersection graphs: disks, balls, segments, strings, etc.
visibility graphs.

We will not discuss about...

Square root phenomenon on planar graphs

a

Many problems are solvable in 2O(
√

n) in planar graphs, and
unlikely solvable in 2o(n) in general graphs.

Square root phenomenon on planar graphs

a

Many problems are solvable in 2O(
√

n) in planar graphs, and
unlikely solvable in 2o(n) in general graphs.

Square root phenomenon on planar graphs

a

Max Independent Set, 3-Coloring, Hamiltonian Path...

Square root phenomenon on planar graphs

a

Max Independent Set, 3-Coloring, Hamiltonian Path...

Square root phenomenon on planar graphs

a

Max Independent Set, 3-Coloring, Hamiltonian Path...

Square root phenomenon on planar graphs

a

Max Independent Set, 3-Coloring, Hamiltonian Path...
Dynamic programming would spare a log n in the exponent.

Square root phenomenon on planar graphs

a

Max Independent Set, 3-Coloring, Hamiltonian Path...

Square root phenomenon on planar graphs

a

Max Independent Set, 3-Coloring, Hamiltonian Path...

Square root phenomenon on planar graphs

a

Max Independent Set, 3-Coloring, Hamiltonian Path...

Bidimensionality

Theorem (Robertson & Seymour, Graph Minors)
A planar graph with treewidth > 5k admits a k × k-grid minor.

If tw < 5
√

k algorithm in 2O(tw)nO(1) = 2O(
√

k)nO(1).
If tw > 5

√
k ∃

√
k ×
√

k-grid minor always yes (always no).

Bidimensionality

Theorem (Robertson & Seymour, Graph Minors)
A planar graph with treewidth > 5k admits a k × k-grid minor.

If tw < 5
√

k algorithm in 2O(tw)nO(1) = 2O(
√

k)nO(1).

If tw > 5
√

k ∃
√

k ×
√

k-grid minor always yes (always no).

Bidimensionality

Theorem (Robertson & Seymour, Graph Minors)
A planar graph with treewidth > 5k admits a k × k-grid minor.

If tw < 5
√

k algorithm in 2O(tw)nO(1) = 2O(
√

k)nO(1).
If tw > 5

√
k ∃

√
k ×
√

k-grid minor always yes (always no).

Packing unit disks
Theorem (Alber & Fiala, J. Alg.’04)
Unit disks can be packed in time nO(

√
k).

Imagine a solution.

Packing unit disks
Theorem (Alber & Fiala, J. Alg.’04)
Unit disks can be packed in time nO(

√
k).

Imagine a solution.

Packing unit disks
Theorem (Alber & Fiala, J. Alg.’04)
Unit disks can be packed in time nO(

√
k).

Translate by one unit
√

k vertical lines distant by
√

k.

Packing unit disks
Theorem (Alber & Fiala, J. Alg.’04)
Unit disks can be packed in time nO(

√
k).

At some point, the lines intersect it on at most
√

k disks.

Packing unit disks
Theorem (Alber & Fiala, J. Alg.’04)
Unit disks can be packed in time nO(

√
k).

Guess that intersection in n
√

k .

Packing unit disks
Theorem (Alber & Fiala, J. Alg.’04)
Unit disks can be packed in time nO(

√
k).

Remove the disks touched by the lines or this intersection.

Packing unit disks
Theorem (Alber & Fiala, J. Alg.’04)
Unit disks can be packed in time nO(

√
k).

Those instances can be solved by DP in nO(
√

k) due to their width.

Packing disks
Idea of Sariel Har-Peled to get geometric QPTAS:
use the Voronoi diagram of an assumptive solution.

Theorem (Marx & Pilipczuk, ESA ’15)
Disks can be packed in time nO(

√
k).

Packing disks

Theorem (Marx & Pilipczuk, ESA ’15)
Disks can be packed in time nO(

√
k).

The Voronoi diagram of a solution is a planar graph with k faces.

Packing disks

Theorem (Marx & Pilipczuk, ESA ’15)
Disks can be packed in time nO(

√
k).

It has a O(
√

k) face-balanced noose. Guess it in nO(
√

k).

Packing disks

Theorem (Marx & Pilipczuk, ESA ’15)
Disks can be packed in time nO(

√
k).

Remove the disks touched by it or by the intersected solution.

Packing disks

Theorem (Marx & Pilipczuk, ESA ’15)
Disks can be packed in time nO(

√
k).

Recurse: T (n, k) 6 nO(
√

k)T (n, 2k/3) 6 nO(
√

k).

Packing disks

Theorem (Marx & Pilipczuk, ESA ’15)
Disks can be packed in time nO(

√
k).

For non unit disks, use distance d(c, p) := ||c − p||2 − r(p).

Covering points with disks

Theorem (Marx & Pilipczuk, ESA ’15)
Selecting k objects among a set of disks covering a set of points
can be solved in time nO(

√
k).

With more subtle rules to make the inside and outside independent.

Essentially best algorithms: Grid Tiling
Theorem (Chen et al., CCC ’04)
k-Clique cannot be solved in time f (k)no(k) under ETH.

Grid Tiling: Embed k-Clique in a k-by-k grid.
In each cell select one pair among a prescribed subset of [n]× [n].

Two horizontally (vertically) adjacent cells should agree on their
first (second) coordinate.

Theorem (Marx, ESA ’05)
MIS on UDG cannot be solved in time f (k)no(

√
k) under ETH.

Syntactical reduction to MIS on UDG.

Essentially best algorithms: Grid Tiling
Theorem (Marx, ESA ’05)
Grid Tiling cannot be solved in time f (k)no(k) under ETH.

Grid Tiling: Embed k-Clique in a k-by-k grid.
In each cell select one pair among a prescribed subset of [n]× [n].

Two horizontally (vertically) adjacent cells should agree on their
first (second) coordinate.

The choice of vertices are made along the diagonal: (ui , ui).
Checking the edge uiuj is done in the cell (i , j).

Theorem (Marx, ESA ’05)
MIS on UDG cannot be solved in time f (k)no(

√
k) under ETH.

Syntactical reduction to MIS on UDG.

Essentially best algorithms: Grid Tiling

Theorem (Marx, ESA ’05)
MIS on UDG cannot be solved in time f (k)no(

√
k) under ETH.

Syntactical reduction to MIS on UDG.

Smith and Wormald ’98: ∀n disks with ply p,

∃ O

at most 3n
4

at most 3n
4

O(√np)
intersected disks

Smith and Wormald ’98: ∀n disks with ply p, ∃ O

at most 3n
4

at most 3n
4

O(√np)
intersected disks

Actually more general

Theorem (Smith & Wormald, FOCS ’98)
For every d ≥ 1 and B ≥ 0, there exists a constant c = c(d ,B),
such that for every B-fat collection S of n d-dimensional convex
sets with ply at most `, there exists a d-dimensional sphere Q,
such that:

at most d+1
d+2n elements of S are entirely inside Q,

at most d+1
d+2n elements of S are entirely outside Q,

at most cn1−1/d`1/d elements of S intersect Q.

Simple algorithm for `-coloring disks

Win-win based on the value of the ply:

p > ` answer NO.

p 6 ` balanced separator of size O(
√

n`)
treewidth Õ(

√
n`) coloring in time 2Õ(

√
n`)

For `-coloring d-dimensional balls, the same argument gives
running time 2Õ(n1−1/d`1/d).

Simple algorithm for `-coloring disks

Win-win based on the value of the ply:

p > ` answer NO.
p 6 ` balanced separator of size O(

√
n`)

treewidth Õ(
√

n`) coloring in time 2Õ(
√

n`)

For `-coloring d-dimensional balls, the same argument gives
running time 2Õ(n1−1/d`1/d).

Simple algorithm for `-coloring disks

Win-win based on the value of the ply:

p > ` answer NO.
p 6 ` balanced separator of size O(

√
n`)

treewidth Õ(
√

n`) coloring in time 2Õ(
√

n`)

For `-coloring d-dimensional balls, the same argument gives
running time 2Õ(n1−1/d`1/d).

Essentially best algorithms: Grid Coloring

Theorem (Biro et al., SoCG ’17)
For any α ∈ [0, 1], coloring n unit disks with ` = Θ(nα) colors
cannot be solved in time 2o(n

1+α
2) = 2o(

√
n`), under the ETH.

a
Constant number of colors square root phenomenon.
Linear number of colors no subexponential-time algorithm.

And everything in between (hard part).
For instance,

√
n-coloring cannot be done in 2o(n3/4).

Essentially best algorithms: Grid Coloring

Theorem (Biro et al., SoCG ’17)
For any α ∈ [0, 1], coloring n unit disks with ` = Θ(nα) colors
cannot be solved in time 2o(n

1+α
2) = 2o(

√
n`), under the ETH.

a

Constant number of colors square root phenomenon.
Linear number of colors no subexponential-time algorithm.

And everything in between (hard part).
For instance,

√
n-coloring cannot be done in 2o(n3/4).

Essentially best algorithms: Grid Coloring

Theorem (Biro et al., SoCG ’17)
For any α ∈ [0, 1], coloring n unit disks with ` = Θ(nα) colors
cannot be solved in time 2o(n

1+α
2) = 2o(

√
n`), under the ETH.

a

Constant number of colors square root phenomenon.
Linear number of colors no subexponential-time algorithm.

And everything in between (hard part).
For instance,

√
n-coloring cannot be done in 2o(n3/4).

Essentially best algorithms: Grid Coloring

k-by-k Grid Tiling instance with t legal pairs in each cell.

a

Instead of selecting one center in each small grid...

Grid Coloring cannot be solved in time 2o(tk) under ETH.

Essentially best algorithms: Grid Coloring

k-by-k Grid Tiling instance with t legal pairs in each cell.

a

...we color them with a different color each...

Grid Coloring cannot be solved in time 2o(tk) under ETH.

Essentially best algorithms: Grid Coloring

k-by-k Grid Tiling instance with t legal pairs in each cell.

a

...such that each color class corresponds to a clique

Grid Coloring cannot be solved in time 2o(tk) under ETH.

Essentially best algorithms: Grid Coloring

k-by-k Grid Tiling instance with t legal pairs in each cell.

a

...such that each color class corresponds to a clique
Grid Coloring cannot be solved in time 2o(tk) under ETH.

Segment intersection graphs

The subexponential algorithm generalizes to other fat objects.

Theorem (Rzążewski)
4-coloring on 2-DIR cannot be solved in time 2o(n).

No subexponential algorithms even for a constant number of colors.

Segment intersection graphs

The subexponential algorithm generalizes to other fat objects.

Theorem (Rzążewski)
4-coloring on 2-DIR cannot be solved in time 2o(n).

No subexponential algorithms even for a constant number of colors.

3-coloring on segments?

Subexponential algorithm even on string graphs!

String graphs: intersection graphs of curves in the plane.

Theorem (B. et al.)
3-coloring on strings can be solved in time 2O(n2/3).

3-coloring on segments?

Subexponential algorithm even on string graphs!

String graphs: intersection graphs of curves in the plane.

Theorem (B. et al.)
3-coloring on strings can be solved in time 2O(n2/3).

Subexponential algorithms on string graphs

Important fact: string graphs have separators of size O(
√

m).

Win-win:
high maximum degree: good branching
low maximum degree: small separator

Theorem (Fox & Pach, SODA ’11)
Max Independent Set has a subexponential algorithm on
string graphs.

What about Min Dominating Set? Min Independent
Dominating Set? Max Clique? No, No, No

Subexponential algorithms on string graphs

Important fact: string graphs have separators of size O(
√

m).

Win-win:
high maximum degree: good branching
low maximum degree: small separator

Theorem (Fox & Pach, SODA ’11)
Max Independent Set has a subexponential algorithm on
string graphs.

What about Min Dominating Set? Min Independent
Dominating Set? Max Clique? No, No, No

Subexponential algorithms on string graphs

Important fact: string graphs have separators of size O(
√

m).

Win-win:
high maximum degree: good branching
low maximum degree: small separator

Theorem (Fox & Pach, SODA ’11)
Max Independent Set has a subexponential algorithm on
string graphs.

What about Min Dominating Set? Min Independent
Dominating Set? Max Clique?

No, No, No

Subexponential algorithms on string graphs

Important fact: string graphs have separators of size O(
√

m).

Win-win:
high maximum degree: good branching
low maximum degree: small separator

Theorem (Fox & Pach, SODA ’11)
Max Independent Set has a subexponential algorithm on
string graphs.

What about Min Dominating Set? Min Independent
Dominating Set? Max Clique? No, No, No

Art Gallery Problem

a

Simple polygon with n vertices.

Guard the gallery with k
a

Those three problems are NP-hard.
a

Algorithm in time f (k)nO(
√

k)? Algorithm in time f (k)nc?

Art Gallery Problem

a

Simple polygon with n vertices.
Guard the gallery with k points.

a
Those three problems are NP-hard.

a
Algorithm in time f (k)nO(

√
k)? Algorithm in time f (k)nc?

Art Gallery Problem

a

Simple polygon with n vertices.
Guard the gallery with k vertices.

a
Those three problems are NP-hard.

a
Algorithm in time f (k)nO(

√
k)? Algorithm in time f (k)nc?

Art Gallery Problem

a

Simple polygon with n vertices.
Dominating Set in the visibility graph of a simple polygon.

a

Those three problems are NP-hard.

a
Algorithm in time f (k)nO(

√
k)? Algorithm in time f (k)nc?

Art Gallery Problem

a

Simple polygon with n vertices.
Dominating Set in the visibility graph of a simple polygon.

a

Those three problems are NP-hard.

a

Algorithm in time f (k)nO(
√

k)? Algorithm in time f (k)nc?

Intermediate problem and linker
Theorem (B. & Miltzow, ESA ’16)
No algorithm in time f (k)no(k/ log k) unless the ETH fails.

two instances of min hitting set of intervals
taking a point in instance A forces a specific point in instance B

Intermediate problem and linker
Theorem (B. & Miltzow, ESA ’16)
No algorithm in time f (k)no(k/ log k) unless the ETH fails.

two instances of min hitting set of intervals
taking a point in instance A forces a specific point in instance B

Terrain Guarding
Guarding an x -monotone polygonal curve with k vertices.
Theorem (Ashok et al. SoCG’17)
Terrain Guarding is solvable in nO(

√
k), hence in 2O(

√
n log n).

A planar graph with domination number k has treewidth O(
√

k).

Non-trivial divide-and-conquer based on this separator.

Terrain Guarding
Guarding an x -monotone polygonal curve with k vertices.
Theorem (Ashok et al. SoCG’17)
Terrain Guarding is solvable in nO(

√
k), hence in 2O(

√
n log n).

A planar graph with domination number k has treewidth O(
√

k).
Non-trivial divide-and-conquer based on this separator.

Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a small separator relative to
a hypothetical solution (Voronoi diagram, planar graph, etc.),
separator theorems (for disk graph, string graphs; generalizing
the planar separator theorem), win-win approach.
ETH-based lowerbounds: reductions from Grid Tiling,
Grid Coloring, 2-Track Hitting Set.

Separator-based techniques also lead to approximation algorithms:
Instead of brute-forcing on the separator, ignore it.

Some open questions:
Optimal complexity of MIS, 3-coloring, on string graphs?
Lowerbound or better algorithm for Terrain Guarding?

Thanks for your attention!

Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a small separator relative to
a hypothetical solution (Voronoi diagram, planar graph, etc.),
separator theorems (for disk graph, string graphs; generalizing
the planar separator theorem), win-win approach.
ETH-based lowerbounds: reductions from Grid Tiling,
Grid Coloring, 2-Track Hitting Set.

Separator-based techniques also lead to approximation algorithms:
Instead of brute-forcing on the separator, ignore it.

Some open questions:
Optimal complexity of MIS, 3-coloring, on string graphs?
Lowerbound or better algorithm for Terrain Guarding?

Thanks for your attention!

Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a small separator relative to
a hypothetical solution (Voronoi diagram, planar graph, etc.),
separator theorems (for disk graph, string graphs; generalizing
the planar separator theorem), win-win approach.
ETH-based lowerbounds: reductions from Grid Tiling,
Grid Coloring, 2-Track Hitting Set.

Separator-based techniques also lead to approximation algorithms:
Instead of brute-forcing on the separator, ignore it.

Some open questions:
Optimal complexity of MIS, 3-coloring, on string graphs?
Lowerbound or better algorithm for Terrain Guarding?

Thanks for your attention!

