Subexponential algorithms in non sparse classes of graphs

Édouard Bonnet
Department of Computer Science, Middlesex University, London

LAMSADE, April 28th, 2017

Subexponential algorithms

NP-hardness:
your problem is not solvable in polynomial, unless 3-SAT is. very widely believed but do not give evidence against algorithms running in say, $2^{n^{1 / 100}}$.

Subexponential algorithms

NP-hardness:
your problem is not solvable in polynomial, unless 3-SAT is. very widely believed but do not give evidence against algorithms running in say, $2^{n^{1 / 100}}$.

ETH-hardness:
stronger assumption than $\mathrm{P} \neq \mathrm{NP}$ is ETH asserting that no $2^{o(n)}$ algorithm exists for 3 -SAT

Allows to prove stronger conditional lower bounds linear reduction from 3-SAT: no $2^{o(n)}$ algorithm for your problem, quadratic reduction: no $2^{\circ(\sqrt{n})}$ algorithm, etc.

Biased viewpoint of this talk

$2^{O(\sqrt{n})}$ (or at least $2^{O\left(n^{c}\right)}$ with $c<1$) vs no $2^{o(n)}$ under ETH? For optimisation problems: $n^{O(\sqrt{k})}$ vs no $n^{o(k)}\left(\right.$ or $\left.n^{o(k / \log k)}\right)$? we will not care about the log factors in the exponent.

Biased viewpoint of this talk

$2^{O(\sqrt{n})}$ (or at least $2^{O\left(n^{c}\right)}$ with $c<1$) vs no $2^{o(n)}$ under ETH? For optimisation problems: $n^{O(\sqrt{k})}$ vs no $n^{o(k)}\left(\right.$ or $\left.n^{o(k / \log k)}\right)$? we will not care about the log factors in the exponent.
$n^{O(\sqrt{k})} \stackrel{\text { often }}{\rightsquigarrow} 2 O(\sqrt{n} \log n)$ because $k \stackrel{\text { often }}{\leqslant} n$.
Notable exception: Chordal Completion can even be solved in $2^{O(\sqrt{k} \log k)}$ but not in $2^{o(n)}$ under ETH (k can be $\Omega\left(n^{2}\right)$).

Biased viewpoint of this talk

$2^{O(\sqrt{n})}$ (or at least $2^{O\left(n^{c}\right)}$ with $c<1$) vs no $2^{o(n)}$ under ETH?
For optimisation problems: $n^{O(\sqrt{k})}$ vs no $n^{o(k)}$ (or $n^{o(k / \log k)}$)? we will not care about the log factors in the exponent.

We will focus on geometric non necessarily sparse graphs: intersection graphs: disks, balls, segments, strings, etc. visibility graphs.

We will not discuss about...

Square root phenomenon on planar graphs

Many problems are solvable in $2 O(\sqrt{n})$ in planar graphs, and unlikely solvable in $2^{o(n)}$ in general graphs.

Square root phenomenon on planar graphs

Many problems are solvable in $2 O(\sqrt{n})$ in planar graphs, and unlikely solvable in $2^{o(n)}$ in general graphs.

Square root phenomenon on planar graphs

Max Independent Set, 3-Coloring, Hamiltonian Path...

Square root phenomenon on planar graphs

Max Independent Set, 3-Coloring, Hamiltonian Path...

Square root phenomenon on planar graphs

Max Independent Set, 3-Coloring, Hamiltonian Path...

Square root phenomenon on planar graphs

Max Independent Set, 3-Coloring, Hamiltonian Path... Dynamic programming would spare a $\log n$ in the exponent.

Square root phenomenon on planar graphs

Max Independent Set, $\underline{3-C o l o r i n g, ~ H a m i l t o n i a n ~ P a t h . . . ~}$

Square root phenomenon on planar graphs

Max Independent Set, $\underline{3-C o l o r i n g, ~ H a m i l t o n i a n ~ P a t h . . . ~}$

Square root phenomenon on planar graphs

Max Independent Set, $\underline{3-C o l o r i n g, ~ H a m i l t o n i a n ~ P a t h . . . ~}$

Bidimensionality

Theorem (Robertson \& Seymour, Graph Minors)
A planar graph with treewidth $\geqslant 5 k$ admits a $k \times k$-grid minor.

Bidimensionality

Theorem (Robertson \& Seymour, Graph Minors)
A planar graph with treewidth $\geqslant 5 k$ admits a $k \times k$-grid minor.

If tw $<5 \sqrt{k} \rightsquigarrow$ algorithm in $2^{O(\mathrm{tw})} n^{O(1)}=2^{O(\sqrt{k})} n^{O(1)}$.

Bidimensionality

Theorem (Robertson \& Seymour, Graph Minors) A planar graph with treewidth $\geqslant 5 k$ admits a $k \times k$-grid minor.

If $\mathrm{tw}<5 \sqrt{k} \rightsquigarrow$ algorithm in $2^{O(\mathrm{tw})} n^{O(1)}=2^{O(\sqrt{k})} n^{O(1)}$.
If tw $\geqslant 5 \sqrt{k} \rightsquigarrow \exists \sqrt{k} \times \sqrt{k}$-grid minor \rightsquigarrow always yes (always no).

Packing unit disks

Theorem (Alber \& Fiala, J. Alg.'04)
Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Packing unit disks

Theorem (Alber \& Fiala, J. Alg.'04)
Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Imagine a solution.

Packing unit disks

Theorem (Alber \& Fiala, J. Alg.'04)
Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Translate by one unit \sqrt{k} vertical lines distant by \sqrt{k}.

Packing unit disks

Theorem (Alber \& Fiala, J. Alg.'04)
Unit disks can be packed in time $n^{O(\sqrt{k})}$.

At some point, the lines intersect it on at most \sqrt{k} disks.

Packing unit disks

Theorem (Alber \& Fiala, J. Alg.'04)
Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Guess that intersection in $n^{\sqrt{k}}$.

Packing unit disks

Theorem (Alber \& Fiala, J. Alg.'04)
Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Remove the disks touched by the lines or this intersection.

Packing unit disks

Theorem (Alber \& Fiala, J. Alg.'04)
Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Those instances can be solved by DP in $n^{O(\sqrt{k})}$ due to their width.

Packing disks

Idea of Sariel Har-Peled to get geometric QPTAS: use the Voronoi diagram of an assumptive solution.

Theorem (Marx \& Pilipczuk, ESA '15)
Disks can be packed in time $n^{O(\sqrt{k})}$.

Packing disks

Theorem (Marx \& Pilipczuk, ESA '15)
Disks can be packed in time $n^{O(\sqrt{k})}$.

The Voronoi diagram of a solution is a planar graph with k faces.

Packing disks

Theorem (Marx \& Pilipczuk, ESA '15)
Disks can be packed in time $n^{O(\sqrt{k})}$.

It has a $O(\sqrt{k})$ face-balanced noose. Guess it in $n^{O(\sqrt{k})}$.

Packing disks

Theorem (Marx \& Pilipczuk, ESA '15)
Disks can be packed in time $n^{O}(\sqrt{k})$.

Remove the disks touched by it or by the intersected solution.

Packing disks

Theorem (Marx \& Pilipczuk, ESA '15)
Disks can be packed in time $n^{O(\sqrt{k})}$.

Recurse: $T(n, k) \leqslant n^{O(\sqrt{k})} T(n, 2 k / 3) \leqslant n^{O(\sqrt{k})}$.

Packing disks

Theorem (Marx \& Pilipczuk, ESA '15)
Disks can be packed in time $n^{O}(\sqrt{k})$.

For non unit disks, use distance $d(c, p):=\|c-p\|_{2}-r(p)$.

Covering points with disks

Theorem (Marx \& Pilipczuk, ESA '15)
Selecting k objects among a set of disks covering a set of points can be solved in time $n^{O(\sqrt{k})}$.

With more subtle rules to make the inside and outside independent.

Essentially best algorithms: Grid Tiling

Theorem (Chen et al., CCC '04)
k-Clique cannot be solved in time $f(k) n^{o(k)}$ under ETH.
Grid Tiling: Embed k-Clique in a k-by- k grid. In each cell select one pair among a prescribed subset of $[n] \times[n]$.
Two horizontally (vertically) adjacent cells should agree on their first (second) coordinate.

Essentially best algorithms: Grid Tiling

Theorem (Marx, ESA '05)

Grid Tiling cannot be solved in time $f(k) n^{0(k)}$ under ETH.
Grid Tiling: Embed k-Clique in a k-by- k grid.
In each cell select one pair among a prescribed subset of $[n] \times[n]$.
Two horizontally (vertically) adjacent cells should agree on their first (second) coordinate.

The choice of vertices are made along the diagonal: $\left(u_{i}, u_{i}\right)$. Checking the edge $u_{i} u_{j}$ is done in the cell (i, j).

Essentially best algorithms: Grid Tiling

Theorem (Marx, ESA '05)
MIS on UDG cannot be solved in time $f(k) n^{o(\sqrt{k})}$ under ETH.

Syntactical reduction to MIS on UDG.

Smith and Wormald '98: $\forall n$ disks with ply p,

Smith and Wormald '98: $\forall n$ disks with ply $p, \exists \mathbf{O}$

Actually more general

Theorem (Smith \& Wormald, FOCS '98)
For every $d \geq 1$ and $B \geq 0$, there exists a constant $c=c(d, B)$, such that for every B-fat collection \mathcal{S} of $n d$-dimensional convex sets with ply at most ℓ, there exists a d-dimensional sphere Q, such that:
at most $\frac{d+1}{d+2} n$ elements of \mathcal{S} are entirely inside Q, at most $\frac{d+1}{d+2} n$ elements of \mathcal{S} are entirely outside Q, at most $c n^{1-1 / d} \ell^{1 / d}$ elements of \mathcal{S} intersect Q.

Simple algorithm for ℓ-coloring disks

Win-win based on the value of the ply:
$p>\ell \rightsquigarrow$ answer NO.

Simple algorithm for ℓ-coloring disks

Win-win based on the value of the ply:
$p>\ell \rightsquigarrow$ answer NO.
$p \leqslant \ell \rightsquigarrow$ balanced separator of size $O(\sqrt{n \ell}) \rightsquigarrow$ treewidth $\tilde{O}(\sqrt{n \ell}) \rightsquigarrow$ coloring in time $2 \tilde{O}(\sqrt{n \ell})$

Simple algorithm for ℓ-coloring disks

Win-win based on the value of the ply:
$p>\ell \rightsquigarrow$ answer NO.
$p \leqslant \ell \rightsquigarrow$ balanced separator of size $O(\sqrt{n \ell}) \rightsquigarrow$ treewidth $\tilde{O}(\sqrt{n \ell}) \rightsquigarrow$ coloring in time $2 \tilde{O}(\sqrt{n \ell})$

For ℓ-coloring d-dimensional balls, the same argument gives running time $2 \tilde{O}\left(n^{1-1 / d} \ell^{1 / d}\right)$.

Essentially best algorithms: Grid Coloring

Theorem (Biro et al., SoCG '17)
For any $\alpha \in[0,1]$, coloring n unit disks with $\ell=\Theta\left(n^{\alpha}\right)$ colors
cannot be solved in time $2^{\circ\left(n^{\frac{1+\alpha}{2}}\right)}=2^{\circ(\sqrt{n \ell})}$, under the ETH.

Essentially best algorithms: Grid Coloring

Theorem (Biro et al., SoCG '17)
For any $\alpha \in[0,1]$, coloring n unit disks with $\ell=\Theta\left(n^{\alpha}\right)$ colors
cannot be solved in time $2^{o\left(n^{\frac{1+\alpha}{2}}\right)}=2^{\circ(\sqrt{n \ell})}$, under the ETH.
Constant number of colors \rightsquigarrow square root phenomenon. Linear number of colors \rightsquigarrow no subexponential-time algorithm.

Essentially best algorithms: Grid Coloring

Theorem (Biro et al., SoCG '17)
For any $\alpha \in[0,1]$, coloring n unit disks with $\ell=\Theta\left(n^{\alpha}\right)$ colors
cannot be solved in time $2^{o\left(n^{\frac{1+\alpha}{2}}\right)}=2^{\circ(\sqrt{n \ell})}$, under the ETH.
Constant number of colors \rightsquigarrow square root phenomenon. Linear number of colors \rightsquigarrow no subexponential-time algorithm.

And everything in between (hard part).
For instance, \sqrt{n}-coloring cannot be done in $2^{o\left(n^{3 / 4}\right)}$.

Essentially best algorithms: Grid Coloring

k-by- k Grid Tiling instance with t legal pairs in each cell.

Instead of selecting one center in each small grid...

Essentially best algorithms: Grid Coloring

k-by- k Grid Tiling instance with t legal pairs in each cell.

...we color them with a different color each...

Essentially best algorithms: Grid Coloring

k-by- k Grid Tiling instance with t legal pairs in each cell.

...such that each color class corresponds to a clique

Essentially best algorithms: Grid Coloring

k-by- k Grid Tiling instance with t legal pairs in each cell.

...such that each color class corresponds to a clique Grid Coloring cannot be solved in time $2^{\circ(t k)}$ under ETH.

Segment intersection graphs

The subexponential algorithm generalizes to other fat objects.

Segment intersection graphs

The subexponential algorithm generalizes to other fat objects.
Theorem (Rzążewski)
4-COLORING on 2-DIR cannot be solved in time $2^{\circ(n)}$.

No subexponential algorithms even for a constant number of colors.

3-COLORING on segments?

3 -COLORING on segments?

Subexponential algorithm even on string graphs!
String graphs: intersection graphs of curves in the plane.

Theorem (B. et al.)
3 -COLORING on strings can be solved in time $2^{O\left(n^{2 / 3}\right)}$.

Subexponential algorithms on string graphs

Important fact: string graphs have separators of size $O(\sqrt{m})$.

Subexponential algorithms on string graphs

Important fact: string graphs have separators of size $O(\sqrt{m})$.
Win-win:
high maximum degree: good branching
low maximum degree: small separator

Theorem (Fox \& Pach, SODA '11)
Max Independent Set has a subexponential algorithm on string graphs.

Subexponential algorithms on string graphs

Important fact: string graphs have separators of size $O(\sqrt{m})$.
Win-win:
high maximum degree: good branching
low maximum degree: small separator

Theorem (Fox \& Pach, SODA '11)
Max Independent Set has a subexponential algorithm on string graphs.

What about Min Dominating Set? Min Independent Dominating Set? Max Clique?

Subexponential algorithms on string graphs

Important fact: string graphs have separators of size $O(\sqrt{m})$.
Win-win:
high maximum degree: good branching
low maximum degree: small separator

Theorem (Fox \& Pach, SODA '11)
Max Independent Set has a subexponential algorithm on string graphs.

What about Min Dominating Set? Min Independent Dominating Set? Max Clique? No, No, No

Art Gallery Problem

Simple polygon with n vertices.

Art Gallery Problem

Simple polygon with n vertices.
Guard the gallery with k points.

Art Gallery Problem

Simple polygon with n vertices.
Guard the gallery with k vertices.

Art Gallery Problem

Simple polygon with n vertices.
Dominating SET in the visibility graph of a simple polygon.

Those three problems are NP-hard.

Art Gallery Problem

Simple polygon with n vertices.
Dominating Set in the visibility graph of a simple polygon.
Those three problems are NP-hard.
Algorithm in time $f(k) n^{O(\sqrt{k})}$? Algorithm in time $f(k) n^{c}$?

Intermediate problem and linker

Theorem (B. \& Miltzow, ESA '16)

No algorithm in time $f(k) n^{\circ(k / \log k)}$ unless the ETH fails.
two instances of min hitting set of intervals taking a point in instance A forces a specific point in instance B

Intermediate problem and linker

Theorem (B. \& Miltzow, ESA '16)
No algorithm in time $f(k) n^{\circ(k / \log k)}$ unless the ETH fails.
two instances of min hitting set of intervals taking a point in instance A forces a specific point in instance B

Terrain Guarding

Guarding an x-monotone polygonal curve with k vertices.
Theorem (Ashok et al. SoCG'17)
Terrain Guarding is solvable in $n^{O(\sqrt{k})}$, hence in $2 O(\sqrt{n} \log n)$.

A planar graph with domination number k has treewidth $O(\sqrt{k})$.

Terrain Guarding

Guarding an x-monotone polygonal curve with k vertices.
Theorem (Ashok et al. SoCG'17)
Terrain Guarding is solvable in $n^{O(\sqrt{k})}$, hence in $2 O(\sqrt{n} \log n)$.

A planar graph with domination number k has treewidth $O(\sqrt{k})$. Non-trivial divide-and-conquer based on this separator.

Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a small separator relative to a hypothetical solution (Voronoi diagram, planar graph, etc.), separator theorems (for disk graph, string graphs; generalizing the planar separator theorem), win-win approach.
ETH-based lowerbounds: reductions from Grid Tiling, Grid Coloring, 2-Track Hitting Set.

Separator-based techniques also lead to approximation algorithms: Instead of brute-forcing on the separator, ignore it.

Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a small separator relative to a hypothetical solution (Voronoi diagram, planar graph, etc.), separator theorems (for disk graph, string graphs; generalizing the planar separator theorem), win-win approach.
ETH-based lowerbounds: reductions from Grid Tiling, Grid Coloring, 2-Track Hitting Set.

Separator-based techniques also lead to approximation algorithms: Instead of brute-forcing on the separator, ignore it.

Some open questions:
Optimal complexity of MIS, 3-COLORING, on string graphs?
Lowerbound or better algorithm for Terrain Guarding?

Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a small separator relative to a hypothetical solution (Voronoi diagram, planar graph, etc.), separator theorems (for disk graph, string graphs; generalizing the planar separator theorem), win-win approach.
ETH-based lowerbounds: reductions from Grid Tiling, Grid Coloring, 2-Track Hitting Set.

Separator-based techniques also lead to approximation algorithms: Instead of brute-forcing on the separator, ignore it.

Some open questions:
Optimal complexity of MIS, 3-COLORING, on string graphs?
Lowerbound or better algorithm for Terrain Guarding?
Thanks for your attention!

