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NP-hardness:

your problem is not solvable in polynomial, unless 3-SAT is.

very widely believed but do not give evidence against
algorithms running in say, pnt/1%0

ETH-hardness:

stronger assumption than P#£NP is ETH asserting that no
2°(") algorithm exists for 3-SAT
Allows to prove stronger conditional lower bounds

linear reduction from 3-SAT: no 2°(") algorithm for your
problem, quadratic reduction: no 2°(v™ algorithm, etc.
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200V (or at least 29(") with ¢ < 1) vs no 2°(") under ETH?
For optimisation problems: n®(Vk) vs no no(k) (or nolk/logk)y?

we will not care about the log factors in the exponent.
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nO(Vk) often 50(v/nlogn) pecause k < n

Notable exception: CHORDAL COMPLETION can even be solved in
20(Vklogk) byt not in 2°(" under ETH (k can be Q(n?)).



Biased viewpoint of this talk

20(vn) (or at least 2°(") with ¢ < 1) vs no 2°(") under ETH?
For optimisation problems: n®(Vk) vs no no(k) (or notk/logk)y?

we will not care about the log factors in the exponent.

We will focus on geometric non necessarily sparse graphs:
intersection graphs: disks, balls, segments, strings, etc.
visibility graphs.

We will not discuss about...



Square root phenomenon on planar graphs

Many problems are solvable in 20(v") in planar graphs, and
unlikely solvable in 2°(" in general graphs.



Square root phenomenon on planar graphs













Square root phenomenon on planar graphs

O

MAX INDEPENDENT SET, 3-COLORING, HAMILTONIAN PATH...
Dynamic programming would spare a log n in the exponent.













Bidimensionality

Theorem (Robertson & Seymour, Graph Minors)
A planar graph with treewidth > 5k admits a k x k-grid minor.
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Bidimensionality

Theorem (Robertson & Seymour, Graph Minors)
A planar graph with treewidth > 5k admits a k x k-grid minor.

If tw < 5vk ~~ algorithm in 20(tw) 4O(1) — 20(Vk) ,O(1)
If tw > 5v'k ~» 3 vk x \/k-grid minor ~ always yes (always no).



Packing unit disks

Theorem (Alber & Fiala, J. Alg.'04)
Unit disks can be packed in time nOWk),
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Packing unit disks

Theorem (Alber & Fiala, J. Alg.04)
Unit disks can be packed in time nOWk).
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Imagine a solution.



Packing unit disks

Theorem (Alber & Fiala, J. Alg.04)
Unit disks can be packed in time nOWk),

O

Translate by one unit vk vertical lines distant by v/k.



Packing unit disks

Theorem (Alber & Fiala, J. Alg.04)
Unit disks can be packed in time nOWk),
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At some point, the lines intersect it on at most vk disks.




Packing unit disks

Theorem (Alber & Fiala, J. Alg.04)
Unit disks can be packed in time nOWk),
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Guess that intersection in nV¥,



Packing unit disks

Theorem (Alber & Fiala, J. Alg.04)
Unit disks can be packed in time nOWk).

O OO OO0

Remove the disks touched by the lines or this intersection.



Packing unit disks

Theorem (Alber & Fiala, J. Alg.04)
Unit disks can be packed in time nOWk).

Those instances can be solved by DP in n®Vk) due to their width.



Packing disks

Idea of Sariel Har-Peled to get geometric QPTAS:
use the Voronoi diagram of an assumptive solution.

Theorem (Marx & Pilipczuk, ESA '15)
Disks can be packed in time nOWk).



Packing disks

Theorem (Marx & Pilipczuk, ESA '15)
Disks can be packed in time nOWk).

The Voronoi diagram of a solution is a planar graph with k faces.



Packing disks

Theorem (Marx & Pilipczuk, ESA '15)
Disks can be packed in time nOWVk),

It has a O(Vk) face-balanced noose. Guess it in nOWVh),



Packing disks

Theorem (Marx & Pilipczuk, ESA '15)
Disks can be packed in time nOWk)
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Remove the disks touched by it or by the intersected solution.



Packing disks

Theorem (Marx & Pilipczuk, ESA '15)
Disks can be packed in time nOWk),
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Recurse: T(n, k) < nO(Vk) T(n,2k/3) < nO(Vk)



Packing disks

Theorem (Marx & Pilipczuk, ESA '15)
Disks can be packed in time nOWk),
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For non unit disks, use distance d(c, p) := ||c — pl||2 — r(p).



Covering points with disks

Theorem (Marx & Pilipczuk, ESA '15)
Selecting k objects among a set of disks covering a set of points
can be solved in time n®Vk),

¢
" SoNgl,. SN

(2

iﬁi’\.‘\» ' 4

'( 1"""“"'~ N
.5- )

With more subtle rules to make the inside and outside independent.



Essentially best algorithms: GRID TILING

Theorem (Chen et al., CCC '04)
k-CLIQUE cannot be solved in time f(k)n°*) under ETH.

GRID TILING: Embed k-CLIQUE in a k-by-k grid.
In each cell select one pair among a prescribed subset of [n] x [n].

Two horizontally (vertically) adjacent cells should agree on their
first (second) coordinate.



Essentially best algorithms: GRID TILING

Theorem (Marx, ESA '05)
GRID TILING cannot be solved in time f(k)n°¥) under ETH.

GRID TILING: Embed k-CLIQUE in a k-by-k grid.
In each cell select one pair among a prescribed subset of [n] x [n].

Two horizontally (vertically) adjacent cells should agree on their
first (second) coordinate.

The choice of vertices are made along the diagonal: (u;, u;).
Checking the edge u;u; is done in the cell (i, ).



Essentially best algorithms: GRID TILING

Theorem (Marx, ESA '05)
MIS on UDG cannot be solved in time f(k)no(‘/E) under ETH.

Syntactical reduction to MIS on UDG.



Smith and Wormald '98: Vn disks with ply p,
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Smith and Wormald '98: Vn disks with ply p, 3 O
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Actually more general

Theorem (Smith & Wormald, FOCS '98)

For every d > 1 and B > 0, there exists a constant ¢ = c¢(d, B),
such that for every B-fat collection S of n d-dimensional convex
sets with ply at most ¢, there exists a d-dimensional sphere Q,
such that:

at most dizn elements of S are entirely inside Q,

at most Zién elements of S are entirely outside Q,

1-1/dp1/d

at most cn elements of S intersect Q.



Simple algorithm for /-coloring disks

Win-win based on the value of the ply:

p > £ ~~ answer NO.
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Simple algorithm for /-coloring disks

Win-win based on the value of the ply:

p > £ ~ answer NO.
p < ¢ ~» balanced separator of size O(\/Nﬁ) ~
treewidth O(v/nf) ~~ coloring in time 20(v/nl)

For ¢-coloring d-dimensional balls, the same argument gives
. . O(nt=1/dg1/d)
running time 2 .



Essentially best algorithms: GRID COLORING

Theorem (Biro et al., SoCG '17)

For any a € [0, 1], coloring n unit disks with { = ©(n®) colors
1ta

cannot be solved in time 2°(n %2 ) = 2"(‘/”7), under the ETH.
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Linear number of colors ~» no subexponential-time algorithm.



Essentially best algorithms: GRID COLORING

Theorem (Biro et al., SoCG '17)

For any a € [0, 1], coloring n unit disks with ¢ = ©(n®) colors
14a

cannot be solved in time 2°(" 2 ) = 2"(‘/”7), under the ETH.

Constant number of colors ~~ square root phenomenon.
Linear number of colors ~» no subexponential-time algorithm.

And everything in between (hard part).
For instance, y/n-coloring cannot be done in 20(n*/)



Essentially best algorithms: GRID COLORING

k-by-k GRID TILING instance with t legal pairs in each cell.

Instead of selecting one center in each small grid...



Essentially best algorithms: GRID COLORING

k-by-k GRID TILING instance with t legal pairs in each cell.

...we color them with a different color each...



Essentially best algorithms: GRID COLORING

k-by-k GRID TILING instance with t legal pairs in each cell.

...such that each color class corresponds to a clique



Essentially best algorithms: GRID COLORING

k-by-k GRID TILING instance with t legal pairs in each cell.

...such that each color class corresponds to a clique
GRID COLORING cannot be solved in time 2°(tK) under ETH.



Segment intersection graphs

The subexponential algorithm generalizes to other fat objects.



Segment intersection graphs

The subexponential algorithm generalizes to other fat objects.

Theorem (Rzazewski)
4-COLORING on 2-DIR cannot be solved in time 2°(").

vivud vids vivde vivivs

No subexponential algorithms even for a constant number of colors.



3-COLORING on segments?



3-COLORING on segments?

Subexponential algorithm even on string graphs!

String graphs: intersection graphs of curves in the plane.

Theorem (B. et al.)

. . . 2/3
3-COLORING on strings can be solved in time 20(7 ).



Subexponential algorithms on string graphs

Important fact: string graphs have separators of size O(y/m).
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Important fact: string graphs have separators of size O(y/m).
Win-win:
high maximum degree: good branching

low maximum degree: small separator

Theorem (Fox & Pach, SODA '11)

MAX INDEPENDENT SET has a subexponential algorithm on
string graphs.
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Subexponential algorithms on string graphs

Important fact: string graphs have separators of size O(y/m).
Win-win:
high maximum degree: good branching

low maximum degree: small separator

Theorem (Fox & Pach, SODA '11)

MAX INDEPENDENT SET has a subexponential algorithm on
string graphs.

What about MIN DOMINATING SET? MIN INDEPENDENT
DOMINATING SET? MAX CLIQUE? No, No, No



Art Gallery Problem

Simple polygon with n vertices.
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Guard the gallery with k points.
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Art Gallery Problem

Simple polygon with n vertices.
DOMINATING SET in the visibility graph of a simple polygon.

Those three problems are NP-hard.



Art Gallery Problem

Simple polygon with n vertices.
DOMINATING SET in the visibility graph of a simple polygon.

Those three problems are NP-hard.

Algorithm in time f(k)no(‘/;)? Algorithm in time f(k)n?



Intermediate problem and linker

Theorem (B. & Miltzow, ESA '16)
No algorithm in time f(k)n°k/198k) ynless the ETH fails.

two instances of min hitting set of intervals
taking a point in instance A forces a specific point in instance B
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Terrain Guarding

Guarding an x-monotone polygonal curve with k vertices.

Theorem (Ashok et al. SoCG'17)
TERRAIN (GUARDING s solvable in no(‘/z), hence in 20(Vnlogn)

A planar graph with domination number k has treewidth O(v/k).



Terrain Guarding

Guarding an x-monotone polygonal curve with k vertices.

Theorem (Ashok et al. SoCG'17)
TERRAIN GUARDING is solvable in n®Vk) hence in 20(v/nlogn).

A planar graph with domination number k has treewidth O(v/k).
Non-trivial divide-and-conquer based on this separator.



Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a small separator relative to
a hypothetical solution (Voronoi diagram, planar graph, etc.),
separator theorems (for disk graph, string graphs; generalizing
the planar separator theorem), win-win approach.

ETH-based lowerbounds: reductions from GRID TILING,
GRID COLORING, 2-TRACK HITTING SET.

Separator-based techniques also lead to approximation algorithms:
Instead of brute-forcing on the separator, ignore it.
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Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a small separator relative to
a hypothetical solution (Voronoi diagram, planar graph, etc.),
separator theorems (for disk graph, string graphs; generalizing
the planar separator theorem), win-win approach.

ETH-based lowerbounds: reductions from GRID TILING,
GRID COLORING, 2-TRACK HITTING SET.

Separator-based techniques also lead to approximation algorithms:
Instead of brute-forcing on the separator, ignore it.

Some open questions:
Optimal complexity of MIS, 3-COLORING, on string graphs?
Lowerbound or better algorithm for TERRAIN GUARDING?
Thanks for your attention!



