Subexponential algorithms in non sparse classes of graphs

Édouard Bonnet

Department of Computer Science, Middlesex University, London

Lyon, May 15th, 2017

not all the NP-complete problems are as hard when one looks at their optimal running time

Subexponential algorithms

NP-hardness:

your problem is not solvable in polytime, unless 3-SAT is. very widely believed but do not give an evidence against algorithms running in, say, $2^{n^{1/100}}$.

Subexponential algorithms

NP-hardness:

your problem is not solvable in polytime, unless 3-SAT is. very widely believed but do not give an evidence against algorithms running in, say, $2^{n^{1/100}}$.

ETH-hardness:

stronger assumption than P \neq NP is ETH asserting that no $2^{o(n)}$ algorithm exists for 3-SAT

Allows to prove stronger conditional lower bounds

linear reduction from 3-SAT: no $2^{o(n)}$ algorithm for your problem, quadratic reduction: no $2^{o(\sqrt{n})}$ algorithm, etc.

Biased viewpoint of this talk

 $2^{O(\sqrt{n})}$ (or at least $2^{O(n^c)}$ with c < 1) vs no $2^{o(n)}$ under ETH? For optimisation problems: $n^{O(\sqrt{k})}$ vs no $n^{o(k)}$ (or $n^{o(k/\log k)}$)? we will not care about the log factors in the exponent.

Biased viewpoint of this talk

 $2^{O(\sqrt{n})}$ (or at least $2^{O(n^c)}$ with c < 1) vs no $2^{o(n)}$ under ETH? For optimisation problems: $n^{O(\sqrt{k})}$ vs no $n^{o(k)}$ (or $n^{o(k/\log k)}$)? we will not care about the log factors in the exponent.

 $n^{O(\sqrt{k})} \stackrel{\text{often}}{\leadsto} 2^{O(\sqrt{n}\log n)}$ because $k \stackrel{\text{often}}{\leqslant} n$.

Notable exception: CHORDAL COMPLETION can even be solved in $2^{O(\sqrt{k} \log k)}$ but not in $2^{o(n)}$ under ETH (k can be $\Omega(n^2)$).

Biased viewpoint of this talk

 $2^{O(\sqrt{n})}$ (or at least $2^{O(n^c)}$ with c < 1) vs no $2^{o(n)}$ under ETH? For optimisation problems: $n^{O(\sqrt{k})}$ vs no $n^{o(k)}$ (or $n^{o(k/\log k)}$)? we will not care about the log factors in the exponent.

We will focus on geometric non necessarily sparse graphs: intersection graphs: disks, balls, segments, strings, etc. visibility graphs.

Sparse classes and dense classes

sparse class $C: \exists \alpha_{\mathcal{C}}, \forall G \in \mathcal{C}$ such that $|E(G)| \leq \alpha_{\mathcal{C}} |V(G)|$. dense class $C: \exists \alpha_{\mathcal{C}}$ and infinitely many graphs $G \in \mathcal{C}$ with $|E(G)| \geq \alpha_{\mathcal{C}} |V(G)|^2$.

Examples

Sparse classes:

forests (with $\alpha_{\mathcal{C}} = 1$) 3-regular graphs (with $\alpha_{\mathcal{C}} = 3/2$) planar graphs (with $\alpha_{\mathcal{C}} = 3$) graphs with average degree bounded by d (with $\alpha_{\mathcal{C}} = d/2$)

Dense classes:

general graphs chordal graphs intersection graphs of disks cliques

Examples

Sparse classes:

forests (with $\alpha_{\mathcal{C}} = 1$) 3-regular graphs (with $\alpha_{\mathcal{C}} = 3/2$) planar graphs (with $\alpha_{\mathcal{C}} = 3$) graphs with average degree bounded by d (with $\alpha_{\mathcal{C}} = d/2$)

Dense classes:

general graphs chordal graphs intersection graphs of disks cliques

Planar graphs are especially nice sparse graphs since they admit *small* balanced separators...

Many problems are solvable in $2^{O(\sqrt{n})}$ in **planar graphs**, and unlikely solvable in $2^{o(n)}$ in general graphs.

Many problems are solvable in $2^{O(\sqrt{n})}$ in **planar graphs**, and unlikely solvable in $2^{o(n)}$ in general graphs.

MAX INDEPENDENT SET, 3-COLORING, HAMILTONIAN PATH...

MAX INDEPENDENT SET, 3-COLORING, HAMILTONIAN PATH...

MAX INDEPENDENT SET, 3-COLORING, HAMILTONIAN PATH...

 $\frac{\text{Max Independent Set}, \text{ 3-Coloring, Hamiltonian Path...}}{T(n) \leq 2^{O(\sqrt{n})}T(2n/3) \leq 2^{O(\sqrt{n}\log n)}}$

<u>MAX INDEPENDENT SET</u>, 3-COLORING, HAMILTONIAN PATH... Dynamic programming would spare a $\log n$ in the exponent.

MAX INDEPENDENT SET, <u>3-COLORING</u>, HAMILTONIAN PATH...

MAX INDEPENDENT SET, <u>3-COLORING</u>, HAMILTONIAN PATH...

Bidimensionality

Theorem (Robertson & Seymour, Graph Minors) A planar graph with treewidth $\ge 5k$ admits a $k \times k$ -grid minor.

Bidimensionality

Theorem (Robertson & Seymour, Graph Minors) A planar graph with treewidth $\ge 5k$ admits a $k \times k$ -grid minor.

If tw $< 5\sqrt{k} \rightsquigarrow$ algorithm in $2^{O(tw)}n^{O(1)} = 2^{O(\sqrt{k})}n^{O(1)}$.

Bidimensionality

Theorem (Robertson & Seymour, Graph Minors) A planar graph with treewidth $\ge 5k$ admits a $k \times k$ -grid minor.

If tw $< 5\sqrt{k} \rightsquigarrow$ algorithm in $2^{O(tw)} n^{O(1)} = 2^{O(\sqrt{k})} n^{O(1)}$. If tw $\ge 5\sqrt{k} \rightsquigarrow \exists \sqrt{k} \times \sqrt{k}$ -grid minor \rightsquigarrow always yes (always no).

Theorem (Alber & Fiala, J. Alg.'04) Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Theorem (Alber & Fiala, J. Alg.'04) Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Imagine a solution.

Theorem (Alber & Fiala, J. Alg.'04) Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Translate by one unit \sqrt{k} vertical lines distant by \sqrt{k} .

Theorem (Alber & Fiala, J. Alg.'04) Unit disks can be packed in time $n^{O(\sqrt{k})}$.

At some point, the lines intersect it on at most \sqrt{k} disks.

Theorem (Alber & Fiala, J. Alg.'04) Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Guess that intersection in $n^{\sqrt{k}}$.

Theorem (Alber & Fiala, J. Alg.'04) Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Remove the disks touched by the lines or this intersection.

Theorem (Alber & Fiala, J. Alg.'04) Unit disks can be packed in time $n^{O(\sqrt{k})}$.

Those instances can be solved by DP in $n^{O(\sqrt{k})}$ due to their width.

Idea of Sariel Har-Peled to get geometric QPTAS: use the Voronoi diagram of an assumptive solution.

Theorem (Marx & Pilipczuk, ESA '15) Disks can be packed in time $n^{O(\sqrt{k})}$.

Theorem (Marx & Pilipczuk, ESA '15) Disks can be packed in time $n^{O(\sqrt{k})}$.

The Voronoi diagram of a solution is a planar graph with k faces.

Theorem (Marx & Pilipczuk, ESA '15) Disks can be packed in time $n^{O(\sqrt{k})}$.

It has a $O(\sqrt{k})$ face-balanced noose. Guess it in $n^{O(\sqrt{k})}$.

Theorem (Marx & Pilipczuk, ESA '15) Disks can be packed in time $n^{O(\sqrt{k})}$.

Remove the disks touched by it or by the intersected solution.

Theorem (Marx & Pilipczuk, ESA '15) Disks can be packed in time $n^{O(\sqrt{k})}$.

Recurse: $T(n,k) \leq n^{O(\sqrt{k})} T(n,2k/3) \leq n^{O(\sqrt{k})}$.

Theorem (Marx & Pilipczuk, ESA '15) Disks can be packed in time $n^{O(\sqrt{k})}$.

For non unit disks, use distance $d(c, p) := ||c - p||_2 - r(p)$.

Covering points with disks

Theorem (Marx & Pilipczuk, ESA '15)

Selecting k objects among a set of disks covering a set of points can be solved in time $n^{O(\sqrt{k})}$.

With more subtle rules to make the inside and outside independent.
Essentially best algorithms: GRID TILING Theorem (Chen et al., CCC '04) k-CLIQUE cannot be solved in time $f(k)n^{o(k)}$ under ETH.

GRID TILING: *Embed* k-CLIQUE in a k-by-k grid. In each cell select one pair among a prescribed subset of $[n] \times [n]$.

Two horizontally (vertically) adjacent cells should agree on their first (second) coordinate.

Essentially best algorithms: GRID TILING Theorem (Marx, ESA '05) GRID TILING cannot be solved in time $f(k)n^{o(k)}$ under ETH.

GRID TILING: *Embed* k-CLIQUE in a k-by-k grid. In each cell select one pair among a prescribed subset of $[n] \times [n]$.

Two horizontally (vertically) adjacent cells should agree on their first (second) coordinate.

The choice of vertices are made along the diagonal: (u_i, u_i) . Checking the edge $u_i u_i$ is done in the cell (i, j).

Theorem (Marx, ESA '05)

 ${\rm MIS}$ on UDG cannot be solved in time $f(k)n^{o(\sqrt{k})}$ under ETH.

Syntactical reduction to MIS on UDG.

Smith and Wormald '98: $\forall n$ disks with ply p,

Smith and Wormald '98: $\forall n$ disks with ply p, \exists **O**

Actually more general

Theorem (Smith & Wormald, FOCS '98)

For every $d \ge 1$ and $B \ge 0$, there exists a constant c = c(d, B), such that for every B-fat collection S of n d-dimensional convex sets with ply at most ℓ , there exists a d-dimensional sphere Q, such that:

at most $\frac{d+1}{d+2}n$ elements of S are entirely inside Q, at most $\frac{d+1}{d+2}n$ elements of S are entirely outside Q, at most $cn^{1-1/d}\ell^{1/d}$ elements of S intersect Q.

Simple algorithm for ℓ -coloring disks

Win-win based on the value of the ply:

 $p > \ell \rightsquigarrow$ answer NO.

Simple algorithm for ℓ -coloring disks

Win-win based on the value of the ply:

 $p > \ell \rightsquigarrow$ answer NO. $p \leq \ell \rightsquigarrow$ balanced separator of size $O(\sqrt{n\ell}) \rightsquigarrow$ treewidth $\tilde{O}(\sqrt{n\ell}) \rightsquigarrow$ coloring in time $2^{\tilde{O}(\sqrt{n\ell})}$

Simple algorithm for ℓ -coloring disks

Win-win based on the value of the ply:

 $p > \ell \rightsquigarrow$ answer NO. $p \leq \ell \rightsquigarrow$ balanced separator of size $O(\sqrt{n\ell}) \rightsquigarrow$ treewidth $\tilde{O}(\sqrt{n\ell}) \rightsquigarrow$ coloring in time $2^{\tilde{O}(\sqrt{n\ell})}$

For ℓ -coloring *d*-dimensional balls, the same argument gives running time $2^{\tilde{O}(n^{1-1/d}\ell^{1/d})}$.

Theorem (Biro et al., SoCG '17) For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^{\alpha})$ colors cannot be solved in time $2^{o(n^{\frac{1+\alpha}{2}})} = 2^{o(\sqrt{n\ell})}$, under the ETH.

Theorem (Biro et al., SoCG '17) For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^{\alpha})$ colors cannot be solved in time $2^{o(n^{\frac{1+\alpha}{2}})} = 2^{o(\sqrt{n\ell})}$, under the ETH.

Constant number of colors \rightsquigarrow square root phenomenon. Linear number of colors \rightsquigarrow no subexponential-time algorithm.

Theorem (Biro et al., SoCG '17) For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^{\alpha})$ colors cannot be solved in time $2^{o(n^{\frac{1+\alpha}{2}})} = 2^{o(\sqrt{n\ell})}$, under the ETH.

Constant number of colors \rightsquigarrow square root phenomenon. Linear number of colors \rightsquigarrow no subexponential-time algorithm.

And everything in between (hard part). For instance, \sqrt{n} -coloring cannot be done in $2^{o(n^{3/4})}$.

k-by-*k* GRID TILING instance with t legal pairs in each cell.

Instead of selecting one center in each small grid...

k-by-*k* GRID TILING instance with t legal pairs in each cell.

...we color them with a different color each...

k-by-*k* GRID TILING instance with t legal pairs in each cell.

...such that each color class corresponds to a clique

k-by-*k* GRID TILING instance with t legal pairs in each cell.

...such that each color class corresponds to a clique GRID COLORING cannot be solved in time $2^{o(tk)}$ under ETH.

Segment intersection graphs

The subexponential algorithm generalizes to other fat objects.

Segment intersection graphs

The subexponential algorithm generalizes to other **fat** objects. Theorem (Rzążewski) 4-COLORING on 2-DIR cannot be solved in time 2^{o(n)}.

No subexponential algorithms even for a constant number of colors.

$\operatorname{3-COLORING}$ on segments?

3-COLORING on segments?

Subexponential algorithm even on string graphs! String graphs: intersection graphs of curves in the plane.

Theorem

(LIST) 3-COLORING on strings can be solved in time $2^{O(n^{2/3})}$.

Important fact: string graphs have separators of size $O(\sqrt{m})$.

Important fact: string graphs have separators of size $O(\sqrt{m})$. Win-win:

high maximum degree: good branching low maximum degree: small separator

Theorem (Fox & Pach, SODA '11)

MAX INDEPENDENT SET has a subexponential algorithm on string graphs.

Important fact: string graphs have separators of size $O(\sqrt{m})$. Win-win:

high maximum degree: good branching low maximum degree: small separator

Theorem (Fox & Pach, SODA '11)

MAX INDEPENDENT SET has a subexponential algorithm on string graphs.

What about Min Dominating Set? Min Independent Dominating Set? Max Clique?

Important fact: string graphs have separators of size $O(\sqrt{m})$. Win-win:

high maximum degree: good branching low maximum degree: small separator

Theorem (Fox & Pach, SODA '11)

MAX INDEPENDENT SET has a subexponential algorithm on string graphs.

What about Min Dominating Set? Min Independent Dominating Set? Max Clique? No, No, No

Simple polygon with *n* vertices.

Simple polygon with n vertices. Guard the gallery with k **points**.

Simple polygon with n vertices. Guard the gallery with k vertices.

Simple polygon with *n* vertices.

 $\operatorname{DOMINATING}\,\operatorname{Set}$ in the visibility graph of a simple polygon.

Those three problems are NP-hard.

Simple polygon with *n* vertices.

DOMINATING SET in the visibility graph of a simple polygon.

Those three problems are NP-hard.

Algorithm in time $f(k)n^{O(\sqrt{k})}$? Algorithm in time $f(k)n^{c}$?

Intermediate problem and linker

Theorem (B. & Miltzow, ESA '16) No algorithm in time $f(k)n^{o(k/\log k)}$ unless the ETH fails.

two instances of min hitting set of *intervals* taking a point in instance A forces a specific point in instance B

Intermediate problem and linker

Theorem (B. & Miltzow, ESA '16) No algorithm in time $f(k)n^{o(k/\log k)}$ unless the ETH fails.

two instances of min hitting set of *intervals* taking a point in instance A forces a specific point in instance B

Terrain Guarding

Guarding an x-monotone polygonal curve with k vertices.

Theorem (Ashok et al. SoCG'17)

TERRAIN GUARDING is solvable in $n^{O(\sqrt{k})}$, hence in $2^{O(\sqrt{n} \log n)}$.

A planar graph with domination number k has treewidth $O(\sqrt{k})$.

Terrain Guarding

Guarding an x-monotone polygonal curve with k vertices.

Theorem (Ashok et al. SoCG'17)

TERRAIN GUARDING is solvable in $n^{O(\sqrt{k})}$, hence in $2^{O(\sqrt{n} \log n)}$.

A planar graph with domination number k has treewidth $O(\sqrt{k})$. Non-trivial divide-and-conquer based on this separator.

Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a *small* separator relative to a hypothetical solution (Voronoi diagram, planar graph, etc.), separator theorems (for disk graph, string graphs; generalizing the planar separator theorem), win-win approach.

ETH-based lowerbounds: reductions from GRID TILING, GRID COLORING, 2-TRACK HITTING SET.

Separator-based techniques also lead to approximation algorithms: Instead of brute-forcing on the separator, ignore it.

Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a *small* separator relative to a hypothetical solution (Voronoi diagram, planar graph, etc.), separator theorems (for disk graph, string graphs; generalizing the planar separator theorem), win-win approach.

ETH-based lowerbounds: reductions from GRID TILING, GRID COLORING, 2-TRACK HITTING SET.

Separator-based techniques also lead to approximation algorithms: Instead of brute-forcing on the separator, ignore it.

Some open questions:

Optimal complexity of MIS, 3-COLORING, on string graphs? Lowerbound or better algorithm for TERRAIN GUARDING?

Subexponential algorithms of geometric graphs

Algorithmic techniques: guessing a *small* separator relative to a hypothetical solution (Voronoi diagram, planar graph, etc.), separator theorems (for disk graph, string graphs; generalizing the planar separator theorem), win-win approach.

ETH-based lowerbounds: reductions from GRID TILING, GRID COLORING, 2-TRACK HITTING SET.

Separator-based techniques also lead to approximation algorithms: Instead of brute-forcing on the separator, ignore it.

Some open questions:

Optimal complexity of MIS, 3-COLORING, on string graphs? Lowerbound or better algorithm for TERRAIN GUARDING? Thanks for your attention!