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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs
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edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.
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Gi is obtained by performing one contraction in Gi+1.
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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overall maximum red degree = 0
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Simple operations preserving small twin-width
I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one apex: at most “doubles”
I substitution G(v ← H): max of the twin-width of G and H



Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size,
I unit interval graphs,
I Kt-minor free graphs,
I map graphs with embedding,
I d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I flat classes,
I subgraphs of every Kt,t-free class above,
I first-order transductions of all the above.



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x∀y (E (x , y)⇒
∨

16i6k
x = xi ∨ y = xi )

G |= ϕ? ⇔ k-Vertex Cover



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃y1 · · · ∃xk∃yk
∧

{x ,y}∈({x1,y1,...,xk ,yk}
2 )

x 6= y

∧ E (x , y)⇔
∨

16i6k
(x = xi ∧ y = yi ) ∨ (x = yi ∧ y = xi )

G |= ϕ? ⇔



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃y1 · · · ∃xk∃yk
∧

{x ,y}∈({x1,y1,...,xk ,yk}
2 )

x 6= y

∧ E (x , y)⇔
∨

16i6k
(x = xi ∧ y = yi ) ∨ (x = yi ∧ y = xi )

G |= ϕ? ⇔ k-Induced Matching



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ =
∨

16q6k, q is odd
∃x1 /∈ {s} E (s, x1) ∧ (∀x2 /∈ {s, x1} ¬E (x1, x2)∨

(∃x3 /∈ {s, x1, x2} E (x2, x3) ∧ (∀x4 · · · (∃xq /∈ {s, x1, . . . , xq−1}E (xq−1, xq)

∧ (∀xq+1 ¬E (xq, xq+1) ∨ xq+1 ∈ {s, x1, . . . , xq})) · · · )))

G |= ϕ? ⇔



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ =
∨

16q6k, q is odd
∃x1 /∈ {s} E (s, x1) ∧ (∀x2 /∈ {s, x1} ¬E (x1, x2)∨

(∃x3 /∈ {s, x1, x2} E (x2, x3) ∧ (∀x4 · · · (∃xq /∈ {s, x1, . . . , xq−1}E (xq−1, xq)

∧ (∀xq+1 ¬E (xq, xq+1) ∨ xq+1 ∈ {s, x1, . . . , xq})) · · · )))

G |= ϕ? ⇔ Short Generalized Geography



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
Transductions of bounded twin-width classes have bounded
twin-width.
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FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete
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Dependence and monadic dependence

A class C is
dependent, if the hereditary closure of every simple interpretation
of C misses some graph
monadically dependent, if every transduction of C misses some
graph [Baldwin, Shelah ’85]

Theorem (Downey, Fellows, Taylor ’96)
FO model checking is AW [∗]-complete on general graphs,
thus unlikely FPT on independent classes

Could it be that on every dependent class, it is FPT?
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Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

bounded
degree
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bounded
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cographs
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width

L-interval

unit interval

pattern
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map
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Theorem (B., Kim, Thomassé, Watrigant ’20)
FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence.



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Unifies and extends the same result for:
σ-free permutations [Marcus, Tardos ’04]
Kt-minor free graphs [Norine, Seymour, Thomas, Wollan ’06]



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs
have unbounded twin-width



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture)
A hereditary class has bounded twin-width if and only if it is small.



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?
Conjecture (small conjecture, refuted: B., Geniet, Tessera,
Thomassé ’21+)
A hereditary class has bounded twin-width if and only if it is small.



Recap of the main questions
I Can we efficiently approximate twin-width?
I Can we solve FO model checking on every dependent class?
I Is every hereditary small class of bounded twin-width?

We answer all these questions positively in the case of
ordered binary structures ≡ matrices on a finite alphabet



Recap of the main questions
I Can we efficiently approximate twin-width?
I Can we solve FO model checking on every dependent class?
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We answer all these questions positively in the case of
ordered binary structures ≡ matrices on a finite alphabet



Twin-width for unordered matrices
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Encode a bipartite graph (or, if symmetric, a graph)



Twin-width for unordered matrices
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Contraction of two columns (similar with two rows)



Twin-width for unordered matrices
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The red degree is now the max number of r per row/column



Twin-width for unordered matrices
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In the non-bipartite case, we force symmetric pairs of contractions



Twin-width for matrices
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That was not the twin-width of ordered matrices



Twin-width for matrices
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Let’s also record the columns disagreeing with the contration
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Twin-width for matrices
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If you find it too clumsy, encode the linear order



Twin-width for matrices
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and we’re back to the unordered definition



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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Maximum number of non-constant zones per column or row part
= error value
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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. . . until there are a single row part and column part



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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Twin-width as maximum error value
of a contraction sequence



Matrix FO model checking

Signature for 0,1-matrices σ = {R(1), <(2),E (2)}
(E (2) becomes E (2)

1 , . . . ,E (2)
t for [0, t]-matrices)

I M |= R(x) iff x is a row index
I M |= x < y iff x is a smaller index than y
I M |= E (x , y) iff Mx ,y = 1

tractable class: FO model checking solvable in time f (ϕ)|M|O(1)
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1 , . . . ,E (2)
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Growth of classes
Our matrix classes are closed under taking submatrices
I Small class: #n × n matrices is 2O(n)

I Subfactorial: ultimately, #n × n matrices < n!

No non-trivial automorphism in totally ordered structures,
so no need for labels



Equivalences in the matrix language

Theorem
For every matrix class M, the following are equivalent.
(i) M has bounded twin-width.

(ii) M has bounded grid rank. (division property)

(iii) M is pattern-avoiding.
(not including any of 6 “permutation-universal” classes)

(iv) M is dependent.

(v) M is monadically dependent.

(vi) M has subfactorial growth.

(vii) M is small.

(viii) M is tractable. (only if FPT 6= AW[∗].)

(ix) M has no large rich division. (division property)



Roadmap

(i) bounded twin-width

(ix) no large rich division

(ii) bounded grid rank

(vii) small

(vi) subfactorial growth

(v) monadically dependent

(iv) dependent

(iii) pattern-avoiding

(viii) tractable

Tww I def

Tww I
if FPT 6= AW[∗]

def
Tww II

(i) unbounded twin-width

(ix) large rich division

(ii) unbounded grid rank

(vi) factorial growth

(iv) independent

(iii) “permutation-universal”

(viii) intractable
Tww I if FPT 6= AW[∗]
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Equivalences in the ordered graph language

Theorem
Let C be a hereditary class of ordered graphs. The following are
equivalent.
(1) C has bounded twin-width.

(2) C is monadically dependent.

(3) C is dependent.

(4) C is small.

(5) C contains 2O(n) ordered n-vertex graphs.

(6) C contains less than
∑bn/2c

k=0
( n

2k
)

k! ordered n-vertex graphs,
for some n.

(7) C does not include one of 25 hereditary ordered graph classes
with unbounded twin-width.

(8) FO-model checking is fixed-parameter tractable on C.
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such that for each, say, column part C no removal of k
row parts leaves C with less than k distinct column vectors
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k-Rich division

C

Division such that for each, say, column part C no removal of k
row parts leaves C with less than k distinct column vectors



Large rich division ⇒ unbounded twin-width

Cz

Cj

Ri

C ′a C ′b C ′c

R ′s NC

Fix an 2k(k + 1)-rich division D, and assume there is a k-sequence S



Large rich division ⇒ unbounded twin-width

Cz

Cj

Ri

C ′a C ′b C ′c

R ′s NC

Consider the first time a part of S intersects 3 parts of D



Large rich division ⇒ unbounded twin-width

Cz

Cj

Ri

C ′a C ′b C ′c

R ′s NC

There are at most k other column parts intersecting C ′b (red degree of Cj)



Large rich division ⇒ unbounded twin-width

Cz

Cj

Ri

C ′a C ′b C ′c

R ′s NC

Each such part Cz is non-vertical in at most 2k zones of D



Large rich division ⇒ unbounded twin-width

Cz

Cj

Ri

C ′a C ′b C ′c

R ′s NC

Thus removing 2k(k + 1) row parts of D → 6 k + 1 distinct columns



No large rich division ⇒ bounded twin-width

Build greedily a division where every part contradicts the richness
I can only be stopped by a large rich division
I turned into a contraction sequence as in Tww I

→ approximation of twin-width for ordered binary structures

Theorem
There is a fixed-parameter algorithm, which, given an ordered
binary structure G and a parameter k, either outputs
I a 2O(k4)-sequence of G, implying that tww(G) = 2O(k4), or
I a 2k(k + 1)-rich division of M(G), implying that tww(G) > k.
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Roadmap

(i) unbounded twin-width

(ix) large rich division

(ii) unbounded grid rank

(vi) factorial growth

(iv) independent

(iii) “permutation-universal”

(viii) intractable
Tww I if FPT 6= AW[∗]



k-rank division

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

k-by-k division where every cell has rank at least k



k-rank division

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

rank > k

Grid rank of M = largest k such that M admits a k-rank division



Large rich division ⇒ unbounded grid rank

Fix a large rich division D



Large rich division ⇒ unbounded grid rank

Red zones = large rank; Blue zones = first of its column to
contain a particular row vector



Large rich division ⇒ unbounded grid rank

Marcus-Tardos theorem applied to the colored zones → division D′



Large rich division ⇒ unbounded grid rank

Coarser division D′′, 1 zone of D′′ ≡ 2k × 2k zones of D′



Large rich division ⇒ unbounded grid rank

A zone of D′′ containing a red zone has large rank



Large rich division ⇒ unbounded grid rank

Other zones have diagonals of blue zones



Large rich division ⇒ unbounded grid rank

2k distinct row vectors in each zone of D′′



Large rank division ⇒ large rank Latin division

Latin rank division: high-rank zones are boxed (red) in a universal
permutation pattern,



Large rank division ⇒ large rank Latin division

...they are the usual suspects: diagonal, anti-diagonal, upper
triangular, upper anti-triangular, and their complements



Large rank division ⇒ large rank Latin division

...while every other subzones are constant



Large rank division ⇒ large rank Latin division

Reversible encoding of
( 0 1 0

1 0 0
0 0 1

)
by a 6× 6 matrix



Large rank division ⇒ large rank Latin division

Injection from Sn to M2n → |Mn| > bn
2c!
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(viii) intractable
Tww I if FPT 6= AW[∗]



Further extractions in the rank Latin division

Mi,j Mi,j

Mi′,j′ Mi′,j′η(−1,−1)

η(1, 1) η(−1, 1)

η(1,−1)

Submatrix agreeing on 1 of 16 patterns for the constant zones
η : {−1, 1}2 ∪ {(0, 0)} → {0, 1} with η(0, 0) = 1− η(1, 1)



Large rank Latin division ⇒ permutation-universal

An example of a pattern with η(x , y) = 0 iff x = y = 1



Large rank Latin division ⇒ permutation-universal

Another example



Large rank Latin division ⇒ permutation-universal

Now injection from Sn to Mn, so |Mn| > n!



Only 6 minimal permutation-universal classes



Growth gap of hereditary ordered graph class

Conjecture (Balogh, Bollobás, Morris)
Every hereditary class of ordered graphs have growth 2O(n)

or at least nn/2+o(n).

Solved:
I Bounded twin-width: growth is 2O(n) (Tww II)
I Unbounded twin-width: > n! ordered (n, n)-bipartite graphs

A bit more work to get the fine-grained bound
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Conjecture (Balogh, Bollobás, Morris)
Every hereditary class of ordered graphs have growth 2O(n)

or at least
bn/2c∑
k=0

( n
2k
)
k! = nn/2+o(n)
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I Bounded twin-width: growth is 2O(n) (Tww II)
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Thank you for your attention!
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