An algorithmic weakening of the Erdős-Hajnal conjecture

Édouard Bonnet
Joint work with Stéphan Thomassé, Xuan Thang Tran, and Rémi Watrigant

ENS Lyon, LIP

July 14th, 2022, British Combinatorial Conference, Lancaster

Max Independent Set

Problem: Given a graph

Find a largest subset of vertices that are pairwise non-adjacent

Max Independent Set

Problem: Given a graph

Find a largest subset of vertices that are pairwise non-adjacent

Max Independent Set

Problem: Given a graph

Find a largest subset of vertices that are pairwise non-adjacent NP-complete even to approximate $\alpha(G)$
$\forall \varepsilon>0$, an $n^{1-\varepsilon}$-approximation algorithm would imply $\mathrm{P}=\mathrm{NP}$

Max Independent Set in H-free graphs

Excluding a fixed graph H as an induced subgraph

Example: this graph is P_{4}-free

Max Independent Set in H-free graphs

Excluding a fixed graph H as an induced subgraph

Example: this graph is P_{4}-free

- P_{6}-free: polynomial algorithm
[Grzesik et al. '19]
- P_{t}-free: quasipolynomial algorithm [Gartland, Lokshtanov '20]
- $S_{i, j, k}$-free: QPTAS
- other H-free: APX-hard
[Chudnovsky et al. '20]
[Poljak '73, Alekseev '82]

Dichotomies of MIS in H -free graphs

P vs NP-complete: all the open cases $\left(S_{i, j, k}\right)$ believed to be in P

QPTAS vs APX-hard: same dichotomy but proven

FPT vs W[1]-hard: even the dichotomy statement is unclear

Improved approximation property

Conjecture

The only hereditary class where $\forall \varepsilon>0$, it is NP-hard to $n^{1-\varepsilon}$-approximate MIS is the class of all graphs.

Improved approximation property

Conjecture

The only hereditary class where $\forall \varepsilon>0$, it is $N P$-hard to $n^{1-\varepsilon}$-approximate MIS is the class of all graphs.

Definition

A graph H has the improved approximation property if $\exists \delta>0$ such that MIS in H-free graphs can be $n^{1-\delta}$-approximated in randomized polynomial time.

Conjecture: Every H has the improved approximation property

The Erdős-Hajnal conjecture

Conjecture (Erdős-Hajnal '89)
For every H, there is a $\delta>0$ such that every H-free graph G has an independent set or a clique of size at least $|V(G)|^{\delta}$.

The Erdős-Hajnal conjecture

Conjecture (Erdős-Hajnal '89)
For every H, there is a $\delta>0$ such that every H-free graph G has an independent set or a clique of size at least $|V(G)|^{\delta}$.

- proven for every 5-vertex graph but P_{5} and its complement
- closure under substitution
[Alon et al. '01]
- line of work excluding a forest and a complement of a forest
- $C_{5},\left\{C_{6}, \overline{C_{6}}\right\},\left\{C_{7}, \overline{C_{7}}\right\}$, etc.
[Chudnovsky et al. '21]
- P_{5} ? What to do in the dense case?

Effective Erdős-Hajnal

For every H, there is a $\delta>0$ and a polynomial-time algorithm \mathcal{A} that inputs H-free graphs G, and outputs an independent set or a clique of G of size at least $|V(G)|^{\delta}$.

Effective Erdős-Hajnal \Rightarrow improved approximation

For every H, there is a $\delta>0$ and a polynomial-time algorithm \mathcal{A} that inputs H-free graphs G, and outputs an independent set or a clique of G of size at least $|V(G)|^{\delta}$.

Theorem
If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

Effective Erdős-Hajnal \Rightarrow improved approximation

For every H, there is a $\delta>0$ and a polynomial-time algorithm \mathcal{A} that inputs H-free graphs G, and outputs an independent set or a clique of G of size at least $|V(G)|^{\delta}$.

Theorem
If H has the effective Erdös-Hajnal property, then H has the improved approximation property.

\mathcal{A} yields a large clique C_{1}, otherwise we get an $n^{1-\delta}$-approximation

Effective Erdős-Hajnal \Rightarrow improved approximation

For every H, there is a $\delta>0$ and a polynomial-time algorithm \mathcal{A} that inputs H-free graphs G, and outputs an independent set or a clique of G of size at least $|V(G)|^{\delta}$.

Theorem
If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

We run \mathcal{A} on $G-C_{1}$ and get clique C_{2}

Effective Erdős-Hajnal \Rightarrow improved approximation

For every H, there is a $\delta>0$ and a polynomial-time algorithm \mathcal{A} that inputs H-free graphs G, and outputs an independent set or a clique of G of size at least $|V(G)|^{\delta}$.

Theorem
If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

We run \mathcal{A} on $G-\bigcup_{1 \leqslant i \leqslant k-1} C_{i}$ and get clique C_{k}

Effective Erdős-Hajnal \Rightarrow improved approximation

For every H, there is a $\delta>0$ and a polynomial-time algorithm \mathcal{A} that inputs H-free graphs G, and outputs an independent set or a clique of G of size at least $|V(G)|^{\delta}$.

Theorem
If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

We run \mathcal{A} on $G-\bigcup_{1 \leqslant i \leqslant k-1} C_{i}$ and get clique C_{k}

Effective Erdős-Hajnal \Rightarrow improved approximation

For every H, there is a $\delta>0$ and a polynomial-time algorithm \mathcal{A} that inputs H-free graphs G, and outputs an independent set or a clique of G of size at least $|V(G)|^{\delta}$.

Theorem
If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

We run \mathcal{A} on $G-\bigcup_{1 \leqslant i \leqslant k-1} C_{i}$ and get clique C_{k}

Effective Erdős-Hajnal \Rightarrow improved approximation

For every H, there is a $\delta>0$ and a polynomial-time algorithm \mathcal{A} that inputs H-free graphs G, and outputs an independent set or a clique of G of size at least $|V(G)|^{\delta}$.

Theorem
If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

Stop when the remaining graph has at most $n^{1-\delta}$ vertices

Effective Erdős-Hajnal \Rightarrow improved approximation

For every H, there is a $\delta>0$ and a polynomial-time algorithm \mathcal{A} that inputs H-free graphs G, and outputs an independent set or a clique of G of size at least $|V(G)|^{\delta}$.

Theorem
If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

$\leqslant n^{1-\delta+\delta^{2}}$ cliques C_{i} 's, so $\alpha(G) \leqslant n^{1-\delta+\delta^{2}}+n^{1-\delta} \leqslant n^{1-\delta+\delta^{2}+\frac{1}{\log n}}$

Particular approximation strategy

For some $\delta>0$:
(A) Find an independent set of size n^{δ}, and output it or
(B) establish that $\alpha(G) \leqslant n^{1-\delta}$, and output a single vertex

Substitution

$$
G=C_{5}
$$

Substitution

$G=C_{5}, H=P_{4}, \quad$ substitution $G[v \leftarrow H]$

Closure under substitution

Theorem
If H_{1} and H_{2} have the improved approximation property, then so does $H_{1}\left[v \leftarrow H_{2}\right]$ for every $v \in V\left(H_{1}\right)$.

Closure under substitution

Theorem
If H_{1} and H_{2} have the improved approximation property, then so does $H_{1}\left[v \leftarrow H_{2}\right]$ for every $v \in V\left(H_{1}\right)$.

$\left(\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}, 1 / 2\right), \quad \gamma=\frac{\varepsilon}{2 h_{1}}, \quad \delta=\frac{\varepsilon \gamma}{2+\varepsilon \gamma}\right)$

Closure under substitution

Theorem
If H_{1} and H_{2} have the improved approximation property, then so does $H_{1}\left[v \leftarrow H_{2}\right]$ for every $v \in V\left(H_{1}\right)$.

$\left(\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}, 1 / 2\right), \quad \gamma=\frac{\varepsilon}{2 h_{1}}, \quad \delta=\frac{\varepsilon \gamma}{2+\varepsilon \gamma}\right)$

H_{1}-free w.h.p $\left(\right.$ at least $\left(1-\frac{1}{n^{h_{1}-\varepsilon / 2}}\right)^{n^{h_{1}-\varepsilon}}$)

If G has less than $n^{h_{1}-\varepsilon}$ induced copies of H_{1}, sample n^{γ} vertices S

Closure under substitution

Theorem
If H_{1} and H_{2} have the improved approximation property, then so does $H_{1}\left[v \leftarrow H_{2}\right]$ for every $v \in V\left(H_{1}\right)$.
$h_{i}=\left|V\left(H_{i}\right)\right|$, and $\mathcal{A}_{i} n^{1-\varepsilon_{i} \text {-approximates MIS in } H_{i} \text {-free graphs }}$
$\left(\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}, 1 / 2\right), \quad \gamma=\frac{\varepsilon}{2 h_{1}}, \quad \delta=\frac{\varepsilon \gamma}{2+\varepsilon \gamma}\right)$

H_{1}-free

Run \mathcal{A}_{1} on $G[S]$: either we get a large enough independent set

Closure under substitution

Theorem
If H_{1} and H_{2} have the improved approximation property, then so does $H_{1}\left[v \leftarrow H_{2}\right]$ for every $v \in V\left(H_{1}\right)$.
$h_{i}=\left|V\left(H_{i}\right)\right|$, and $\mathcal{A}_{i} n^{1-\varepsilon_{i} \text {-approximates MIS in } H_{i} \text {-free graphs }}$
$\left(\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}, 1 / 2\right), \quad \gamma=\frac{\varepsilon}{2 h_{1}}, \quad \delta=\frac{\varepsilon \gamma}{2+\varepsilon \gamma}\right)$

Run \mathcal{A}_{1} on $G[S]$: or $\alpha(G[S]) \leqslant r|S|^{1-\varepsilon}<n^{\delta}|S|^{1-\varepsilon}<|S|^{1-\varepsilon / 2}$

Closure under substitution

Theorem
If H_{1} and H_{2} have the improved approximation property, then so does $H_{1}\left[v \leftarrow H_{2}\right]$ for every $v \in V\left(H_{1}\right)$.

$\left(\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}, 1 / 2\right), \quad \gamma=\frac{\varepsilon}{2 h_{1}}, \quad \delta=\frac{\varepsilon \gamma}{2+\varepsilon \gamma}\right)$

If G has $>n^{h_{1}-\varepsilon}$ copies of $H_{1} \Rightarrow$ copy of $H_{1}-v$ with large X

Closure under substitution

Theorem
If H_{1} and H_{2} have the improved approximation property, then so does $H_{1}\left[v \leftarrow H_{2}\right]$ for every $v \in V\left(H_{1}\right)$.

$\left(\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}, 1 / 2\right), \quad \gamma=\frac{\varepsilon}{2 h_{1}}, \quad \delta=\frac{\varepsilon \gamma}{2+\varepsilon \gamma}\right)$

$G[X]$ is H_{2}-free, so we run \mathcal{A}_{2} on $G[X]$

Closure under substitution

Theorem
If H_{1} and H_{2} have the improved approximation property, then so does $H_{1}\left[v \leftarrow H_{2}\right]$ for every $v \in V\left(H_{1}\right)$.

$\left(\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}, 1 / 2\right), \quad \gamma=\frac{\varepsilon}{2 h_{1}}, \quad \delta=\frac{\varepsilon \gamma}{2+\varepsilon \gamma}\right)$

If we never output a large independent set $\Rightarrow \alpha(G) \leqslant n^{1-\delta}$

H with improved approximation but unknown Erdős-Hajnal

P_{5}, P_{6}, and all the new graphs obtained by substitution

Can the recent progress on solving MIS on P_{t}-free graphs help?

- potential maximal cliques have been around long enough
- quasipolynomial-time algorithm succeeds exactly in the hard regime of Erdős-Hajnal (linear degree)

Approximation algorithm in \triangle-free graphs

MIS has an easy \sqrt{n}-approximation in \triangle-free graphs

Approximation algorithm in \triangle-free graphs

MIS has an easy \sqrt{n}-approximation in \triangle-free graphs

Take any vertex v, if $|N(v)| \geqslant \sqrt{n}$ then output $N(v)$, else add v to the solution.

Approximation algorithm in \triangle-free graphs

MIS has an easy \sqrt{n}-approximation in \triangle-free graphs

Take any vertex v, if $|N(v)| \geqslant \sqrt{n}$ then output $N(v)$, else add v to the solution.

Theorem (direct generalization)
MIS has an $n^{\frac{t-2}{t-1}}$-approximation algorithm in $K_{t}-f r e e ~ g r a p h s . ~$

Approximation algorithm in \triangle-free graphs

MIS has an easy \sqrt{n}-approximation in \triangle-free graphs

Take any vertex v, if $|N(v)| \geqslant \sqrt{n}$ then output $N(v)$, else add v to the solution.

Theorem (direct generalization)
MIS has an $n^{\frac{t-2}{t-1}}$-approximation algorithm in $K_{t}-f r e e ~ g r a p h s . ~$
$R(s, t)=\tilde{O}\left(t^{s-1}\right)$, so $\alpha(G)=\tilde{\Omega}\left(n^{\frac{1}{t-1}}\right)$ for an n-vertex K_{t}-free G

Hardness of approximation in \triangle-free graphs

$$
\alpha(G) \leqslant N^{\varepsilon} \text { or } \alpha(G) \geqslant N^{1-\varepsilon} ? \text { is NP-h }
$$

N vertices

Hardness of approximation in \triangle-free graphs

Vertex $v \rightarrow$ independent set I_{v} of size s edge $\rightarrow G(s, s, p)$

Hardness of approximation in \triangle-free graphs

$$
\mathbb{E}(\# \triangle) \leqslant N^{3}\left(N^{5}\right)^{3} p^{3}=N^{6-2 \varepsilon}
$$

Hardness of approximation in \triangle-free graphs

Removing every triangle, we keep $n \geqslant N^{6} / 2$ vertices

Hardness of approximation in \triangle-free graphs

If I_{v}, I_{w} are adjacent, $X \subseteq I_{v}, Y \subseteq I_{w}$ with $|X|,|Y| \geqslant N^{4+\frac{4 \varepsilon}{3}}$ there is an edge between X and Y w.h.p

Hardness of approximation in \triangle-free graphs

$$
\alpha(G) \leqslant N^{\varepsilon} \text { or } \alpha(G) \geqslant N^{1-\varepsilon} ? \text { is NP-h }
$$

N vertices

$$
(1-p)^{|X| \cdot|Y|} \leqslant\left(1-\frac{1}{N^{4+\frac{2 \varepsilon}{3}}}\right)^{N^{2\left(4+\frac{4 \varepsilon}{3}\right)}} \leqslant e^{-N^{4}+2 \varepsilon}
$$

Stomach the $\left(\begin{array}{c}N^{4+} \frac{4 \varepsilon}{3}\end{array}\right)^{2}$ pairs of X, Y by union bound

Hardness of approximation in \triangle-free graphs

YES-instance \rightarrow independent set $\approx N^{5} \cdot N^{1-\varepsilon}=N^{6-\varepsilon}$

Hardness of approximation in \triangle-free graphs

NO-instance \rightarrow independent set $\leqslant N^{5} \cdot N^{\varepsilon}+N^{4+\frac{2 \varepsilon}{3}} \cdot N \leqslant N^{5+\varepsilon^{\prime}}$

Hardness of approximation in \triangle-free graphs

$\alpha(G) \geqslant n^{1-\varepsilon}$ or $\alpha(G) \leqslant n^{\frac{5}{6}-\varepsilon}$? in \triangle-free graphs is NP-h

Sharper inapproximability in \triangle-free graphs

- now blow-up vertices into independent sets of size $N^{3} \rightarrow G$

Sharper inapproximability in \triangle-free graphs

- now blow-up vertices into independent sets of size $N^{3} \rightarrow G$
- build a \triangle-free graph G^{\prime} on N^{4} vertices with $\alpha\left(G^{\prime}\right) \approx N^{2}$

Sharper inapproximability in \triangle-free graphs

- now blow-up vertices into independent sets of size $N^{3} \rightarrow G$
- build a \triangle-free graph G^{\prime} on N^{4} vertices with $\bar{\beta}\left(G^{\prime}\right) \approx N^{2}$
- identify arbitrarily $V(G)$ and $V\left(G^{\prime}\right)$ and AND the edge sets

Sharper inapproximability in \triangle-free graphs

- now blow-up vertices into independent sets of size $N^{3} \rightarrow G$
- build a \triangle-free graph G^{\prime} on N^{4} vertices with $\bar{\beta}\left(G^{\prime}\right) \approx N^{2}$
- identify arbitrarily $V(G)$ and $V\left(G^{\prime}\right)$ and AND the edge sets

Theorem
There is no $n^{\frac{1}{4}-\varepsilon}$-approximation algorithm for MIS in \triangle-free graphs, unless $B P P=N P$.

Summary and open questions

- new conjecture with two possible approaches
- same closure by substitution
- (Effective) Erdős-Hajnal implies improved approximation
- direct improved approximation in C_{5}-free graphs?
- off-diagonal Ramsey \leftrightarrow best possible ratio in K_{t}-free graphs?
- what is the smallest δ such that MIS has a n^{δ}-approximation in \triangle-graphs? $\left(\frac{1}{4} \leqslant \delta \leqslant \frac{1}{2}\right)$

Summary and open questions

- new conjecture with two possible approaches
- same closure by substitution
- (Effective) Erdős-Hajnal implies improved approximation
- direct improved approximation in C_{5}-free graphs?
- off-diagonal Ramsey \leftrightarrow best possible ratio in K_{t}-free graphs?
- what is the smallest δ such that MIS has a n^{δ}-approximation in \triangle-graphs? $\left(\frac{1}{4} \leqslant \delta \leqslant \frac{1}{2}\right)$

Thank you for your attention!

