An algorithmic weakening of the Erdős-Hajnal conjecture

Édouard Bonnet Joint work with Stéphan Thomassé, Xuan Thang Tran, and Rémi Watrigant

ENS Lyon, LIP

July 14th, 2022, British Combinatorial Conference, Lancaster

Max Independent Set

Problem: Given a graph

Find a largest subset of vertices that are pairwise non-adjacent

Max Independent Set

Problem: Given a graph

Find a largest subset of vertices that are pairwise non-adjacent

Max Independent Set

Problem: Given a graph

Find a largest subset of vertices that are pairwise non-adjacent

NP-complete even to approximate $\alpha(G)$

 $\forall \varepsilon > 0$, an $n^{1-\varepsilon}$ -approximation algorithm would imply P=NP

MAX INDEPENDENT SET in H-free graphs

Excluding a fixed graph H as an induced subgraph

Example: this graph is P_4 -free

MAX INDEPENDENT SET in *H*-free graphs

Excluding a fixed graph H as an induced subgraph

Example: this graph is P_4 -free

Dichotomies of MIS in *H*-free graphs

P vs NP-complete: all the open cases $(S_{i,j,k})$ believed to be in P

QPTAS vs APX-hard: same dichotomy but proven

FPT vs W[1]-hard: even the dichotomy statement is unclear

Improved approximation property

Conjecture

The only hereditary class where $\forall \varepsilon > 0$, it is NP-hard to $n^{1-\varepsilon}$ -approximate MIS is the class of all graphs.

Improved approximation property

Conjecture

The only hereditary class where $\forall \varepsilon > 0$, it is NP-hard to $n^{1-\varepsilon}$ -approximate MIS is the class of all graphs.

Definition

A graph *H* has the *improved approximation property* if $\exists \delta > 0$ such that MIS in *H*-free graphs can be $n^{1-\delta}$ -approximated in randomized polynomial time.

Conjecture: Every H has the improved approximation property

The Erdős-Hajnal conjecture

Conjecture (Erdős-Hajnal '89)

For every H, there is a $\delta > 0$ such that every H-free graph G has an independent set or a clique of size at least $|V(G)|^{\delta}$.

The Erdős-Hajnal conjecture

Conjecture (Erdős-Hajnal '89)

For every H, there is a $\delta > 0$ such that every H-free graph G has an independent set or a clique of size at least $|V(G)|^{\delta}$.

- proven for every 5-vertex graph but P_5 and its complement
- closure under substitution [Alon et al. '01]
- line of work excluding a forest and a complement of a forest
- C_5 , $\{C_6, \overline{C_6}\}$, $\{C_7, \overline{C_7}\}$, etc. [Chudnovsky et al. '21]
- ▶ *P*₅? What to do in the dense case?

Effective Erdős-Hajnal

For every *H*, there is a $\delta > 0$ and a polynomial-time algorithm *A* that inputs *H*-free graphs *G*, and outputs an independent set or a clique of *G* of size at least $|V(G)|^{\delta}$.

For every *H*, there is a $\delta > 0$ and a polynomial-time algorithm *A* that inputs *H*-free graphs *G*, and outputs an independent set or a clique of *G* of size at least $|V(G)|^{\delta}$.

Theorem

If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

For every *H*, there is a $\delta > 0$ and a polynomial-time algorithm *A* that inputs *H*-free graphs *G*, and outputs an independent set or a clique of *G* of size at least $|V(G)|^{\delta}$.

Theorem

If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

 \mathcal{A} yields a large clique C_1 , otherwise we get an $n^{1-\delta}$ -approximation

For every *H*, there is a $\delta > 0$ and a polynomial-time algorithm *A* that inputs *H*-free graphs *G*, and outputs an independent set or a clique of *G* of size at least $|V(G)|^{\delta}$.

Theorem

If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

$$(n^{\delta})$$

We run \mathcal{A} on $G - C_1$ and get clique C_2

For every *H*, there is a $\delta > 0$ and a polynomial-time algorithm *A* that inputs *H*-free graphs *G*, and outputs an independent set or a clique of *G* of size at least $|V(G)|^{\delta}$.

Theorem

If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

We run \mathcal{A} on $G - \bigcup_{1 \leqslant i \leqslant k-1} C_i$ and get clique C_k

For every *H*, there is a $\delta > 0$ and a polynomial-time algorithm *A* that inputs *H*-free graphs *G*, and outputs an independent set or a clique of *G* of size at least $|V(G)|^{\delta}$.

Theorem

If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

We run \mathcal{A} on $G - \bigcup_{1 \leqslant i \leqslant k-1} C_i$ and get clique C_k

For every *H*, there is a $\delta > 0$ and a polynomial-time algorithm *A* that inputs *H*-free graphs *G*, and outputs an independent set or a clique of *G* of size at least $|V(G)|^{\delta}$.

Theorem

If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

We run \mathcal{A} on $G - \bigcup_{1 \leqslant i \leqslant k-1} C_i$ and get clique C_k

For every *H*, there is a $\delta > 0$ and a polynomial-time algorithm *A* that inputs *H*-free graphs *G*, and outputs an independent set or a clique of *G* of size at least $|V(G)|^{\delta}$.

Theorem

If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

Stop when the remaining graph has at most $n^{1-\delta}$ vertices

For every *H*, there is a $\delta > 0$ and a polynomial-time algorithm *A* that inputs *H*-free graphs *G*, and outputs an independent set or a clique of *G* of size at least $|V(G)|^{\delta}$.

Theorem

If H has the effective Erdős-Hajnal property, then H has the improved approximation property.

 $\leq n^{1-\delta+\delta^2}$ cliques C_i 's, so $\alpha(G) \leq n^{1-\delta+\delta^2} + n^{1-\delta} \leq n^{1-\delta+\delta^2+\frac{1}{\log n}}$

Particular approximation strategy

For some $\delta > 0$:

(A) Find an independent set of size n^{δ} , and output it or (B) establish that $\alpha(G) \leq n^{1-\delta}$, and output a single vertex

Substitution

 $G = C_5$

Substitution

 $G = C_5$, $H = P_4$, substitution $G[v \leftarrow H]$

Theorem

If H_1 and H_2 have the improved approximation property, then so does $H_1[v \leftarrow H_2]$ for every $v \in V(H_1)$.

Theorem

If H_1 and H_2 have the improved approximation property, then so does $H_1[v \leftarrow H_2]$ for every $v \in V(H_1)$.

 $h_i = |V(H_i)|$, and $\mathcal{A}_i \ n^{1-\varepsilon_i}$ -approximates MIS in H_i -free graphs $(\varepsilon = \min(\varepsilon_1, \varepsilon_2, 1/2), \ \gamma = \frac{\varepsilon}{2h_1}, \ \delta = \frac{\varepsilon\gamma}{2+\varepsilon\gamma})$

Theorem

If H_1 and H_2 have the improved approximation property, then so does $H_1[v \leftarrow H_2]$ for every $v \in V(H_1)$.

 $h_i = |V(H_i)|$, and $A_i \ n^{1-\varepsilon_i}$ -approximates MIS in H_i -free graphs $(\varepsilon = \min(\varepsilon_1, \varepsilon_2, 1/2), \ \gamma = \frac{\varepsilon}{2h_1}, \ \delta = \frac{\varepsilon\gamma}{2+\varepsilon\gamma})$

$$\begin{array}{c} S \\ n^{\gamma} \\ \end{array} \quad H_1 \text{-free w.h.p (at least } (1 - \frac{1}{n^{h_1 - \varepsilon/2}})^{n^{h_1 - \varepsilon}}) \end{array}$$

If G has less than $n^{h_1-\varepsilon}$ induced copies of H_1 , sample n^{γ} vertices S

Theorem

If H_1 and H_2 have the improved approximation property, then so does $H_1[v \leftarrow H_2]$ for every $v \in V(H_1)$.

 $h_i = |V(H_i)|$, and $A_i \ n^{1-\varepsilon_i}$ -approximates MIS in H_i -free graphs $(\varepsilon = \min(\varepsilon_1, \varepsilon_2, 1/2), \ \gamma = \frac{\varepsilon}{2h_1}, \ \delta = \frac{\varepsilon\gamma}{2+\varepsilon\gamma})$

Run A_1 on G[S]: either we get a large enough independent set

Theorem

If H_1 and H_2 have the improved approximation property, then so does $H_1[v \leftarrow H_2]$ for every $v \in V(H_1)$.

 $h_i = |V(H_i)|$, and $A_i \ n^{1-\varepsilon_i}$ -approximates MIS in H_i -free graphs $(\varepsilon = \min(\varepsilon_1, \varepsilon_2, 1/2), \ \gamma = \frac{\varepsilon}{2h_1}, \ \delta = \frac{\varepsilon\gamma}{2+\varepsilon\gamma})$

Run \mathcal{A}_1 on G[S]: or $\alpha(G[S]) \leqslant r|S|^{1-\varepsilon} < n^{\delta}|S|^{1-\varepsilon} < |S|^{1-\varepsilon/2}$

Theorem

If H_1 and H_2 have the improved approximation property, then so does $H_1[v \leftarrow H_2]$ for every $v \in V(H_1)$.

 $h_i = |V(H_i)|$, and $A_i \ n^{1-\varepsilon_i}$ -approximates MIS in H_i -free graphs $(\varepsilon = \min(\varepsilon_1, \varepsilon_2, 1/2), \ \gamma = \frac{\varepsilon}{2h_1}, \ \delta = \frac{\varepsilon\gamma}{2+\varepsilon\gamma})$

If G has $> n^{h_1 - \varepsilon}$ copies of $H_1 \Rightarrow$ copy of $H_1 - v$ with large X

Theorem

If H_1 and H_2 have the improved approximation property, then so does $H_1[v \leftarrow H_2]$ for every $v \in V(H_1)$.

 $h_i = |V(H_i)|$, and $A_i \ n^{1-\varepsilon_i}$ -approximates MIS in H_i -free graphs $(\varepsilon = \min(\varepsilon_1, \varepsilon_2, 1/2), \ \gamma = \frac{\varepsilon}{2h_1}, \ \delta = \frac{\varepsilon\gamma}{2+\varepsilon\gamma})$

G[X] is H_2 -free, so we run \mathcal{A}_2 on G[X]

Theorem

If H_1 and H_2 have the improved approximation property, then so does $H_1[v \leftarrow H_2]$ for every $v \in V(H_1)$.

 $h_i = |V(H_i)|$, and $A_i \ n^{1-\varepsilon_i}$ -approximates MIS in H_i -free graphs $(\varepsilon = \min(\varepsilon_1, \varepsilon_2, 1/2), \ \gamma = \frac{\varepsilon}{2h_1}, \ \delta = \frac{\varepsilon\gamma}{2+\varepsilon\gamma})$

If we never output a large independent set $\Rightarrow \alpha(G) \leqslant n^{1-\delta}$

H with improved approximation but unknown Erdős-Hajnal

 P_5, P_6 , and all the new graphs obtained by substitution

Can the recent progress on solving MIS on P_t -free graphs help?

- potential maximal cliques have been around long enough
- quasipolynomial-time algorithm succeeds exactly in the hard regime of Erdős-Hajnal (linear degree)

 $\rm MIS$ has an easy $\sqrt{\textit{n}}\textsc{-}{\rm approximation}$ in $\bigtriangleup{-}{\rm free}$ graphs

 $\rm MIS$ has an easy $\sqrt{\textit{n}}\text{-}{\sf approximation}$ in $\bigtriangleup\text{-}{\sf free}$ graphs

Take any vertex v, if $|N(v)| \ge \sqrt{n}$ then output N(v), else add v to the solution.

 $\rm MIS$ has an easy $\sqrt{\textit{n}}\text{-}{\sf approximation}$ in $\bigtriangleup\text{-}{\sf free}$ graphs

Take any vertex v, if $|N(v)| \ge \sqrt{n}$ then output N(v), else add v to the solution.

Theorem (direct generalization) MIS has an $n^{\frac{t-2}{t-1}}$ -approximation algorithm in K_t -free graphs.

 $\rm MIS$ has an easy $\sqrt{\textit{n}}\text{-}{\rm approximation}$ in $\bigtriangleup\text{-}{\rm free}$ graphs

Take any vertex v, if $|N(v)| \ge \sqrt{n}$ then output N(v), else add v to the solution.

Theorem (direct generalization) MIS has an $n^{\frac{t-2}{t-1}}$ -approximation algorithm in K_t -free graphs.

 $R(s,t) = ilde{O}(t^{s-1})$, so $lpha(G) = ilde{\Omega}(n^{rac{1}{t-1}})$ for an *n*-vertex K_t -free G

 $\begin{array}{l} \text{Vertex } v \to \text{independent set } I_v \text{ of size } s \\ \text{edge} \to G(s,s,p) \end{array}$

$$\mathbb{E}(\# riangle)\leqslant \mathsf{N}^3(\mathsf{N}^5)^3\mathsf{p}^3=\mathsf{N}^{6-2arepsilon}$$

Removing every triangle, we keep $n \ge N^6/2$ vertices

If I_v, I_w are adjacent, $X \subseteq I_v, Y \subseteq I_w$ with $|X|, |Y| \ge N^{4+\frac{4\varepsilon}{3}}$ there is an edge between X and Y w.h.p

$$(1-p)^{|X|\cdot|Y|} \leqslant (1-rac{1}{N^{4+rac{2arepsilon}{3}}})^{N^{2(4+rac{4arepsilon}{3})}} \leqslant e^{-N^4+2arepsilon}$$

Stomach the $\left(rac{N^5}{N^{4+rac{4arepsilon}{3}}}
ight)^2$ pairs of X, Y by union bound

YES-instance ightarrow independent set $pprox N^5 \cdot N^{1-arepsilon} = N^{6-arepsilon}$

 $\text{NO-instance} \rightarrow \text{independent set} \leqslant N^5 \cdot N^{\varepsilon} + N^{4 + \frac{2\varepsilon}{3}} \cdot N \leqslant N^{5 + \varepsilon'}$

$$\alpha(G) \ge n^{1-\varepsilon}$$
 or $\alpha(G) \le n^{\frac{5}{6}-\varepsilon}$? in \triangle -free graphs is NP-h

 $\blacktriangleright\,$ now blow-up vertices into independent sets of size $N^3 \to G$

- ▶ now blow-up vertices into independent sets of size $N^3 o G$
- ▶ build a \triangle -free graph G' on N^4 vertices with $\alpha(G') \approx N^2$

- ▶ now blow-up vertices into independent sets of size $N^3 o G$
- ▶ build a \triangle -free graph G' on N^4 vertices with $\overline{\beta}(G') \approx N^2$
- identify arbitrarily V(G) and V(G') and AND the edge sets

- \blacktriangleright now blow-up vertices into independent sets of size $N^3
 ightarrow G$
- ▶ build a \triangle -free graph G' on N^4 vertices with $\overline{\beta}(G') \approx N^2$
- identify arbitrarily V(G) and V(G') and AND the edge sets

Theorem

There is no $n^{\frac{1}{4}-\varepsilon}$ -approximation algorithm for MIS in \triangle -free graphs, unless BPP=NP.

Summary and open questions

- new conjecture with two possible approaches
- same closure by substitution
- (Effective) Erdős-Hajnal implies improved approximation
- direct improved approximation in C₅-free graphs?
- off-diagonal Ramsey \leftrightarrow best possible ratio in K_t -free graphs?
- ▶ what is the smallest δ such that MIS has a n^{δ} -approximation in \triangle -graphs? $(\frac{1}{4} \leq \delta \leq \frac{1}{2})$

Summary and open questions

- new conjecture with two possible approaches
- same closure by substitution
- (Effective) Erdős-Hajnal implies improved approximation
- direct improved approximation in C₅-free graphs?
- off-diagonal Ramsey \leftrightarrow best possible ratio in K_t -free graphs?
- what is the smallest δ such that MIS has a n^δ-approximation in △-graphs? (¹/₄ ≤ δ ≤ ¹/₂)

Thank you for your attention!