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Max Independent Set

Problem: Given a graph

Find a largest subset of vertices that are pairwise non-adjacent

NP-complete even to approximate α(G)

∀ε > 0, an n1−ε-approximation algorithm would imply P=NP
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Max Independent Set in H-free graphs
Excluding a fixed graph H as an induced subgraph

Si ,j,k

i j k

Example: this graph is P4-free

I P6-free: polynomial algorithm [Grzesik et al. ’19]
I Pt-free: quasipolynomial algorithm [Gartland, Lokshtanov ’20]
I Si ,j,k -free: QPTAS [Chudnovsky et al. ’20]
I other H-free: APX-hard [Poljak ’73, Alekseev ’82]
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Dichotomies of MIS in H-free graphs

P vs NP-complete: all the open cases (Si ,j,k) believed to be in P

QPTAS vs APX-hard: same dichotomy but proven

FPT vs W[1]-hard: even the dichotomy statement is unclear



Improved approximation property

Conjecture
The only hereditary class where ∀ε > 0, it is NP-hard to
n1−ε-approximate MIS is the class of all graphs.

Definition
A graph H has the improved approximation property if ∃δ > 0
such that MIS in H-free graphs can be n1−δ-approximated in
randomized polynomial time.

Conjecture: Every H has the improved approximation property
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The Erdős-Hajnal conjecture

Conjecture (Erdős-Hajnal ’89)
For every H, there is a δ > 0 such that every H-free graph G has
an independent set or a clique of size at least |V (G)|δ.

I proven for every 5-vertex graph but P5 and its complement
I closure under substitution [Alon et al. ’01]
I line of work excluding a forest and a complement of a forest
I C5, {C6,C6}, {C7,C7}, etc. [Chudnovsky et al. ’21]
I P5? What to do in the dense case?



The Erdős-Hajnal conjecture

Conjecture (Erdős-Hajnal ’89)
For every H, there is a δ > 0 such that every H-free graph G has
an independent set or a clique of size at least |V (G)|δ.

I proven for every 5-vertex graph but P5 and its complement
I closure under substitution [Alon et al. ’01]
I line of work excluding a forest and a complement of a forest
I C5, {C6,C6}, {C7,C7}, etc. [Chudnovsky et al. ’21]
I P5? What to do in the dense case?



Effective Erdős-Hajnal

⇒ improved approximation

For every H, there is a δ > 0 and a polynomial-time algorithm A
that inputs H-free graphs G , and outputs an independent set or a
clique of G of size at least |V (G)|δ.

Theorem
If H has the effective Erdős-Hajnal property, then H has the
improved approximation property.

nδ

C1 C2 C3 C4 C5

6 n1−δnδ−δ2

A yields a large clique, otherwise we get an n1−δ-approximation
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Effective Erdős-Hajnal ⇒ improved approximation
For every H, there is a δ > 0 and a polynomial-time algorithm A
that inputs H-free graphs G , and outputs an independent set or a
clique of G of size at least |V (G)|δ.

Theorem
If H has the effective Erdős-Hajnal property, then H has the
improved approximation property.

nδ

C1 C2 C3 C4 C5

6 n1−δnδ−δ2

6 n1−δ+δ2 cliques Ci ’s, so α(G) 6 n1−δ+δ2 + n1−δ 6 n1−δ+δ2+ 1
log n



Particular approximation strategy

For some δ > 0:

(A) Find an independent set of size nδ, and output it or
(B) establish that α(G) 6 n1−δ, and output a single vertex



Substitution

G = C5



Substitution

G = C5, H = P4, substitution G [v ← H]



Closure under substitution

Theorem
If H1 and H2 have the improved approximation property, then so
does H1[v ← H2] for every v ∈ V (H1).

hi = |V (Hi )|, and Ai n1−εi -approximates MIS in Hi -free graphs

(ε = min(ε1, ε2, 1/2), γ = ε
2h1
, δ = εγ

2+εγ )

S
nγ H1-free w.h.p (at least (1− 1

nh1−ε/2 )nh1−ε)
nδ

nγ
S

H1-free
r

n1−ε
X

If G has less than nh1−ε induced copies of H1, sample nγ vertices S
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Theorem
If H1 and H2 have the improved approximation property, then so
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Closure under substitution

Theorem
If H1 and H2 have the improved approximation property, then so
does H1[v ← H2] for every v ∈ V (H1).

hi = |V (Hi )|, and Ai n1−εi -approximates MIS in Hi -free graphs
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n1−ε
X

G [X ] is H2-free, so we run A2 on G [X ]



Closure under substitution

Theorem
If H1 and H2 have the improved approximation property, then so
does H1[v ← H2] for every v ∈ V (H1).

hi = |V (Hi )|, and Ai n1−εi -approximates MIS in Hi -free graphs

(ε = min(ε1, ε2, 1/2), γ = ε
2h1
, δ = εγ

2+εγ )

S
nγ H1-free w.h.p (at least (1− 1

nh1−ε/2 )nh1−ε)
nδ

nγ
S

H1-free
r

n1−ε
X

If we never output a large independent set ⇒ α(G) 6 n1−δ



H with improved approximation but unknown Erdős-Hajnal

P5,P6, and all the new graphs obtained by substitution

Can the recent progress on solving MIS on Pt-free graphs help?

I potential maximal cliques have been around long enough
I quasipolynomial-time algorithm succeeds exactly in the hard

regime of Erdős-Hajnal (linear degree)



Approximation algorithm in 4-free graphs

MIS has an easy
√
n-approximation in 4-free graphs

Take any vertex v ,
if |N(v)| >

√
n then output N(v),

else add v to the solution.

Theorem (direct generalization)
MIS has an n

t−2
t−1 -approximation algorithm in Kt-free graphs.

R(s, t) = Õ(ts−1), so α(G) = Ω̃(n
1

t−1 ) for an n-vertex Kt-free G
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R(s, t) = Õ(ts−1), so α(G) = Ω̃(n
1

t−1 ) for an n-vertex Kt-free G



Approximation algorithm in 4-free graphs

MIS has an easy
√
n-approximation in 4-free graphs

Take any vertex v ,
if |N(v)| >

√
n then output N(v),

else add v to the solution.

Theorem (direct generalization)
MIS has an n

t−2
t−1 -approximation algorithm in Kt-free graphs.
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Hardness of approximation in 4-free graphs

α(G) 6 Nε or α(G) > N1−ε? is NP-h

N vertices

→

s

ss

s

s ss

G(s, s, p)

x

x

x

N6 verticesn vertices, 4-free

s = N5, p = N−4− 2ε
3

Vertex v → independent set Iv of size s
edge → G(s, s, p)
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Hardness of approximation in 4-free graphs
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Hardness of approximation in 4-free graphs

α(G) 6 Nε or α(G) > N1−ε? is NP-h

N vertices

→

s

ss

s

s ss

G(s, s, p)

x

x

x

N6 vertices

n vertices, 4-free

s = N5, p = N−4− 2ε
3

(1− p)|X |·|Y | 6 (1− 1
N4+ 2ε

3
)N2(4+ 4ε

3 )
6 e−N4+2ε

Stomach the
( N5

N4+ 4ε
3

)2
pairs of X ,Y by union bound
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Hardness of approximation in 4-free graphs
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Hardness of approximation in 4-free graphs

α(G) 6 Nε or α(G) > N1−ε? is NP-h
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G(s, s, p)
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x

x

N6 vertices

n vertices, 4-free

s = N5, p = N−4− 2ε
3

α(G) > n1−ε or α(G) 6 n 5
6−ε? in 4-free graphs is NP-h

edge → G(s, s, p)



Sharper inapproximability in 4-free graphs

I now blow-up vertices into independent sets of size N3 → G

I build a 4-free graph G ′ on N4 vertices with
I identify arbitrarily V (G) and V (G ′) and AND the edge sets

N3

N3N3

N3

N3 N3N3

Theorem
There is no n 1

4−ε-approximation algorithm for MIS in 4-free
graphs, unless BPP=NP.
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Summary and open questions

I new conjecture with two possible approaches
I same closure by substitution
I (Effective) Erdős-Hajnal implies improved approximation
I direct improved approximation in C5-free graphs?
I off-diagonal Ramsey ↔ best possible ratio in Kt-free graphs?
I what is the smallest δ such that MIS has a nδ-approximation

in 4-graphs? (1
4 6 δ 6 1

2)

Thank you for your attention!
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