## Twin-width and ordered binary structures

Édouard Bonnet<br>joint work with Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé; Pierre Simon and Szymon Toruńczyk Also Colin Geniet, Eunjung Kim, Jarik Nešetřil, Sebastian Siebertz, and Rémi Watrigant<br>ENS Lyon, LIP

February 19th, 2021, Bordeaux GT G\&O

## Trigraphs



Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

## Contractions in trigraphs



Identification of two non-necessarily adjacent vertices

## Contractions in trigraphs



Identification of two non-necessarily adjacent vertices

## Contractions in trigraphs


edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=0$ overall maximum red degree $=0$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=2$ overall maximum red degree $=2$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=2$ overall maximum red degree $=2$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=2$ overall maximum red degree $=2$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=1$ overall maximum red degree $=2$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=1$ overall maximum red degree $=2$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=0$ overall maximum red degree $=2$

## Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one apex: at most "doubles"
- substitution $G(v \leftarrow H)$ : max of the twin-width of $G$ and $H$


## Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 \& '21)

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size,
- unit interval graphs,
- $K_{t}$-minor free graphs,
- map graphs with embedding,
- d-dimensional grids,
- $K_{t}$-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from $K_{4}$,
- flat classes,
- subgraphs of every $K_{t, t}$-free class above,
- first-order transductions of all the above.


## First-order model checking on graphs

Graph FO Model Checking Parameter: $|\varphi|$
Input: A graph $G$ and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$ ?

## First-order model checking on graphs

> Graph FO Model Checking Input: A graph $G$ and a first-order sentence $\varphi \in F O(\{E\})$ Question: $G \models \varphi$ ?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \forall y\left(E(x, y) \Rightarrow \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee y=x_{i}\right)
$$

$G \models \varphi$ ? $\Leftrightarrow k$-Vertex Cover

## First-order model checking on graphs

Graph FO Model Checking
Parameter: $|\varphi|$
Input: A graph $G$ and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$ ?

Example:

$$
\begin{gathered}
\varphi=\exists x_{1} \exists y_{1} \cdots \exists x_{k} \exists y_{k} \bigwedge_{\{x, y\} \in\left(\underset{\left\{x_{1}, y_{1}, \ldots, x_{2}, y_{k}\right\}}{ }\right)} x \neq y \\
\wedge E(x, y) \Leftrightarrow \bigvee_{1 \leqslant i \leqslant k}\left(x=x_{i} \wedge y=y_{i}\right) \vee\left(x=y_{i} \wedge y=x_{i}\right)
\end{gathered}
$$

$$
G \models \varphi ? \Leftrightarrow
$$

## First-order model checking on graphs

Graph FO Model Checking
Parameter: $|\varphi|$
Input: A graph $G$ and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$ ?

Example:

$$
\begin{gathered}
\varphi=\exists x_{1} \exists y_{1} \cdots \exists x_{k} \exists y_{k} \bigwedge_{\{x, y\} \in\left(\frac{\left\{x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right\}}{2}\right)} x \neq y \\
\wedge E(x, y) \Leftrightarrow \bigvee_{1 \leqslant i \leqslant k}\left(x=x_{i} \wedge y=y_{i}\right) \vee\left(x=y_{i} \wedge y=x_{i}\right) \\
G \models \varphi ? \Leftrightarrow k \text {-INDUCED MATCHING }
\end{gathered}
$$

## First-order model checking on graphs

## Graph FO Model Checking <br> Parameter: $|\varphi|$ <br> Input: A graph $G$ and a first-order sentence $\varphi \in F O(\{E\})$ <br> Question: $G \models \varphi$ ?

Example:
$\varphi=\bigvee_{1 \leqslant q \leqslant k, q \text { is odd }} \exists x_{1} \notin\{s\} E\left(s, x_{1}\right) \wedge\left(\forall x_{2} \notin\left\{s, x_{1}\right\} \neg E\left(x_{1}, x_{2}\right) \vee\right.$
$\left(\exists x_{3} \notin\left\{s, x_{1}, x_{2}\right\} E\left(x_{2}, x_{3}\right) \wedge\left(\forall x_{4} \cdots\left(\exists x_{q} \notin\left\{s, x_{1}, \ldots, x_{q-1}\right\} E\left(x_{q-1}, x_{q}\right)\right.\right.\right.$ $\left.\left.\left.\left.\wedge\left(\forall x_{q+1} \neg E\left(x_{q}, x_{q+1}\right) \vee x_{q+1} \in\left\{s, x_{1}, \ldots, x_{q}\right\}\right)\right) \cdots\right)\right)\right)$
$G \models \varphi ? \Leftrightarrow$

## First-order model checking on graphs

```
Graph FO Model Checking
Parameter: \(|\varphi|\)
Input: A graph \(G\) and a first-order sentence \(\varphi \in F O(\{E\})\)
Question: \(G \models \varphi\) ?
```

Example:
$\varphi=\bigvee_{1 \leqslant q \leqslant k, q \text { is odd }} \exists x_{1} \notin\{s\} E\left(s, x_{1}\right) \wedge\left(\forall x_{2} \notin\left\{s, x_{1}\right\} \neg E\left(x_{1}, x_{2}\right) \vee\right.$
$\left(\exists x_{3} \notin\left\{s, x_{1}, x_{2}\right\} E\left(x_{2}, x_{3}\right) \wedge\left(\forall x_{4} \cdots\left(\exists x_{q} \notin\left\{s, x_{1}, \ldots, x_{q-1}\right\} E\left(x_{q-1}, x_{q}\right)\right.\right.\right.$

$$
\left.\left.\left.\left.\wedge\left(\forall x_{q+1} \neg E\left(x_{q}, x_{q+1}\right) \vee x_{q+1} \in\left\{s, x_{1}, \ldots, x_{q}\right\}\right)\right) \cdots\right)\right)\right)
$$

$G \models \varphi$ ? $\Leftrightarrow$ Short Generalized Geography

## FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
$\varphi(x, y)=\neg E(x, y)$
(complement)
$\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

## FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
$\varphi(x, y)=\neg E(x, y)$
(complement)
$\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete


## FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
$\varphi(x, y)=\neg E(x, y)$
(complement)
$\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete


## FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y)=\neg E(x, y)$ (complement) $\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete


$$
\begin{gathered}
\varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
\vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{gathered}
$$

## FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y)=\neg E(x, y)$ (complement) $\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete


$$
\begin{gathered}
\varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
\vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{gathered}
$$

## FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
$\varphi(x, y)=\neg E(x, y)$
(complement)
$\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete



## FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete



Theorem (B., Kim, Thomassé, Watrigant '20)
Transductions of bounded twin-width classes have bounded twin-width.

## Dependence and monadic dependence

A class $\mathscr{C}$ is
dependent, if the class of all graphs is not an interpretation of $\mathscr{C}$ monadically dependent, if the class of all graphs is not a transduction of $\mathscr{C}$ [Baldwin, Shelah '85]

## Dependence and monadic dependence

A class $\mathscr{C}$ is
dependent, if the class of all graphs is not an interpretation of $\mathscr{C}$ monadically dependent, if the class of all graphs is not a transduction of $\mathscr{C}$ [Baldwin, Shelah '85]

Theorem (Downey, Fellows, Taylor '96)
FO model checking is AW[*]-complete on general graphs, thus on independent classes

Could it be that on every dependent class, it is FPT?

## Classes with known tractable FO model checking



Theorem (B., Kim, Thomassé, Watrigant '20)
FO Model Checking solvable in $f(|\varphi|, d) n$ on graphs with a $d$-sequence.

## Small classes

Small: class with at most $n!c^{n}$ labeled graphs on [ $n$ ].
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.

Unifies and extends the same result for: $\sigma$-free permutations [Marcus, Tardos '04] $K_{t}$-minor free graphs [Norine, Seymour, Thomas, Wollan '06]

## Small classes

Small: class with at most $n!c^{n}$ labeled graphs on $[n]$. Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have unbounded twin-width

## Small classes

Small: class with at most $n!c^{n}$ labeled graphs on [ $n$ ].
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?
Conjecture (small conjecture)
A hereditary class has bounded twin-width if and only if it is small.

## Recap of the main questions

- Can we efficiently approximate twin-width?
- Can we solve FO model checking on every dependent class?
- Is every hereditary small class of bounded twin-width?


## Recap of the main questions

- Can we efficiently approximate twin-width?
- Can we solve FO model checking on every dependent class?
- Is every hereditary small class of bounded twin-width?

We answer all these questions positively in the case of ordered binary structures $\equiv$ matrices on a finite alphabet

## Twin-width for unordered matrices

$$
\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

Encode a bipartite graph (or, if symmetric, a graph)

## Twin-width for unordered matrices

$$
\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

Contraction of two columns (similar with two rows)

## Twin-width for unordered matrices

$$
\left[\begin{array}{ll|l|llll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & r & 0 & 0 & & 1 \\
0 & 0 & 0 & 0 & 0 & & 0 \\
0 & 1 & r & 0 & 1 & 1 & 0 \\
1 & 0 & r & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & & 1 \\
1 & 0 & 1 & 1 & 0 & & 0
\end{array}\right]
$$

The red degree is now the max number of $r$ per row/column

## Twin-width for unordered matrices

$$
\left[\begin{array}{ll|lllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & r & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & r & 0 & 1 & 1 & 0 \\
1 & 0 & r & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

In the non-bipartite case, we force symmetric pairs of contractions

## Twin-width for matrices

$$
\left[\begin{array}{ll|lll|ll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

That was not the twin-width of ordered matrices

## Twin-width for matrices

Let's also record the columns disagreeing with the contration

## Twin-width for matrices

$\max _{\text {row,column }}$ (number of red entries + red degree)

## Twin-width for matrices

$$
\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

If you find it too clumsy, encode the linear order

## Twin-width for matrices

$$
\left[\begin{array}{lllllll}
3 & 3 & 3 & 3 & 3 & 3 & 1 \\
2 & 3 & 3 & 2 & 2 & 0 & 1 \\
2 & 2 & 2 & 2 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 1 & 1 & 0 \\
3 & 2 & 0 & 1 & 1 & 1 & 0 \\
2 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

and we're back to the unordered definition

## Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|l|l|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

## Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Maximum number of non-constant zones per column or row part
$=$ error value

## Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Maximum number of non-constant zones per column or row part
... until there are a single row part and column part

## Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Twin-width as maximum error value of a contraction sequence

## Matrix FO model checking

Signature for 0,1-matrices $\sigma=\left\{R^{(1)},<^{(2)}, E^{(2)}\right\}$ ( $E^{(2)}$ becomes $E_{1}^{(2)}, \ldots, E_{t}^{(2)}$ for $[0, t]$-matrices)

## Matrix FO model checking

Signature for 0,1-matrices $\sigma=\left\{R^{(1)},<^{(2)}, E^{(2)}\right\}$ ( $E^{(2)}$ becomes $E_{1}^{(2)}, \ldots, E_{t}^{(2)}$ for $[0, t]$-matrices)

- $M \models R(x)$ iff $x$ is a row index
- $M \models x<y$ iff $x$ is a smaller index than $y$
- $M \models E(x, y)$ iff $M_{x, y}=1$


## Matrix FO model checking

Signature for 0,1-matrices $\sigma=\left\{R^{(1)},<^{(2)}, E^{(2)}\right\}$
( $E^{(2)}$ becomes $E_{1}^{(2)}, \ldots, E_{t}^{(2)}$ for $[0, t]$-matrices)

- $M \models R(x)$ iff $x$ is a row index
- $M \models x<y$ iff $x$ is a smaller index than $y$
- $M \models E(x, y)$ iff $M_{x, y}=1$
tractable class: FO model checking solvable in time $f(\varphi)|M|^{O(1)}$


## Growth of classes

Our matrix classes are closed under taking submatrices

- Small class: $\# n \times n$ matrices is $2^{O(n)}$
- Subfactorial: ultimately, $\# n \times n$ matrices $<n$ !

No non-trivial automorphism in totally ordered structures, so no need for labels

## Equivalences in the matrix language

## Theorem

For every matrix class $\mathcal{M}$, the following are equivalent.
(i) $\mathcal{M}$ has bounded twin-width.
(ii) $\mathcal{M}$ has bounded grid rank. (division property)
(iii) $\mathcal{M}$ is pattern-avoiding.
(not including any of 16 "permutation-universal" classes)
(iv) $\mathcal{M}$ is dependent.
(v) $\mathcal{M}$ is monadically dependent.
(vi) $\mathcal{M}$ has subfactorial growth.
(vii) $\mathcal{M}$ is small.
(viii) $\mathcal{M}$ is tractable. (only if $\mathrm{FPT} \neq \mathrm{AW}[*]$.)
(ix) $\mathcal{M}$ has no large rich division. (division property)

## Roadmap



## Roadmap



## Equivalences in the ordered graph language

## Theorem

Let $\mathscr{C}$ be a hereditary class of ordered graphs. The following are equivalent.
(1) $\mathscr{C}$ has bounded twin-width.
(2) $\mathscr{C}$ is monadically dependent.
(3) $\mathscr{C}$ is dependent.
(4) $\mathscr{C}$ is small.
(5) $\mathscr{C}$ contains $2^{O(n)}$ ordered n-vertex graphs.
(6) $\mathscr{C}$ contains less than $\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} k$ ! ordered $n$-vertex graphs, for some $n$.
(7) $\mathscr{C}$ does not include one of 256 hereditary ordered graph classes $\mathscr{M}_{\eta, \lambda, \rho}$ with unbounded twin-width.
(8) FO-model checking is fixed-parameter tractable on $\mathscr{C}$.

## $k$-Rich division



Division

## $k$-Rich division



Division such that for each, say, column part $C$

## $k$-Rich division



Division such that for each, say, column part $C$ no removal of $k$ row parts

## $k$-Rich division



Division such that for each, say, column part $C$ no removal of $k$ row parts leaves $C$ with less than $k$ distinct column vectors

## Large rich division $\Rightarrow$ unbounded twin-width



Fix an $2 k(k+1)$-rich division $\mathcal{D}$, and assume there is a $k$-sequence $\mathcal{S}$

## Large rich division $\Rightarrow$ unbounded twin-width



Consider the first time a part of $\mathcal{S}$ intersects 3 parts of $\mathcal{D}$

## Large rich division $\Rightarrow$ unbounded twin-width



There are at most $k$ other column parts intersecting $C_{b}^{\prime}$ (red degree of $C_{j}$ )

## Large rich division $\Rightarrow$ unbounded twin-width



Each such part $C_{z}$ is non-constant in at most $2 k$ zones of $\mathcal{D}$

## Large rich division $\Rightarrow$ unbounded twin-width



Thus removing $2 k(k+1)$ row parts of $\mathcal{D} \rightarrow \leqslant k+1$ distinct columns

## No large rich division $\Rightarrow$ bounded twin-width

Build greedily a division where every part contradicts the richness

- can only be stopped by a large rich division
- turned into a contraction sequence as in Tww I


## No large rich division $\Rightarrow$ bounded twin-width

Build greedily a division where every part contradicts the richness

- can only be stopped by a large rich division
- turned into a contraction sequence as in Tww I
$\rightarrow$ approximation of twin-width for ordered binary structures
Theorem
There is a fixed-parameter algorithm, which, given an ordered binary structure $G$ and a parameter $k$, either outputs

- a $2 k(k+1)$-rich division of $M(G)$, implying that $\operatorname{tww}(G)>k$.


## Roadmap


$k$-rank division

| rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ |
| :--- | :--- | :--- | :--- |
| rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ |
| rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ |
| rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ |

$k$-by- $k$ division where every cell has rank at least $k$
$k$-rank division

| $r a n k \geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ |
| :--- | :--- | :--- | :--- |
| rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ |
| rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ |
| rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ | rank $\geqslant k$ |

Grid rank of $M=$ largest $k$ such that $M$ admits a $k$-rank division

Large rich division $\Rightarrow$ unbounded grid rank


Fix a large rich division $\mathcal{D}$

## Large rich division $\Rightarrow$ unbounded grid rank



Red zones $=$ large rank; Blue zones $=$ first of its column to contain a particular row vector

## Large rich division $\Rightarrow$ unbounded grid rank



Marcus-Tardos theorem applied to the colored zones $\rightarrow$ division $\mathcal{D}^{\prime}$

Large rich division $\Rightarrow$ unbounded grid rank


Coarser division $\mathcal{D}^{\prime \prime}, 1$ zone of $\mathcal{D}^{\prime \prime} \equiv 2^{k} \times 2^{k}$ zones of $\mathcal{D}^{\prime}$

Large rich division $\Rightarrow$ unbounded grid rank


A zone of $\mathcal{D}^{\prime \prime}$ containing a red zone has large rank

Large rich division $\Rightarrow$ unbounded grid rank


Other zones have diagonals of blue zones

## Large rich division $\Rightarrow$ unbounded grid rank


$2^{k}$ distinct row vectors in each zone of $\mathcal{D}^{\prime \prime}$

## Large rank division $\Rightarrow$ large rank Latin division



Latin rank division: high-rank zones are boxed (red) in a universal permutation pattern,

## Large rank division $\Rightarrow$ large rank Latin division


...they are the usual suspects: diagonal, anti-diagonal, upper triangular, upper anti-triangular, and their complements

## Large rank division $\Rightarrow$ large rank Latin division


...while every other subzones are constant

Large rank division $\Rightarrow$ large rank Latin division


Reversible encoding of $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ by a $6 \times 6$ matrix

Large rank division $\Rightarrow$ large rank Latin division


Injection from $\mathfrak{S}_{n}$ to $\mathcal{M}_{2 n} \rightarrow\left|\mathcal{M}_{n}\right| \geqslant\left\lfloor\frac{n}{2}\right\rfloor!$

## Roadmap



Further extractions in the rank Latin division


Submatrix agreeing on 1 of 16 patterns for the constant zones

$$
\eta:\{-1,1\}^{2} \cup\{(0,0)\} \rightarrow\{0,1\} \text { with } \eta(0,0)=1-\eta(1,1)
$$

## Large rank Latin division $\Rightarrow$ permutation-universal



An example of a pattern with $\eta(x, y)=0$ iff $x=y=1$

## Large rank Latin division $\Rightarrow$ permutation-universal



Another example

## Large rank Latin division $\Rightarrow$ permutation-universal



Now injection from $\mathfrak{S}_{n}$ to $\mathcal{M}_{n}$, so $\left|\mathcal{M}_{n}\right| \geqslant n!$

## Growth gap of hereditary ordered graph class

## Conjecture (Balogh, Bollobás, Morris)

Every hereditary class of ordered graphs have growth $2^{O(n)}$ or at least $n^{n / 2+o(n)}$.

Solved:

- Bounded twin-width: growth is $2^{O(n)}$ (Tww II)
- Unbounded twin-width: $\geqslant n$ ! ordered ( $n, n$ )-bipartite graphs


## Growth gap of hereditary ordered graph class

Conjecture (Balogh, Bollobás, Morris)
Every hereditary class of ordered graphs have growth $2^{O(n)}$
or at least $\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} k!=n^{n / 2+o(n)}$

Solved:

- Bounded twin-width: growth is $2^{O(n)}$ (Tww II)
- Unbounded twin-width: $\geqslant n$ ! ordered ( $n, n$ )-bipartite graphs

A bit more work to get the fine-grained bound

## Roadmap



## The interplay between twin-width and permutations

Twin-width originates from a permutation width defined by Guillemot and Marx to show Permutation Pattern $\in$ FPT

## The interplay between twin-width and permutations

Twin-width originates from a permutation width defined by Guillemot and Marx to show Permutation Pattern $\in$ FPT

Likewise, twin-width heavily relies on Marcus-Tardos theorem

## The interplay between twin-width and permutations

Twin-width originates from a permutation width defined by Guillemot and Marx to show Permutation Pattern $\in$ FPT

Likewise, twin-width heavily relies on Marcus-Tardos theorem
"Permutation-universal" matrices were here key

## The interplay between twin-width and permutations

Twin-width originates from a permutation width defined by Guillemot and Marx to show Permutation Pattern $\in$ FPT

Likewise, twin-width heavily relies on Marcus-Tardos theorem
"Permutation-universal" matrices were here key
Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+) A class of binary structures has bounded twin-width if and only if it is an FO transduction of a proper permutation class.

## The interplay between twin-width and permutations

Twin-width originates from a permutation width defined by Guillemot and Marx to show Permutation Pattern $\in$ FPT

Likewise, twin-width heavily relies on Marcus-Tardos theorem
"Permutation-universal" matrices were here key
Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+)
A class of binary structures has bounded twin-width if and only if it is an FO transduction of a proper permutation class.

Theorem (Tww I + Tww IV)
A class of binary structures has bounded twin-width if and only if it the reduct of a monadically dependent class of totally ordered binary structures.

## Future directions

## Main questions:

Algorithm to compute/approximate twin-width in general Fully classify classes with tractable FO model checking Small conjecture

## Future directions

## Main questions:

Algorithm to compute/approximate twin-width in general Fully classify classes with tractable FO model checking Small conjecture

## Thank you for your attention!

On arxiv
Twin-width I: tractable FO model checking
Twin-width II: small classes
[BKTW '20]
Twin-width III: Max Independent Set, Min Dominating Set, and Coloring
Twin-width IV: low complexity matrices [BGKTW '20]

Twin-width and permutations

## Stanley-Wilf conjecture / Marcus-Tardos theorem

## Question

For every $k$, is there a $c_{k}$ such that every $n \times m 0$, 1-matrix with at least $c_{k} 1$ per row and column admits a k-grid minor?

## Stanley-Wilf conjecture / Marcus-Tardos theorem

Conjecture (reformulation of Füredi-Hajnal conjecture '92)
For every $k$, there is a $c_{k}$ such that every $n \times m 0,1$-matrix with at least $c_{k} \max (n, m) 1$ entries admits a $k$-grid minor.

## Stanley-Wilf conjecture / Marcus-Tardos theorem

Conjecture (reformulation of Füredi-Hajnal conjecture '92)
For every $k$, there is a $c_{k}$ such that every $n \times m 0,1$-matrix with at least $c_{k} \max (n, m) 1$ entries admits a $k$-grid minor.

Conjecture (Stanley-Wilf conjecture '80s)
Any proper permutation class contains only $2^{O(n)}$ n-permutations.
Klazar showed Füredi-Hajnal $\Rightarrow$ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004

Marcus-Tardos one-page inductive proof


Let $M$ be an $n \times n 0$, 1-matrix without $k$-grid minor

Marcus-Tardos one-page inductive proof


Draw a regular $\frac{n}{k^{2}} \times \frac{n}{k^{2}}$ division on top of $M$

Marcus-Tardos one-page inductive proof


A cell is wide if it has at least $k$ columns with a 1

Marcus-Tardos one-page inductive proof


A cell is tall if it has at least $k$ rows with a 1

Marcus-Tardos one-page inductive proof


There are less than $k\binom{k^{2}}{k}$ wide cells per column part. Why?

Marcus-Tardos one-page inductive proof


There are less than $k\binom{k^{2}}{k}$ tall cells per row part

Marcus-Tardos one-page inductive proof


In $W$ and $T$, at most $2 \cdot \frac{n}{k^{2}} \cdot k\binom{k^{2}}{k} \cdot k^{4}=2 k^{3}\binom{k^{2}}{k} n$ entries 1

Marcus-Tardos one-page inductive proof


There are at most $(k-1)^{2} c_{k} \frac{n}{k^{2}}$ remaining 1 . Why?

Marcus-Tardos one-page inductive proof


Choose $c_{k}=2 k^{4}\binom{k^{2}}{k}$ so that $(k-1)^{2} c_{k} \frac{n}{k^{2}}+2 k^{3}\binom{k^{2}}{k} n \leqslant c_{k} n$

