Twin-width and ordered binary structures

Édouard Bonnet

joint work with Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé; Pierre Simon and Szymon Toruńczyk Also Colin Geniet, Eunjung Kim, Jarik Nešetřil, Sebastian Siebertz, and Rémi Watrigant

ENS Lyon, LIP

February 19th, 2021, Bordeaux GT G&O

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u)\triangle N(v)$ turn red, for $N(u)\cap N(v)$ red is absorbing

A contraction sequence of G: Sequence of trigraphs $G=G_n,\,G_{n-1},\ldots,\,G_2,\,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G=G_n,\,G_{n-1},\ldots,\,G_2,\,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G = G_n, G_{n-1}, \ldots, G_2, G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G=G_n,\,G_{n-1},\ldots,\,G_2,\,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G=G_n,G_{n-1},\ldots,G_2,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G=G_n,\,G_{n-1},\ldots,\,G_2,\,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G=G_n,\,G_{n-1},\ldots,\,G_2,\,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

Maximum red degree = 0 overall maximum red degree = 0

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

 $\label{eq:maximum red degree} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \\ \mbox{}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

 $\label{eq:maximum red degree} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \\ \mbox{}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

Maximum red degree = 0 overall maximum red degree = 2

Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one apex: at most "doubles"
- ▶ substitution $G(v \leftarrow H)$: max of the twin-width of G and H

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- ▶ Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size,
- unit interval graphs,
- K_t-minor free graphs,
- map graphs with embedding,
- d-dimensional grids,
- $ightharpoonup K_t$ -free unit d-dimensional ball graphs,
- $ightharpoonup \Omega(\log n)$ -subdivisions of all the n-vertex graphs,
- ▶ cubic expanders defined by iterative random 2-lifts from K₄,
- ► flat classes,
- \triangleright subgraphs of every $K_{t,t}$ -free class above,
- first-order transductions of all the above.

Graph FO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

Graph FO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \forall y \ (E(x,y) \Rightarrow \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor y = x_i)$$

$$G \models \varphi$$
? $\Leftrightarrow k$ -Vertex Cover

Graph FO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists x_1 \exists y_1 \cdots \exists x_k \exists y_k \bigwedge_{\substack{\{x,y\} \in \left(\begin{cases} x_1, y_1, \dots, x_k, y_k \end{cases}\right)}} x \neq y$$

$$\wedge E(x,y) \Leftrightarrow \bigvee_{1 \leqslant i \leqslant k} (x = x_i \land y = y_i) \lor (x = y_i \land y = x_i)$$

$$G \models \varphi? \Leftrightarrow$$

Graph FO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists x_1 \exists y_1 \cdots \exists x_k \exists y_k \bigwedge_{\{x,y\} \in \binom{\{x_1,y_1,\dots,x_k,y_k\}}{2}} x \neq y$$

$$\wedge E(x,y) \Leftrightarrow \bigvee_{1 \leqslant i \leqslant k} (x = x_i \land y = y_i) \lor (x = y_i \land y = x_i)$$

$$G \models \varphi$$
? \Leftrightarrow k-Induced Matching

Graph FO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \bigvee_{1 \leqslant q \leqslant k, \ q \text{ is odd}} \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_1 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_1, x_2) \lor x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_2, x_2) \land x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_2, x_2) \land x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_2, x_2) \land x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_2, x_2) \land x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_2, x_2) \land x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_2, x_2) \land x_2) \land (\forall x_2 \notin \{s, x_2\} \ \neg E(x_2, x_2) \land x_2) \land (\forall x$$

$$(\exists x_3 \notin \{s, x_1, x_2\} E(x_2, x_3) \land (\forall x_4 \cdots (\exists x_q \notin \{s, x_1, \dots, x_{q-1}\} E(x_{q-1}, x_q) \land (\forall x_{q+1} \neg E(x_q, x_{q+1}) \lor x_{q+1} \in \{s, x_1, \dots, x_q\})) \cdots)))$$

$$G \models \varphi? \Leftrightarrow$$

Graph FO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \bigvee_{1 \leqslant q \leqslant k, \ q \text{ is odd}} \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s\} \ E(s, x_2) \land (x_2 \land \{x_2 \land \{x_2 \land \{x_2 \land \{x_2 \land \{x_2$$

$$(\exists x_3 \notin \{s, x_1, x_2\} E(x_2, x_3) \land (\forall x_4 \cdots (\exists x_q \notin \{s, x_1, \dots, x_{q-1}\} E(x_{q-1}, x_q) \land (\forall x_{q+1} \neg E(x_q, x_{q+1}) \lor x_{q+1} \in \{s, x_1, \dots, x_q\})) \cdots)))$$

$$G \models \varphi$$
? \Leftrightarrow Short Generalized Geography

FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)

FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)

FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)

FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)

$$\varphi(x,y) = E(x,y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y,z))$$

$$\lor (R(x) \land B(y) \land \exists z R(z) \land E(y,z) \land \neg \exists z B(z) \land E(y,z))$$

FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)

$$\varphi(x,y) = E(x,y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y,z))$$

$$\lor (R(x) \land B(y) \land \exists z R(z) \land E(y,z) \land \neg \exists z B(z) \land E(y,z))$$

FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)

FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

Theorem (B., Kim, Thomassé, Watrigant '20)

Transductions of bounded twin-width classes have bounded twin-width.

Dependence and monadic dependence

A class $\mathscr C$ is **dependent,** if the class of all graphs is not an interpretation of $\mathscr C$ **monadically dependent,** if the class of all graphs is not a transduction of $\mathscr C$ [Baldwin, Shelah '85]

Dependence and monadic dependence

A class $\mathscr C$ is **dependent**, if the class of all graphs is not an interpretation of $\mathscr C$ **monadically dependent**, if the class of all graphs is not a transduction of $\mathscr C$ [Baldwin, Shelah '85]

Theorem (Downey, Fellows, Taylor '96)

FO model checking is AW[*]-complete on general graphs, thus on independent classes

Could it be that on every dependent class, it is FPT?

Classes with known tractable FO model checking

Theorem (B., Kim, Thomassé, Watrigant '20)

FO Model Checking solvable in $f(|\varphi|, d)$ n on graphs with a d-sequence.

Small classes

Small: class with at most $n!c^n$ labeled graphs on [n]. Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width classes are small.

Unifies and extends the same result for: σ -free permutations [Marcus, Tardos '04] K_t -minor free graphs [Norine, Seymour, Thomas, Wollan '06]

Small classes

Small: class with at most $n!c^n$ labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have *unbounded* twin-width

Small classes

Small: class with at most $n!c^n$ labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture)

A hereditary class has bounded twin-width if and only if it is small.

Recap of the main questions

- ► Can we efficiently approximate twin-width?
- ► Can we solve FO model checking on every dependent class?
- ► Is every hereditary small class of bounded twin-width?

Recap of the main questions

- Can we efficiently approximate twin-width?
- ► Can we solve FO model checking on every dependent class?
- Is every hereditary small class of bounded twin-width?

We answer all these questions positively in the case of ordered binary structures \equiv matrices on a finite alphabet

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Encode a bipartite graph (or, if symmetric, a graph)

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Contraction of two columns (similar with two rows)

```
\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & r \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & r & 0 & 1 & 1 & 0 \\ 1 & 0 & r & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}
```

The red degree is now the max number of r per row/column

```
\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & r & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & r & 0 & 1 & 1 & 0 \\ 1 & 0 & r & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}
```

In the non-bipartite case, we force symmetric pairs of contractions

1	1	1	1	1	1	
0	1	1		0	0	1
0	0	0	0	0	0	0
0	1	0	0	1	1	0
1	0	0	1	1	1	0
0	1	1	1	0	1	1
1	0	$\lfloor 1 \rfloor$	1	0	$\lfloor 1 \rfloor$	0

That was not the twin-width of ordered matrices

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & r & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & r & 0 & 1 & 1 & 0 \\ 1 & 0 & r & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Let's also record the columns disagreeing with the contration

```
 \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & r & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & r & 0 \\ 1 & 0 & r & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}
```

 $\max_{row,column} (number of red entries + red degree)$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

If you find it too clumsy, encode the linear order

$$\begin{bmatrix} 3 & 3 & 3 & 3 & 3 & 3 & 1 \\ 2 & 3 & 3 & 2 & 2 & 0 & 1 \\ 2 & 2 & 2 & 2 & 0 & 0 & 0 \\ 2 & 3 & 2 & 0 & 1 & 1 & 0 \\ 3 & 2 & 0 & 1 & 1 & 1 & 0 \\ 2 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

and we're back to the unordered definition

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0							1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
$\boxed{1}$	0	1	1	1	0	0	1

Maximum number of non-constant zones per column or row part = error value

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1				1	
	1		0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Maximum number of non-constant zones per column or row part ...until there are a single row part and column part

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

$\begin{bmatrix} 1 \end{bmatrix}$	1	1	1	1	1	1	0
	1				1		
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Twin-width as maximum error value of a contraction sequence

Matrix FO model checking

Signature for 0,1-matrices $\sigma = \{R^{(1)}, <^{(2)}, E^{(2)}\}\$ $(E^{(2)} \text{ becomes } E_1^{(2)}, \dots, E_t^{(2)} \text{ for } [0, t]\text{-matrices})$

Matrix FO model checking

Signature for 0,1-matrices $\sigma = \{R^{(1)}, <^{(2)}, E^{(2)}\}\$ ($E^{(2)}$ becomes $E_1^{(2)}, \ldots, E_t^{(2)}$ for [0, t]-matrices)

- $ightharpoonup M \models R(x)$ iff x is a row index
- ▶ $M \models x < y$ iff x is a smaller index than y
- $M \models E(x,y) \text{ iff } M_{x,y} = 1$

Matrix FO model checking

Signature for 0,1-matrices $\sigma = \{R^{(1)}, <^{(2)}, E^{(2)}\}\$ ($E^{(2)}$ becomes $E_1^{(2)}, \ldots, E_t^{(2)}$ for [0, t]-matrices)

- $ightharpoonup M \models R(x)$ iff x is a row index
- $ightharpoonup M \models x < y \text{ iff } x \text{ is a smaller index than } y$
- \blacktriangleright $M \models E(x, y)$ iff $M_{x,y} = 1$

tractable class: FO model checking solvable in time $f(\varphi)|M|^{O(1)}$

Growth of classes

Our matrix classes are closed under taking submatrices

- ▶ Small class: $\#n \times n$ matrices is $2^{O(n)}$
- ▶ Subfactorial: ultimately, $\#n \times n$ matrices < n!

No non-trivial automorphism in totally ordered structures, so no need for labels

Equivalences in the matrix language

Theorem

For every matrix class \mathcal{M} , the following are equivalent.

- (i) M has bounded twin-width.
- (ii) M has bounded grid rank. (division property)
- (iii) M is pattern-avoiding.
 (not including any of 16 "permutation-universal" classes)
- (iv) M is dependent.
- (v) \mathcal{M} is monadically dependent.
- (vi) M has subfactorial growth.
- (vii) M is small.
- (viii) \mathcal{M} is tractable. (only if $FPT \neq AW[*]$.)
 - (ix) \mathcal{M} has no large rich division. (division property)

Roadmap

Roadmap

Equivalences in the ordered graph language

Theorem

Let $\mathscr C$ be a hereditary class of ordered graphs. The following are equivalent.

- (1) & has bounded twin-width.
- (2) & is monadically dependent.
- (3) & is dependent.
- (4) *C* is small.
- (5) \mathscr{C} contains $2^{O(n)}$ ordered n-vertex graphs.
- (6) \mathscr{C} contains less than $\sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} k!$ ordered n-vertex graphs, for some n.
- (7) \mathscr{C} does not include one of 256 hereditary ordered graph classes $\mathscr{M}_{n,\lambda,\varrho}$ with unbounded twin-width.
- (8) FO-model checking is fixed-parameter tractable on \mathscr{C} .

		,		
				_
				_
_				_
				_
				_
				_
				_
				_
_	i			_

Division

Division such that for each, say, column part C

Division such that for each, say, column part ${\cal C}$ no removal of ${\it k}$ row parts

Division such that for each, say, column part C no removal of k row parts leaves C with less than k distinct column vectors

 1	
	

Fix an 2k(k+1)-rich division \mathcal{D} , and assume there is a k-sequence \mathcal{S}

Consider the first time a part of ${\mathcal S}$ intersects 3 parts of ${\mathcal D}$

There are at most k other column parts intersecting C_b' (red degree of C_j)

Each such part C_z is non-constant in at most 2k zones of $\mathcal D$

Thus removing 2k(k+1) row parts of $\mathcal{D} \to \leqslant k+1$ distinct columns

No large rich division \Rightarrow bounded twin-width

Build greedily a division where every part contradicts the richness

- can only be stopped by a large rich division
- turned into a contraction sequence as in Tww I

No large rich division ⇒ bounded twin-width

Build greedily a division where every part contradicts the richness

- can only be stopped by a large rich division
- turned into a contraction sequence as in Tww I
- \rightarrow approximation of twin-width for ordered binary structures

Theorem

There is a fixed-parameter algorithm, which, given an ordered binary structure G and a parameter k, either outputs

- ▶ a $2^{O(k^4)}$ -sequence of G, implying that $tww(G) = 2^{O(k^4)}$, or
- ▶ a 2k(k+1)-rich division of M(G), implying that tww(G) > k.

Roadmap

k-rank division

$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$
$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$
$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$
$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$

k-by-k division where every cell has rank at least k

k-rank division

$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$
$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$
$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$
$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$	$rank \geqslant k$

Grid rank of M = largest k such that M admits a k-rank division

Large rich division ⇒ unbounded grid rank

Fix a large rich division \mathcal{D}

Large rich division ⇒ unbounded grid rank

Red zones = large rank; Blue zones = first of its column to contain a particular row vector

Large rich division ⇒ unbounded grid rank

Marcus-Tardos theorem applied to the colored zones o division \mathcal{D}'

Large rich division ⇒ unbounded grid rank

Coarser division \mathcal{D}'' , 1 zone of $\mathcal{D}'' \equiv 2^k \times 2^k$ zones of \mathcal{D}'

Large rich division \Rightarrow unbounded grid rank

A zone of \mathcal{D}'' containing a red zone has large rank

Large rich division ⇒ unbounded grid rank

Other zones have diagonals of blue zones

Large rich division ⇒ unbounded grid rank

 2^k distinct row vectors in each zone of \mathcal{D}''

Latin rank division: high-rank zones are boxed (red) in a universal permutation pattern,

...they are the usual suspects: diagonal, anti-diagonal, upper triangular, upper anti-triangular, and their *complements*

...while every other subzones are constant

Reversible encoding of $\left(\begin{smallmatrix}0&1&0\\1&0&0\\0&0&1\end{smallmatrix}\right)$ by a 6×6 matrix

Injection from \mathfrak{S}_n to $\mathcal{M}_{2n} \to |\mathcal{M}_n| \geqslant \lfloor \frac{n}{2} \rfloor!$

Roadmap

Further extractions in the rank Latin division

Submatrix agreeing on 1 of 16 patterns for the constant zones $\eta: \{-1,1\}^2 \cup \{(0,0)\} \rightarrow \{0,1\}$ with $\eta(0,0)=1-\eta(1,1)$

Large rank Latin division \Rightarrow permutation-universal

An example of a pattern with $\eta(x,y)=0$ iff x=y=1

Large rank Latin division ⇒ permutation-universal

Another example

Large rank Latin division \Rightarrow permutation-universal

Now injection from \mathfrak{S}_n to \mathcal{M}_n , so $|\mathcal{M}_n| \geqslant n!$

Growth gap of hereditary ordered graph class

Conjecture (Balogh, Bollobás, Morris)

Every hereditary class of ordered graphs have growth $2^{O(n)}$ or at least $n^{n/2+o(n)}$.

Solved:

- ▶ Bounded twin-width: growth is $2^{O(n)}$ (Tww II)
- ▶ Unbounded twin-width: $\ge n!$ ordered (n, n)-bipartite graphs

Growth gap of hereditary ordered graph class

Conjecture (Balogh, Bollobás, Morris)

Every hereditary class of ordered graphs have growth $2^{O(n)}$

or at least
$$\sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} k! = n^{n/2 + o(n)}$$

Solved:

- ▶ Bounded twin-width: growth is $2^{O(n)}$ (Tww II)
- ▶ Unbounded twin-width: $\ge n!$ ordered (n, n)-bipartite graphs

A bit more work to get the fine-grained bound

Twin-width originates from a permutation width defined by Guillemot and Marx to show $PERMUTATION PATTERN \in FPT$

Twin-width originates from a permutation width defined by Guillemot and Marx to show $Permutation Pattern \in FPT$

Likewise, twin-width heavily relies on Marcus-Tardos theorem

Twin-width originates from a permutation width defined by Guillemot and Marx to show $Permutation\ Pattern \in FPT$

Likewise, twin-width heavily relies on Marcus-Tardos theorem

"Permutation-universal" matrices were here key

Twin-width originates from a permutation width defined by Guillemot and Marx to show $PERMUTATION PATTERN \in FPT$

Likewise, twin-width heavily relies on Marcus-Tardos theorem

"Permutation-universal" matrices were here key

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+)

A class of binary structures has bounded twin-width if and only if it is an FO transduction of a proper permutation class.

Twin-width originates from a permutation width defined by Guillemot and Marx to show $PERMUTATION PATTERN \in FPT$

Likewise, twin-width heavily relies on Marcus-Tardos theorem

"Permutation-universal" matrices were here key

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+)

A class of binary structures has bounded twin-width if and only if it is an FO transduction of a proper permutation class.

Theorem (Tww I + Tww IV)

A class of binary structures has bounded twin-width if and only if it the reduct of a monadically dependent class of totally ordered binary structures.

Future directions

Main questions:

Algorithm to compute/approximate twin-width in general Fully classify classes with tractable FO model checking Small conjecture

Future directions

Main questions:

Algorithm to compute/approximate twin-width in general Fully classify classes with tractable FO model checking Small conjecture

Thank you for your attention!

On arxiv

Twin-width II: tractable FO model checking [BKTW '20]
Twin-width III: small classes [BGKTW '20]
Twin-width III: Max Independent Set, Min Dominating Set, and Coloring [BGKTW '21]
Twin-width IV: low complexity matrices [BGOdMT '21]
Twin-width and permutations [BNOdMST '21]

Stanley-Wilf conjecture / Marcus-Tardos theorem

Question

For every k, is there a c_k such that every $n \times m \ 0, 1$ -matrix with at least c_k 1 per row and column admits a k-grid minor?

Stanley-Wilf conjecture / Marcus-Tardos theorem

Conjecture (reformulation of Füredi-Hajnal conjecture '92)

For every k, there is a c_k such that every $n \times m \ 0, 1$ -matrix with at least $c_k \max(n, m) \ 1$ entries admits a k-grid minor.

Stanley-Wilf conjecture / Marcus-Tardos theorem

Conjecture (reformulation of Füredi-Hajnal conjecture '92)

For every k, there is a c_k such that every $n \times m \ 0, 1$ -matrix with at least $c_k \max(n, m) \ 1$ entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture '80s)

Any proper permutation class contains only $2^{O(n)}$ n-permutations.

Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000 Marcus and Tardos showed Füredi-Hajnal in 2004

$$\mathcal{A} =$$

Let M be an $n \times n$ 0, 1-matrix without k-grid minor

Λ./				
M =				
	$k^2 \times k^2$			

Draw a regular $\frac{n}{k^2} \times \frac{n}{k^2}$ division on top of M

Λ./				
M =		W 1 1 11 1		
		* **		
	$k^2 \times k^2$			

A cell is wide if it has at least k columns with a 1

Λ 1				
M =			1 1 T 1 1 T 1 1	
	$k^2 \times k^2$			

A cell is tall if it has at least k rows with a 1

		W		
		W		
Λ 1				
M =		W		
	$k^2 \times k^2$			

There are less than $k\binom{k^2}{k}$ wide cells per column part. Why?

Λ./				
M =		Т	Т	Т
	$k^2 \times k^2$			

There are less than $k\binom{k^2}{k}$ tall cells per row part

			W		-
		W	W		Т
1 _					
1 =		H	W	H	Η
			Т		
	$k^2 \times k^2$				W

In W and T, at most $2 \cdot \frac{n}{k^2} \cdot k \binom{k^2}{k} \cdot k^4 = 2k^3 \binom{k^2}{k} n$ entries 1

,				
Λ /			$\neg W, \neg T$ 1	
M =				
	$k^2 \times k^2$			

There are at most $(k-1)^2 c_k \frac{n}{k^2}$ remaining 1. Why?

,			W		
		V	W		Т
1 _				$\neg W, \neg T$ 1	
M =		H	W	H	Т
			Т		
	$k^2 \times k^2$				W

Choose $c_k = 2k^4 \binom{k^2}{k}$ so that $(k-1)^2 c_k \frac{n}{k^2} + 2k^3 \binom{k^2}{k} n \leqslant c_k n$