
Twin-width
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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3
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uvuv

Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing



Contraction sequence
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Contraction sequence

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Contraction sequence

a

b

c

d

e

f

g

b

c

gef

a dad

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Contraction sequence

a

b

c

d

e

f

g

c

g

ad

b efbef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Contraction sequence

a

b

c

d

e

f

g

c

adg

bef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Contraction sequence

a

b

c

d

e

f

g

adg

bcef
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Gi is obtained by performing one contraction in Gi+1.
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Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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overall maximum red degree = 0



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

Maximum red degree = 2
overall maximum red degree = 2



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

b

c

gef

a dad

Maximum red degree = 2
overall maximum red degree = 2



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

c

g

ad

b efbef

Maximum red degree = 2
overall maximum red degree = 2



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

c

adg

bef

Maximum red degree = 1
overall maximum red degree = 2



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

adg

bcef

Maximum red degree = 1
overall maximum red degree = 2
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Simple operations preserving small twin-width
I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one vertex linked arbitrarily: at most “doubles”
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Graphs with bounded twin-width – trees

If possible, contract two twin leaves



Graphs with bounded twin-width – trees

If not, contract a deepest leaf with its parent
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Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex
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Cannot create a red degree-3 vertex



Graphs with bounded twin-width – trees

Generalization to bounded treewidth and even bounded rank-width



Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids
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Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded tree-width, and even, rank-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.



χ-boundedness

C χ-bounded: ∃f , ∀G ∈ C, χ(G) 6 f (ω(G))

Theorem
Every twin-width class is χ-bounded.
More precisely, every graph G of twin-width at most d admits a
proper (d + 2)ω(G)−1-coloring.

Are they polynomially χ-bounded? i.e., χ(G) = O(ω(G)d )

Bounded twin-width graphs do satisfy strong Erdős-Hajnal
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d + 2-coloring in the triangle-free case
Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z ] NGi+1 [u, v ]

z has only red incident edges → d + 2-nd color available to v
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d + 2-coloring in the triangle-free case
Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z ] NGi+1 [u, v ]

z incident to at least one black edge → non-edge between u and v



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem
Bounded twin-width classes are small.

Unifies and extends the same result for:
σ-free permutations [Marcus, Tardos ’04]
Kt-minor free graphs [Norine, Seymour, Thomas, Wollan ’06]



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs
have unbounded twin-width

Construction of subcubic graphs with large twin-width?



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem
Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture)
A hereditary class has bounded twin-width if and only if it is small.



Growth gap of hereditary ordered graph class

Conjecture (Balogh, Bollobás, Morris)
Every hereditary class of ordered graphs have growth 2O(n)

or at least (n/2)!.

Solved:
I Bounded twin-width: growth is 2O(n)

I Unbounded twin-width: witness progressively turned into a
canonical family of > n! ordered (n, n)-bipartite graphs

A bit more work to get the fine-grained bound



Growth gap of hereditary ordered graph class

Conjecture (Balogh, Bollobás, Morris)
Every hereditary class of ordered graphs have growth 2O(n)

or at least
bn/2c∑
k=0

( n
2k
)
k! = nn/2+o(n)

Solved:
I Bounded twin-width: growth is 2O(n)

I Unbounded twin-width: witness progressively turned into a
canonical family of > n! ordered (n, n)-bipartite graphs

A bit more work to get the fine-grained bound



Sparse classes with bounded twin-width

Theorem
Let C a hereditary class of bounded twin-width. TFAE:
I graphs in C are Kt,t-free;
I graphs in C have linearly many edges;
I C has bounded expansion;
I The subgraph-closure of C has bounded twin-width.

Still an interesting family of classes including bounded queue/stack
number, Kt-minor free, and some expander classes

Does polynomial expansion imply bounded twin-width?



Sparse classes with bounded twin-width

Theorem
Let C a hereditary class of bounded twin-width. TFAE:
I graphs in C are Kt,t-free;
I graphs in C have linearly many edges;
I C has bounded expansion;
I The subgraph-closure of C has bounded twin-width.

Still an interesting family of classes including bounded queue/stack
number, Kt-minor free, and some expander classes

Does polynomial expansion imply bounded twin-width?



Open questions

I Polynomial χ-boundedness
I Explicit construction of cubic graphs with large twin-width
I Small conjecture refuted
I Does polynomial expansion imply bounded twin-width?
I Algorithm to compute/approximate twin-width in general

Thank you for your attention!

On arxiv
Twin-width I: tractable FO model checking [BKTW ’20]
Twin-width II: small classes [BGKTW ’20]
Twin-width III: Max Independent Set, Min Dominating Set, and Coloring [BGKTW ’21]
Twin-width IV: low complexity matrices [BGOdMT ’21]
Twin-width and permutations [BNOdMST ’21]
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Stanley-Wilf conjecture / Marcus-Tardos theorem

Question
For every k, is there a ck such that every n×m 0, 1-matrix with at
least ck 1 per row and column admits a k-grid minor?

Conjecture (Stanley-Wilf conjecture ’80s)
Any proper permutation class contains only 2O(n) n-permutations.

Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004
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Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004
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Let M be an n × n 0, 1-matrix without k-grid minor
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k2 division on top of M



Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

A cell is wide if it has at least k columns with a 1
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