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Find a largest collection of disks that pairwise intersect





Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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Guess two farthest disks in an optimum solution S.
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Hence, all the centers of S lie inside the bold digon.
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Two disks centered in the same-color region intersect.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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We solve Max Clique in a co-bipartite graph.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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We solve Max Independent Set in a bipartite graph.



Disk graphs

Inherits the NP-hardness of planar graphs.



So what is known for Max Clique on disk graphs?
I Polynomial-time 2-approximation

I For any clique there are 4 points hitting all the disks.
I Guess those points.
I Solve exactly in each of the

(4
2
)
co-bipartite graphs.

I Output the best solution.
I No non-trivial exact algorithm known.



And what is known about disk graphs?
I Every planar graph is a disk graph.
I Every triangle-free disk graph is planar (centers → vertices).
I So a triangle-free non-planar graph like K3,3 is not disk.
I A subdivision of a non-planar graph is not a disk graph

(more generally not a string graph).
I ...

Other ways of showing that a graph is not disk?
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Say the 4 centers encoding a K2,2 = 2K2 are in convex position.

c1

c2
c3

c4

Then the two non-edges should be diagonal.

Suppose d(c1, c3) > r1 + r3 and d(c2, c4) > r2 + r4.
But d(c1, c3) + d(c2, c4) 6 d(c1, c2) + d(c3, c4) 6 r1 + r2 + r3 + r4,
a contradiction.



Say the 4 centers encoding a K2,2 = 2K2 are in convex position.

c1

c2
c3

c4

Then the two non-edges should be diagonal.

Suppose d(c1, c3) > r1 + r3 and d(c2, c4) > r2 + r4.
But d(c1, c3) + d(c2, c4) 6 d(c1, c2) + d(c3, c4) 6 r1 + r2 + r3 + r4,
a contradiction.



Say the 4 centers encoding a K2,2 = 2K2 are in convex position.

c1

c2
c3

c4

Then the two non-edges should be diagonal.

Suppose d(c1, c3) > r1 + r3 and d(c2, c4) > r2 + r4.
But d(c1, c3) + d(c2, c4) 6 d(c1, c2) + d(c3, c4) 6 r1 + r2 + r3 + r4,
a contradiction.



Conclusion: the 4 centers of an induced 2K2 are either
I not in convex position or
I in convex position with the non-edges being diagonal.

c1

c2
c3 c4

or

c1

c2c3

c4

Reformulation: either
I the line `(c1, c2) crosses the segment c3c4, or
I the line `(c3, c4) crosses the segment c1c2, or
I both; equivalently, the segments c1c2 and c3c4 cross.
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Assume Cs + Ct is a disk graph.
Link consecutive centers of the two disjoint cycles (non-edges).

si

For each red segment si , we denote by:
I ai the number of blue segments crossed by `(si ).
I bi the number of blue segments whose extension cross si .
I ci the number of blue segments intersecting si .

It should be that ai + bi − ci = t.
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Σ
16i6s

ai + bi − ci = st

1) ai is even:

number of intersections of a line with a closed curve.

2) Σ
16i6s

bi = Σ
16i6t

a′i is therefore even. (a′j , b′j , c ′j same for blue segments)

3) Σ
16i6s

ci is even: number of intersections of two closed curves.

Σ
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16i6s

ai + Σ
16i6t

a′i − Σ
16i6s

ci is even.

Hence s and t cannot be both odd.
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The complement of two odd cycles is not a disk graph.

Are there other graphs of co-degree 2 which are not disk?



Complement of an even cycle 1, 2, . . . , 2s

D2 D2s

D1

p1 ps
p1 psp2 p3 p4

ps-1ps-2ps-3. . .
D1

We start by positioning D1,D2,D2s .
We draw a convex chain between p1 and ps .

D2i : same radius and boundary crosses pi with tangent `(pi−1pi+1)
D2i+1: larger radius and "co-tangent" to D2i and D2i+2.
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Stacking complements of even cycles

D1

D2i+1

D2i
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Stacking complements of even cycles

D1

D2i+1

D2i



Disks of different cycle complements intersect

D1

D2i



Complement of odd cycle by unit disks (Atminas & Zamaraev)
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Complement of odd cycle by unit disks (Atminas & Zamaraev)



Different representation with non-unit disks

D′2i+1

D′2i

D′2s+1

D′1

Same construction except D′1 intersects D′2s
and D′2s+1 is "co-tangent" to D′1 and D′2s .



Complement of many even cycles and one odd cycle

D1

D2i+1

D2i

D′2i+1

D′2s+1



Sanity check: trying to stack complements of odd cycles

D′2i+1

D′2i

D′2s+1

D′1

D′′2s′+1

D′′2s′+1 cannot possibly intersect D′1



Going back to algorithms.

Can we solve Max Independent Set more efficiently if there are no
two vertex-disjoint odd cycles as an induced subgraph?

Another way to see it:
at least one edge between two vertex-disjoint odd cycles
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Quasi-polynomial time approximation-scheme (QPTAS)

ocp(G): maximum size of an odd cycle packing.

Theorem (Bock et al. 2014)
PTAS for Max Independent Set for ocp = o(n/ log n).

Lemma
Let H complement of a disk graph with n vertices.
If ocp(H) > n/ log2 n, then vertex of degree at least n/ log4 n.

Proof.
The shortest odd cycle has size at most log2 n.
There is a vertex of this cycle with degree at least n/ log4 n.
Branching factor (1, n/ log4 n) (in 2log5 n), and PTAS otherwise.
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Subexponential algorithm

Theorem (Györi et al. 1997)
A graph with odd girth at least δn has an odd cycle cover size
O((1/δ) log(1/δ)).

Let G be the co-disk, ∆ its degree, c its odd girth.
We can:

I branch in time 2Õ(n/∆).
I solve in time 2O(∆c).
I solve in time 2Õ(n/c).

2Õ(min(n/∆,n/c,c∆)) 6 2Õ(n2/3) for ∆ = c = n1/3.
2Õ(
√

n) if the degree or the odd girth is constant, polytime if both.
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I solve in time 2O(∆c).
I solve in time 2Õ(n/c).
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Filled ellipses and triangles

2-subdivisions: graphs where each edge is subdivided exactly twice
co-2-subdivisions: complements of 2-subdivisions

Theorem (technical)
For some α, Maximum Independent Set on 2-subdivisions is not
α-approximable algorithm in 2n1−ε , unless the ETH fails.

Graphs of filled ellipses or filled triangles contain all the
co-2-subdivisions.
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Filled triangles



Filled ellipses

Thank you for your attention!
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