Maximum Clique on Disks

Édouard Bonnet joint work with Panos Giannopoulos, Eun Jung Kim, Paweł Rzążewski, and Florian Sikora

Middlesex University, London

Séminaire équipe *Optimisation Combinatoire*, G-SCOP, Grenoble, 18 décembre 2017

Find a largest collection of disks that pairwise intersect

Guess two farthest disks in an optimum solution S.

Hence, all the centers of S lie inside the bold digon.

Two disks centered in the same-color region intersect.

We solve Max Clique in a co-bipartite graph.

We solve Max Independent Set in a bipartite graph.

Disk graphs

Unweighted problems

3-Colourability [?]	NP-complete	[+]Details
Clique [?]	Unknown to ISGCI	[+]Details
Clique cover [?]	NP-complete	[+]Details
Colourability [?]	NP-complete	[+]Details
Domination [?]	NP-complete	[+]Details
Feedback vertex set [?]	NP-complete	[+]Details
Graph isomorphism [?]	Unknown to ISGCI	[+]Details
Hamiltonian cycle [?]	NP-complete	[+]Details
Hamiltonian path [?]	NP-complete	[+]Details
Independent dominating set [?]	NP-complete	[+]Details
Independent set [?]	NP-complete	[+]Details
Maximum bisection [?]	NP-complete	[+]Details
Maximum cut [?]	NP-complete	[+]Details
Minimum bisection [?]	NP-complete	[+]Details
Monopolarity [?]	NP-complete	[+]Details
Polarity [?]	NP-complete	[+]Details
Recognition [?]	NP-hard	[+]Details

Inherits the NP-hardness of planar graphs.

So what is known for Max Clique on disk graphs?

- Polynomial-time 2-approximation
 - ► For any clique there are 4 points hitting all the disks.
 - Guess those points.
 - Solve exactly in each of the $\binom{4}{2}$ co-bipartite graphs.
 - Output the best solution.
- No non-trivial exact algorithm known.

And what is known about disk graphs?

. . .

- Every planar graph is a disk graph.
- Every triangle-free disk graph is planar (centers \rightarrow vertices).
- So a triangle-free non-planar graph like $K_{3,3}$ is not disk.
- A subdivision of a non-planar graph is not a disk graph (more generally not a string graph).

And what is known about disk graphs?

. . .

- Every planar graph is a disk graph.
- Every triangle-free disk graph is planar (centers \rightarrow vertices).
- So a triangle-free non-planar graph like $K_{3,3}$ is not disk.
- A subdivision of a non-planar graph is not a disk graph (more generally not a string graph).

Other ways of showing that a graph is not disk?

Say the 4 centers encoding a $K_{2,2} = \overline{2K_2}$ are in convex position.

Say the 4 centers encoding a $K_{2,2} = \overline{2K_2}$ are in convex position.

Then the two non-edges should be diagonal.

Say the 4 centers encoding a $K_{2,2} = \overline{2K_2}$ are in convex position.

Then the two non-edges should be diagonal.

Suppose $d(c_1, c_3) > r_1 + r_3$ and $d(c_2, c_4) > r_2 + r_4$. But $d(c_1, c_3) + d(c_2, c_4) \leq d(c_1, c_2) + d(c_3, c_4) \leq r_1 + r_2 + r_3 + r_4$, a contradiction. Conclusion: the 4 centers of an induced $\overline{2K_2}$ are either

- not in convex position or
- ▶ in convex position with the non-edges being *diagonal*.

Conclusion: the 4 centers of an induced $\overline{2K_2}$ are either

- not in convex position or
- ▶ in convex position with the non-edges being *diagonal*.

Reformulation: either

- the line $\ell(c_1, c_2)$ crosses the segment c_3c_4 , or
- the line $\ell(c_3, c_4)$ crosses the segment c_1c_2 , or
- both; equivalently, the segments c_1c_2 and c_3c_4 cross.

- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .

- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .

- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- ► *c_i* the number of blue segments intersecting *s_i*.

- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .

For each red segment s_i , we denote by:

- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .

It should be that $a_i + b_i - c_i = t$.

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even:

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even: number of intersections of a line with a closed curve.

2)
$$\sum_{1 \leq i \leq s} b_i =$$

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even: number of intersections of a line with a closed curve.

- 2) $\sum_{1\leqslant i\leqslant s} b_i = \sum_{1\leqslant i\leqslant t} a_i'$ is therefore even. $(a_j', b_j', c_j'$ same for blue segments)
- 3) $\sum_{1 \leq i \leq s} c_i$ is even:

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even: number of intersections of a line with a closed curve. 2) $\sum_{1 \leq i \leq s} b_i = \sum_{1 \leq i \leq t} a'_i$ is therefore even. (a'_j, b'_j, c'_j) same for blue segments)

3) $\sum_{1 \leq i \leq s} c_i$ is even: number of intersections of two closed curves.

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=$$

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

a_i is even: number of intersections of a line with a closed curve.
∑_{1≤i≤s} b_i = ∑_{1≤i≤t} a'_i is therefore even. (a'_i, b'_i, c'_i same for blue segments)
∑_{1≤i≤s} c_i is even: number of intersections of two closed curves.

$$\sum_{1 \leqslant i \leqslant s} a_i + b_i - c_i = \sum_{1 \leqslant i \leqslant s} a_i + \sum_{1 \leqslant i \leqslant t} a'_i - \sum_{1 \leqslant i \leqslant s} c_i \text{ is even.}$$

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

a_i is even: number of intersections of a line with a closed curve.
∑_{1≤i≤s} b_i = ∑_{1≤i≤t} a'_i is therefore even. (a'_i, b'_i, c'_i same for blue segments)
∑_{1≤i≤s} c_i is even: number of intersections of two closed curves.

$$\sum_{1 \leqslant i \leqslant s} a_i + b_i - c_i = \sum_{1 \leqslant i \leqslant s} a_i + \sum_{1 \leqslant i \leqslant t} a'_i - \sum_{1 \leqslant i \leqslant s} c_i \text{ is even.}$$

Hence *s* and *t* cannot be both odd.

The complement of two odd cycles is not a disk graph.

Are there other graphs of co-degree 2 which are not disk?

Complement of an even cycle $1, 2, \ldots, 2s$

We start by positioning $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_{2s}$. We draw a convex chain between p_1 and p_s .

Complement of an even cycle $1, 2, \ldots, 2s$

We start by positioning $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_{2s}$. We draw a convex chain between p_1 and p_s .

 D_{2i} : same radius and boundary crosses p_i with tangent $\ell(p_{i-1}p_{i+1})$

Complement of an even cycle $1, 2, \ldots, 2s$

We start by positioning $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_{2s}$. We draw a convex chain between p_1 and p_s .

 D_{2i} : same radius and boundary crosses p_i with tangent $\ell(p_{i-1}p_{i+1})$ D_{2i+1} : larger radius and "co-tangent" to D_{2i} and D_{2i+2} . Stacking complements of even cycles

Stacking complements of even cycles

Stacking complements of even cycles

Disks of different cycle complements intersect

Complement of odd cycle by unit disks (Atminas & Zamaraev)

Complement of odd cycle by unit disks (Atminas & Zamaraev)

Complement of odd cycle by unit disks (Atminas & Zamaraev)

Different representation with non-unit disks

Same construction except \mathcal{D}'_1 intersects \mathcal{D}'_{2s} and \mathcal{D}'_{2s+1} is "co-tangent" to \mathcal{D}'_1 and \mathcal{D}'_{2s} .

Complement of many even cycles and one odd cycle

Sanity check: trying to stack complements of odd cycles

 $\mathcal{D}_{2s'+1}''$ cannot possibly intersect \mathcal{D}_1'

Going back to algorithms.

Can we solve Max Independent Set more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

Going back to algorithms.

Can we solve Max Independent Set more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

Another way to see it:

at least one edge between two vertex-disjoint odd cycles

ocp(G): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for Max Independent Set for $ocp = o(n/\log n)$.

ocp(G): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for Max Independent Set for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

ocp(G): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for Max Independent Set for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

The shortest odd cycle has size at most $\log^2 n$.

ocp(G): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for Max Independent Set for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

The shortest odd cycle has size at most $\log^2 n$. There is a vertex of this cycle with degree at least $n/\log^4 n$.

ocp(G): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for Max Independent Set for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

The shortest odd cycle has size at most $\log^2 n$. There is a vertex of this cycle with degree at least $n/\log^4 n$. Branching factor $(1, n/\log^4 n)$ (in $2^{\log^5 n}$), and PTAS otherwise.

Theorem (Györi et al. 1997)

A graph with odd girth at least δn has an odd cycle cover size $O((1/\delta)\log(1/\delta))$.

```
Theorem (Györi et al. 1997)
```

A graph with odd girth at least δn has an odd cycle cover size $O((1/\delta)\log(1/\delta))$.

Let G be the co-disk, Δ its degree, c its odd girth. We can:

- branch in time 2^{Õ(n/Δ)}.
- ► solve in time 2^{O(Δc)}.
- ▶ solve in time 2^{Õ(n/c)}.

```
Theorem (Györi et al. 1997)
```

A graph with odd girth at least δn has an odd cycle cover size $O((1/\delta)\log(1/\delta))$.

Let G be the co-disk, Δ its degree, c its odd girth. We can:

- branch in time 2^{Õ(n/Δ)}.
- ► solve in time 2^{O(Δc)}.
- ▶ solve in time 2^{Õ(n/c)}.

 $2^{\tilde{O}(\min(n/\Delta, n/c, c\Delta))} \leqslant 2^{\tilde{O}(n^{2/3})}$ for $\Delta = c = n^{1/3}$.

```
Theorem (Györi et al. 1997)
```

A graph with odd girth at least δn has an odd cycle cover size $O((1/\delta)\log(1/\delta))$.

Let G be the co-disk, Δ its degree, c its odd girth. We can:

- branch in time 2^{Õ(n/Δ)}.
- ► solve in time 2^{O(Δc)}.
- ▶ solve in time 2^{Õ(n/c)}.

 $2^{\tilde{O}(\min(n/\Delta, n/c, c\Delta))} \leq 2^{\tilde{O}(n^{2/3})}$ for $\Delta = c = n^{1/3}$. $2^{\tilde{O}(\sqrt{n})}$ if the degree or the odd girth is constant, polytime if both.

Filled ellipses and triangles

2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions

Theorem (technical)

For some α , Maximum Independent Set on 2-subdivisions is not α -approximable algorithm in $2^{n^{1-\varepsilon}}$, unless the ETH fails.

Filled ellipses and triangles

2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions

Theorem (technical)

For some α , Maximum Independent Set on 2-subdivisions is not α -approximable algorithm in $2^{n^{1-\varepsilon}}$, unless the ETH fails.

Graphs of filled ellipses or filled triangles contain all the co-2-subdivisions.

Thank you for your attention!