Algorithmic developments using twin-width

Édouard Bonnet

ENS Lyon, LIP

September 26th, 2022, CoA, Paris

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=0$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Partition viewpoint: $\mathcal{S}=\mathcal{P}_{n}, \mathcal{P}_{n-1}, \ldots, \mathcal{P}_{1}$ with \mathcal{P}_{i} a partition of $V(G)$ in i parts

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 \& '21)

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width or clique-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size,
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree,
- first-order (FO) transductions of the above.

Given a d-sequence, one can solve

 any problem definable with a FO sentence φ in time $f(d, \varphi)|V(G)|$. special cases like k-Inderendent Set in time $2^{O_{d}(k)}|V(G)|$
$O_{d}(1)$-approximate Min Dominating Set

How hard is computing twin-width?

Theorem (Bergé, B., Déprés '22)
It is NP-complete to decide if the twin-width is at most 4.

How hard is computing twin-width?

Theorem (Bergé, B., Déprés '22)
It is NP-complete to decide if the twin-width is at most 4.

Question

Given a graph G and an integer d, is it possible to either provide an $f(d)$-sequence of G or correctly conclude that $\operatorname{tww}(G)>d$, in time $g(d)|V(G)|^{O(1)}$ or $|V(G)|^{g(d)}$?

Question

Is twin-width at most d polytime recognizable? (for $d \in\{2,3\}$)

k-grid permutation

Here with $k=3$, it has every 3 -permutation as subpermutation

The 6 universal patterns of unbounded twin-width

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22)
$\exists f$ s.t. all the adjacency matrices of a graph of twin-width $\geqslant f(k)$ contains a k-grid permutation submatrix or one of its 5 encodings

Semi-induced matching, antimatching, and 4 half-graphs or ladders

Twin-width win-win

Goal: compute FO-definable parameter p in FPT time in \mathcal{C}.
Show that $\exists f$ non-decreasing, such that $\forall G \in \mathcal{C}$ an $f(p(G))$-sequence of G can be computed in FPT time

- Width $>f(k)$: report $p(G)>k$
- Width $\leqslant f(k)$: use FO model checking algorithm

Twin-width win-win

Goal: compute FO-definable parameter p in FPT time in \mathcal{C}.
Show that $\exists f$ non-decreasing, such that $\forall G \in \mathcal{C}$ an $f(p(G))$-sequence of G can be computed in FPT time

- Width $>f(k)$: report $p(G)>k$
- Width $\leqslant f(k)$: use FO model checking algorithm
$\rightarrow k$-BICLIQUE in visibility graphs of 1.5 D terrains
$\rightarrow k$-Independent Set in visibility graphs of simple polygons
[B., Chakraborty, Kim, Köhler, Lopes, Thomassé '22]

Visibility graphs of 1.5D terrains

Order along x-coordinates

Visibility graphs of 1.5D terrains

Order along x-coordinates

k-BICLIQUE and k-LADDER are FPT in this class

Ordering along the boundary of the polygon

Ordering along the boundary of the polygon

Extractions

Here we only need a decreasing pattern

Extractions

Here we only need a decreasing pattern

Extractions

Here we only need a decreasing pattern

By Ramsey's theorem, we can assume that the $\alpha_{i} \mathrm{~s}$ and the $\beta_{i} \mathrm{~s}$ both induce a clique.

Geometric arguments

Quadrangle $\alpha_{2} \alpha_{3} \beta_{3} \beta_{2}$ is not self-crossing

Geometric arguments

Quadrangle $\alpha_{2} \alpha_{3} \beta_{3} \beta_{2}$ has to be convex

Geometric arguments

Then $\alpha_{2}, \alpha_{3}, \beta_{3}, \beta_{2}$ induce K_{4}, a contradiction

Approximation algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
For every d, there is a D such that every n-vertex graph with twin-width at most d iteratively admits $\frac{n}{D}$ disjoint pairs that can be contracted in a D-sequence.

Approximation algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

For every d, there is a D such that every n-vertex graph with twin-width at most d iteratively admits $\frac{n}{D}$ disjoint pairs that can be contracted in a D-sequence.

Consequence: We can turn a d-sequence into a balanced D-sequence \mathcal{S}, i.e., such that $\forall \mathcal{P}_{i} \in \mathcal{S}, \forall P \in \mathcal{P}_{i},|P| \leqslant D \frac{n}{i}$

Approximating Max Independent Set

In general graphs: an $n^{1-\varepsilon}$-approximation or $r(n)$-approximation in time $\exp \left(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}}\right)$ are unlikely

Approximating Max Independent Set

In general graphs: an $n^{1-\varepsilon}$-approximation or $r(n)$-approximation in time $\exp \left(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}}\right)$ are unlikely

Approximating Max Independent Set

In general graphs: an $n^{1-\varepsilon}$-approximation or $r(n)$-approximation in time $\exp \left(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}}\right)$ are unlikely

$D+1$-color the red graph of $G / \mathcal{P}_{\sqrt{n}}$ in polynomial time

Approximating Max Independent Set

In general graphs: an $n^{1-\varepsilon}$-approximation or $r(n)$-approximation in time $\exp \left(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}}\right)$ are unlikely

Solve MIS in $G\left[P_{j}\right]$ for every $P_{j} \in \mathcal{P}_{\sqrt{n}}$ in $2^{O(D \sqrt{n})}$ time

Approximating Max Independent Set

In general graphs: an $n^{1-\varepsilon}$-approximation or $r(n)$-approximation in time $\exp \left(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}}\right)$ are unlikely

Solve weighted MIS in $G / \mathcal{P}_{\sqrt{n}}\left[C_{i}\right], \forall i \in[D+1]$ in $2^{O(\sqrt{n})}$ time

Approximating Max Independent Set

In general graphs: an $n^{1-\varepsilon}$-approximation or $r(n)$-approximation in time $\exp \left(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}}\right)$ are unlikely

A heaviest such solution is a $(D+1)$-approximation

Approximating MIS given a d-sequence
Theorem (Bergé, B., Déprés, Watrigant '22+)
MIS can be $O_{d}(1)$-approximated in time $2^{O_{d}(\sqrt{n})}$.

Approximating MIS given a d-sequence

Theorem (Bergé, B., Déprés, Watrigant '22+)
MIS can be $O_{d}(1)$-approximated in time $2^{O_{d}(\sqrt{n})}$.

Instead of exactly solving instances of size $O_{d}(\sqrt{n})$, recurse
Theorem (Bergé, B., Déprés, Watrigant '22+)
MIS can be $O_{d}(1)^{2^{q}-1}$-approximated in time $2^{O_{d, q}\left(n^{2-q}\right)}, \forall q \in \mathbb{N}$.

Approximating MIS given a d-sequence

Theorem (Bergé, B., Déprés, Watrigant '22+)
MIS can be $O_{d}(1)$-approximated in time $2^{O_{d}(\sqrt{n})}$.

Instead of exactly solving instances of size $O_{d}(\sqrt{n})$, recurse
Theorem (Bergé, B., Déprés, Watrigant '22+)
MIS can be $O_{d}(1)^{2^{q}-1}$-approximated in time $2^{O_{d, q}\left(n^{2-q}\right)}, \forall q \in \mathbb{N}$.
Setting $q:=\log \frac{\varepsilon \log n}{O_{d}(1)}$
Theorem (Bergé, B., Déprés, Watrigant '22+)
MIS can be n^{ε}-approximated in polynomial time.

Coloring, Max Induced Matching

Similar results for these problems

Open questions

FPT/XP approximation of twin-width

Practical FPT algorithms for the problems on polygons/terrains

Better than n^{ε}-approximation for MIS given $O(1)$-sequences? (every such approximation would then self-improve)
unexpected use of the FO model checking algorithm on bounded tww (recent example with 3-terminal pairs Directed Multicut)

Open questions

FPT/XP approximation of twin-width

Practical FPT algorithms for the problems on polygons/terrains

Better than n^{ε}-approximation for MIS given $O(1)$-sequences? (every such approximation would then self-improve)
unexpected use of the FO model checking algorithm on bounded tww (recent example with 3-terminal pairs Directed Multicut)

Thank you for your attention!

