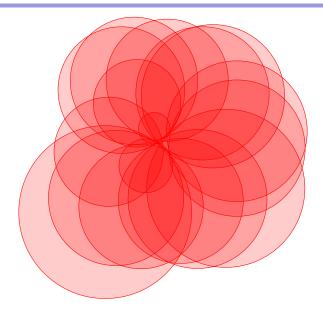
Maximum Clique on Disks

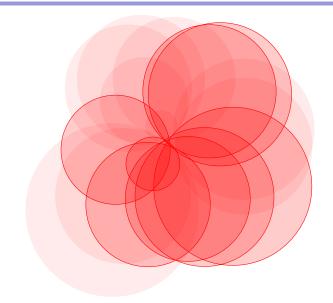
Édouard Bonnet joint work with Panos Giannopoulos, Eunjung Kim, Paweł Rzążewski, and Florian Sikora and Marthe Bonamy, Nicolas Bousquet, Pierre Chabit, and Stéphan Thomassé

LIP, ENS Lyon

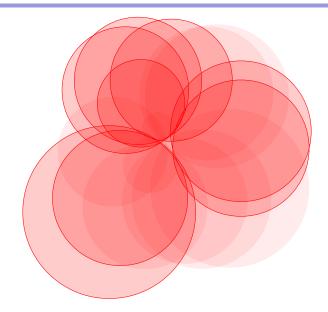
20 mars 2018, LIGM



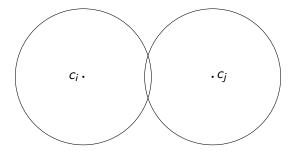
Find a largest collection of disks that pairwise intersect



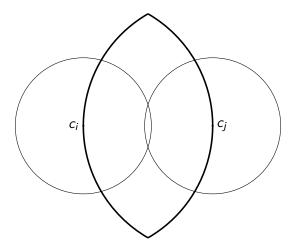
Like this



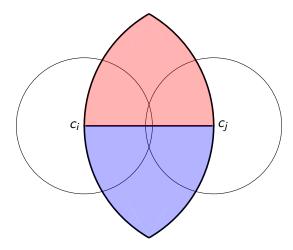
or that



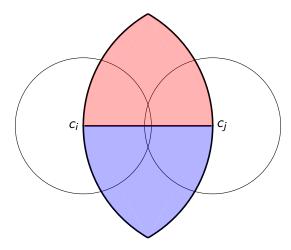
Guess two farthest disks in an optimum solution S.



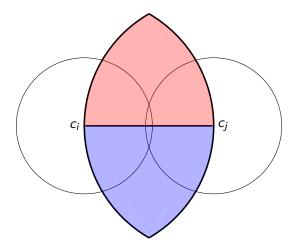
Hence, all the centers of S lie inside the bold digon.



Two disks centered in the same-color region intersect.



We solve MAX CLIQUE in a co-bipartite graph.



We solve MAX INDEPENDENT SET in a bipartite graph.

Disk graphs

Unweighted problems

3-Colourability [?]	NP-complete	[+]Details
Clique [?]	Unknown to ISGCI	[+]Details
Clique cover [?]	NP-complete	[+]Details
Colourability [?]	NP-complete	[+]Details
Domination [?]	NP-complete	[+]Details
Feedback vertex set [?]	NP-complete	[+]Details
Graph isomorphism [?]	Unknown to ISGCI	[+]Details
Hamiltonian cycle [?]	NP-complete	[+]Details
Hamiltonian path [?]	NP-complete	[+]Details
Independent dominating set [?]	NP-complete	[+]Details
Independent set [?]	NP-complete	[+]Details
Maximum bisection [?]	NP-complete	[+]Details
Maximum cut [?]	NP-complete	[+]Details
Minimum bisection [?]	NP-complete	[+]Details
Monopolarity [?]	NP-complete	[+]Details
Polarity [?]	NP-complete	[+]Details
Recognition [?]	NP-hard	[+]Details

Inherits the NP-hardness of planar graphs.

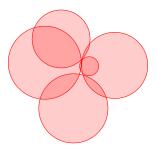
So what is known for ${\rm MAX}\ {\rm CLIQUE}$ on disk graphs?

- Polynomial-time 2-approximation
 - For any clique there are 4 points hitting all the disks.
 - Guess those points and remove the non-hit disks.
 - The resulting graph is partitioned into 2 co-bipartite graphs.
 - Solve exactly on both co-bipartite graphs.
 - Output the best solution.
- No non-trivial exact algorithm known

And what is known about disk graphs?

. . .

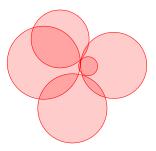
- Every planar graph is a disk graph.
- Every triangle-free disk graph is planar (centers \rightarrow vertices).
- So a triangle-free non-planar graph like $K_{3,3}$ is not disk.
- A subdivision of a non-planar graph is not a disk graph (more generally not a string graph).



And what is known about disk graphs?

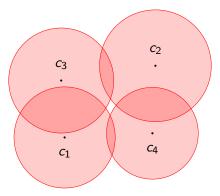
. . .

- Every planar graph is a disk graph.
- Every triangle-free disk graph is planar (centers \rightarrow vertices).
- So a triangle-free non-planar graph like $K_{3,3}$ is not disk.
- A subdivision of a non-planar graph is not a disk graph (more generally not a string graph).

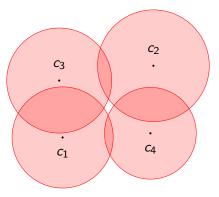


Other ways of showing that a graph is not disk?

Say the 4 centers encoding a $K_{2,2} = \overline{2K_2}$ are in convex position.

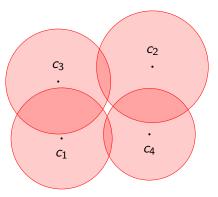


Say the 4 centers encoding a $K_{2,2} = \overline{2K_2}$ are in convex position.



Then the two non-edges should be diagonal.

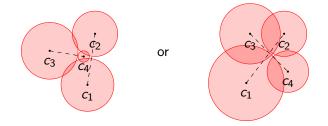
Say the 4 centers encoding a $K_{2,2} = \overline{2K_2}$ are in convex position.



Then the two non-edges should be diagonal.

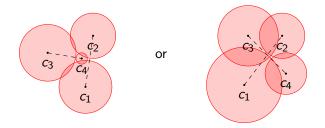
Suppose $d(c_1, c_3) > r_1 + r_3$ and $d(c_2, c_4) > r_2 + r_4$. But $d(c_1, c_3) + d(c_2, c_4) \leq d(c_1, c_2) + d(c_3, c_4) \leq r_1 + r_2 + r_3 + r_4$, a contradiction. Conclusion: the 4 centers of an induced $\overline{2K_2}$ are either

- not in convex position or
- ▶ in convex position with the non-edges being *diagonal*.



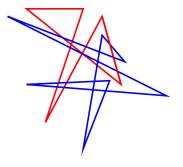
Conclusion: the 4 centers of an induced $\overline{2K_2}$ are either

- not in convex position or
- ▶ in convex position with the non-edges being *diagonal*.

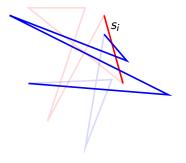


Reformulation: either

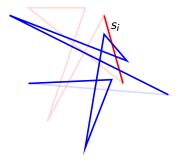
- the line $\ell(c_1, c_2)$ crosses the segment c_3c_4 , or
- the line $\ell(c_3, c_4)$ crosses the segment c_1c_2 , or
- both; equivalently, the segments c_1c_2 and c_3c_4 cross.



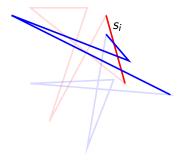
- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .



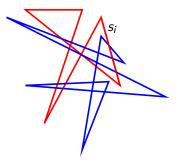
- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .



- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- ► *c_i* the number of blue segments intersecting *s_i*.



- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .



For each red segment s_i , we denote by:

- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .

It should be that $a_i + b_i - c_i = t$.

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even:

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even: number of intersections of a line with a closed curve.

2)
$$\sum_{1 \leq i \leq s} b_i =$$

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even: number of intersections of a line with a closed curve.

- 2) $\sum_{1\leqslant i\leqslant s} b_i = \sum_{1\leqslant i\leqslant t} a_i'$ is therefore even. $(a_j', b_j', c_j'$ same for blue segments)
- 3) $\sum_{1 \leq i \leq s} c_i$ is even:

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even: number of intersections of a line with a closed curve. 2) $\sum_{1 \leq i \leq s} b_i = \sum_{1 \leq i \leq t} a'_i$ is therefore even. (a'_j, b'_j, c'_j) same for blue segments)

3) $\sum_{1 \leq i \leq s} c_i$ is even: number of intersections of two closed curves.

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=$$

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

a_i is even: number of intersections of a line with a closed curve.
∑_{1≤i≤s} b_i = ∑_{1≤i≤t} a'_i is therefore even. (a'_i, b'_i, c'_i same for blue segments)
∑_{1≤i≤s} c_i is even: number of intersections of two closed curves.

$$\sum_{1 \leqslant i \leqslant s} a_i + b_i - c_i = \sum_{1 \leqslant i \leqslant s} a_i + \sum_{1 \leqslant i \leqslant t} a'_i - \sum_{1 \leqslant i \leqslant s} c_i \text{ is even.}$$

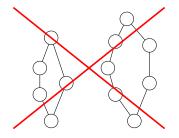
$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

a_i is even: number of intersections of a line with a closed curve.
∑_{1≤i≤s} b_i = ∑_{1≤i≤t} a'_i is therefore even. (a'_i, b'_i, c'_i same for blue segments)
∑_{1≤i≤s} c_i is even: number of intersections of two closed curves.

$$\sum_{1 \leqslant i \leqslant s} a_i + b_i - c_i = \sum_{1 \leqslant i \leqslant s} a_i + \sum_{1 \leqslant i \leqslant t} a'_i - \sum_{1 \leqslant i \leqslant s} c_i \text{ is even.}$$

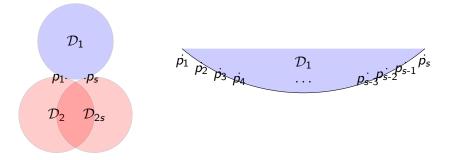
Hence *s* and *t* cannot be both odd.

The complement of two odd cycles is not a disk graph.



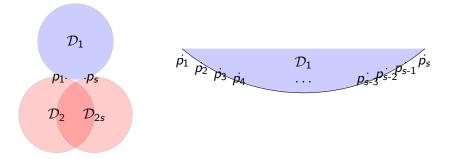
Are there other graphs of co-degree 2 which are not disk?

Complement of an even cycle $1, 2, \ldots, 2s$



We start by positioning $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_{2s}$. We draw a convex chain between p_1 and p_s .

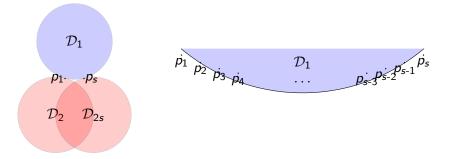
Complement of an even cycle $1, 2, \ldots, 2s$



We start by positioning $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_{2s}$. We draw a convex chain between p_1 and p_s .

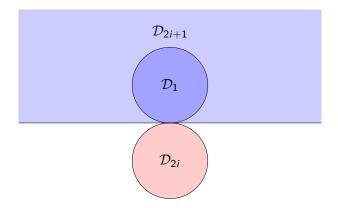
 D_{2i} : same radius and boundary crosses p_i with tangent $\ell(p_{i-1}p_{i+1})$

Complement of an even cycle $1, 2, \ldots, 2s$

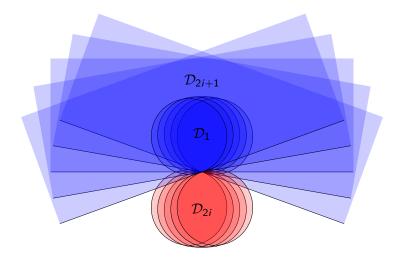


We start by positioning $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_{2s}$. We draw a convex chain between p_1 and p_s .

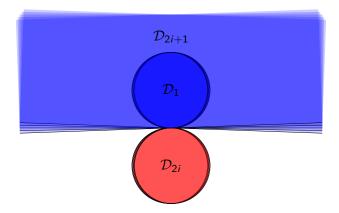
 D_{2i} : same radius and boundary crosses p_i with tangent $\ell(p_{i-1}p_{i+1})$ D_{2i+1} : larger radius and "co-tangent" to D_{2i} and D_{2i+2} . Stacking complements of even cycles



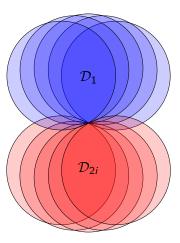
Stacking complements of even cycles

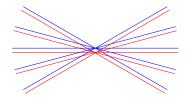


Stacking complements of even cycles

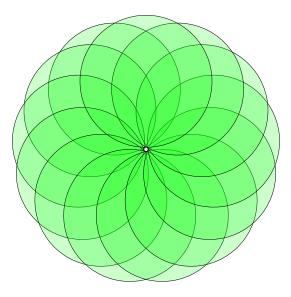


Disks of different cycle complements intersect

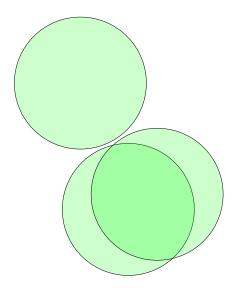




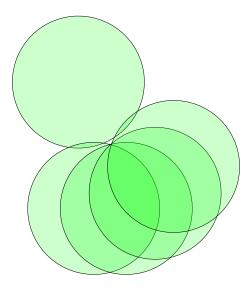
Complement of odd cycle by unit disks (Atminas & Zamaraev)



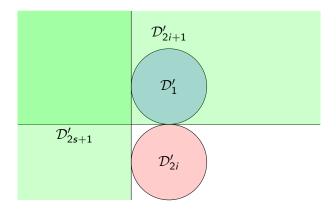
Complement of odd cycle by unit disks (Atminas & Zamaraev)



Complement of odd cycle by unit disks (Atminas & Zamaraev)

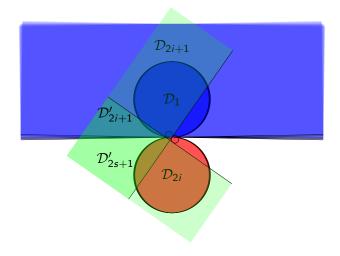


Different representation with non-unit disks

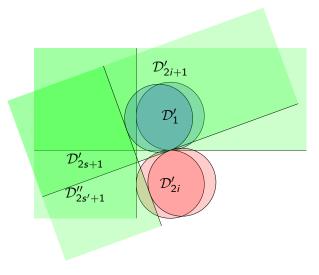


Same construction except \mathcal{D}'_1 intersects \mathcal{D}'_{2s} and \mathcal{D}'_{2s+1} is "co-tangent" to \mathcal{D}'_1 and \mathcal{D}'_{2s} .

Complement of many even cycles and one odd cycle



Sanity check: trying to stack complements of odd cycles



 $\mathcal{D}_{2s'+1}''$ cannot possibly intersect \mathcal{D}_1'

Going back to algorithms.

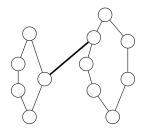
Can we solve MAX INDEPENDENT SET more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

Going back to algorithms.

Can we solve MAX INDEPENDENT SET more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

Another way to see it:

at least one edge between two vertex-disjoint odd cycles



ocp(G): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for MAX INDEPENDENT SET for $ocp = o(n/\log n)$.

ocp(G): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for MAX INDEPENDENT SET for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

ocp(G): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for MAX INDEPENDENT SET for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

The shortest odd cycle has size at most $\log^2 n$.

ocp(G): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for MAX INDEPENDENT SET for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

The shortest odd cycle has size at most $\log^2 n$. There is a vertex of this cycle with degree at least $n/\log^4 n$.

ocp(G): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for MAX INDEPENDENT SET for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

The shortest odd cycle has size at most $\log^2 n$. There is a vertex of this cycle with degree at least $n/\log^4 n$. Branching factor $(1, n/\log^4 n)$ (in $2^{\log^5 n}$), and PTAS otherwise. Subexponential algorithm

Theorem (Györi et al. 1997)

A graph of odd girth c has an odd cycle cover of size $\tilde{O}(n/c)$.

Subexponential algorithm

Theorem (Györi et al. 1997)

A graph of odd girth c has an odd cycle cover of size $\tilde{O}(n/c)$.

Let H be a complement of disk graph, Δ its degree, c its odd girth. We can:

- ▶ branch in time 2^{Õ(n/∆)}.
- ► solve in time 2^{O(Δc)}.
- solve in time $2^{\tilde{O}(n/c)}$.

Subexponential algorithm

Theorem (Györi et al. 1997)

A graph of odd girth c has an odd cycle cover of size $\tilde{O}(n/c)$.

Let H be a complement of disk graph, Δ its degree, c its odd girth. We can:

- branch in time $2^{\tilde{O}(n/\Delta)}$.
- ▶ solve in time 2^{O(∆c)}.
- ▶ solve in time 2^{Õ(n/c)}.

 $2^{\tilde{O}(\min(n/\Delta, n/c, c\Delta))} \leqslant 2^{\tilde{O}(n^{2/3})}$ for $\Delta = c = n^{1/3}$.

Filled ellipses and triangles

2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions

Lemma (technical)

For some $\alpha > 1$, MAX INDEPENDENT SET on 2-subdivisions is not α -approximable algorithm in $2^{n^{0.99}}$, unless the ETH fails.

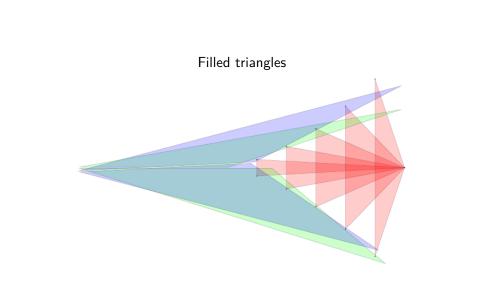
Filled ellipses and triangles

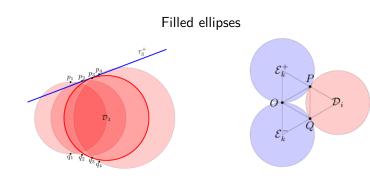
2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions

Lemma (technical)

For some $\alpha > 1$, MAX INDEPENDENT SET on 2-subdivisions is not α -approximable algorithm in $2^{n^{0.99}}$, unless the ETH fails.

Graphs of filled ellipses or filled triangles contain all the co-2-subdivisions.





The QPTAS and subexponential algorithm only work for intersection graphs of 2D-objects that are *exactly* disks.

- Approximation scheme with better running time?
- Have higher-dimensional disks the same obstruction?

EPTAS

VC dim of S = maximum size of a set with all intersections with S. VCdim(G) = VC dimension of the neighborhood set-system. $\alpha(G)$ = size of a maximum independent set in G. iocp(G) = same as ocp but induced.

EPTAS

VC dim of S = maximum size of a set with all intersections with S. VCdim(G) = VC dimension of the neighborhood set-system. $\alpha(G)$ = size of a maximum independent set in G. iocp(G) = same as ocp but induced.

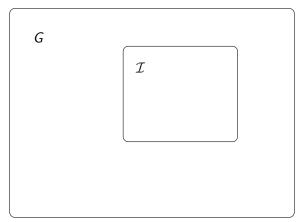
Theorem

MAX INDEPENDENT SET can be $1 + \varepsilon$ -approximated in time $2^{\tilde{O}(1/\varepsilon^3)} n^{O(1)}$ on graphs G with

- VCdim(G) = O(1),
- $\alpha(G) = \Omega(|V(G)|)$, and
- iocp(G) = 1.

First step of the algorithm: sampling

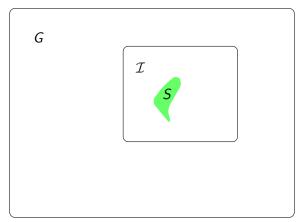
 $\ensuremath{\mathcal{I}}$ is a fixed maximum solution.



Select randomly a subset S of $ilde{O}(1/arepsilon^3)$ vertices.

First step of the algorithm: sampling

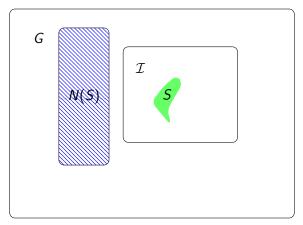
 $\ensuremath{\mathcal{I}}$ is a fixed maximum solution.



With probability $1/2^{\tilde{O}(1/\varepsilon^3)}$, $S \subseteq \mathcal{I}$.

First step of the algorithm: sampling

 $\ensuremath{\mathcal{I}}$ is a fixed maximum solution.



Remove the neighborhood of S.

Classic result of Haussler and Welzl in VC dimension theory

Theorem

A set-system (S, U) with VC dimension d and only sets of size at least $\varepsilon |U|$ has a hitting set of size $O(\frac{d}{\varepsilon} \log \frac{1}{\varepsilon})$.

Furthermore, any sample of size $\frac{10d}{\varepsilon} \log \frac{1}{\varepsilon}$ is a hitting set w.h.p.

Classic result of Haussler and Welzl in VC dimension theory

Theorem

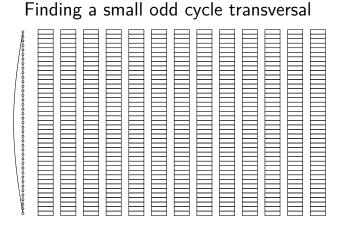
A set-system (S, U) with VC dimension d and only sets of size at least $\varepsilon |U|$ has a hitting set of size $O(\frac{d}{\varepsilon} \log \frac{1}{\varepsilon})$.

Furthermore, any sample of size $\frac{10d}{\varepsilon} \log \frac{1}{\varepsilon}$ is a hitting set w.h.p.

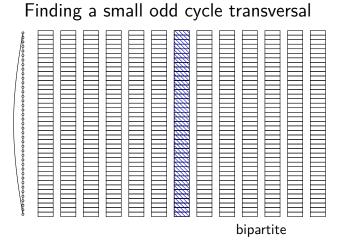
We apply that result to the set-system $({N(u) \cap \mathcal{I} \mid u \in V(G), |N(u) \cap \mathcal{I}| \ge \varepsilon^3 |\mathcal{I}|}, \mathcal{I}).$ In words, the large neighborhoods over *I*. Second step of the algorithm: win-win on odd girth Now we removed N(S), all the vertices have degree $< \varepsilon^3 |\mathcal{I}|$ in \mathcal{I} . Second step of the algorithm: win-win on odd girth Now we removed N(S), all the vertices have degree $< \varepsilon^3 |\mathcal{I}|$ in \mathcal{I} .

We compute a shortest odd cycle C.

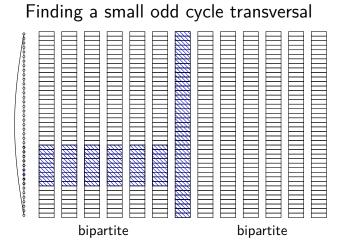
- If |C| ≤ 1/ε², we remove N[C] from the graph. The resulting graph is bipartite and |N(C)| < ^{ε³|I|}/_{ε²} = ε|I|.
- If $|C| > 1/\varepsilon^2$, we need a fresh slide.



Columns are the successive neighborhoods of *C*, *layers*. Rows indicate the closest vertex on *C*, *strata*.



We delete the lightest among the first pprox 1/arepsilon layers.

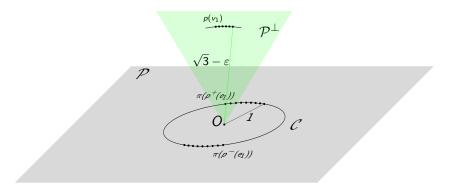


 $\approx 1/\varepsilon$ consecutive strata are an odd cycle transversal.

Regarding the higher-dimensional question:

- unit 4D-disk graphs
- ▶ ball (3D-disk) graphs with radii arbitrary close to 1
- contain all the co-2-subdivisions

(so, no approximation scheme and no subexponential algorithm)



What about unit ball graph?

Let x_1, \ldots, x_s be the consecutive centers in \mathbb{R}^3 of a co-odd-cycle. Consider the trace on the 2-sphere of the following vector walk.

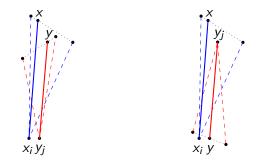
- Start at vector \overrightarrow{ab} with $a = x_1$ and $b = x_2$.
- move continuously a from x₁ to x₃ following the segment x₁x₃.
- move continuously b from x_2 to x_4 following the segment x_2x_4 .
- and so on, until back to $\overrightarrow{x_1x_2}$.

What about unit ball graph?

Let x_1, \ldots, x_s be the consecutive centers in \mathbb{R}^3 of a co-odd-cycle. Consider the trace on the 2-sphere of the following vector walk.

- Start at vector \overrightarrow{ab} with $a = x_1$ and $b = x_2$.
- move continuously a from x_1 to x_3 following the segment x_1x_3 .
- move continuously *b* from x_2 to x_4 following the segment x_2x_4 .
- and so on, until back to $\overrightarrow{x_1x_2}$.

As s is odd, half-way through we reach $\overrightarrow{x_2x_1}$. Hence the curve drawn on the 2-sphere is antipodal. As two antipodal curves intersect, we have one of the following configurations:



Open questions

- ► Is MAX CLIQUE NP-hard on disk and unit ball graphs?
- ► A first step might be to show NP-hardness for MAX INDEPENDENT SET with iocp 1.
- Actually what about ocp 1?

Open questions

- ► Is MAX CLIQUE NP-hard on disk and unit ball graphs?
- ► A first step might be to show NP-hardness for MAX INDEPENDENT SET with iocp 1.
- Actually what about ocp 1?

Thank you for your attention!