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Diameter

diam(G) = largest distance between a pair of vertices of G

u vlargestu,v d(u, v)?

I In weighted graphs, no better known than APSP
I In unweighted graphs, solvable in Õ(nω)

Scope of the talk: Time vs Approximation trade-offs
Pareto front of (x , y), ∃ x -approximation running in time Õ(|G |y )
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Algorithms



3/2-approximation algorithm in time Õ(m
√

n)

w

N√n(w)

Sample 100
√

n log n vertices uniformly at random → S
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w
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Run Dijkstra from each vertex of S



3/2-approximation algorithm in time Õ(m
√

n)

w

N√n(w)

Let w be the furthest vertex to S



3/2-approximation algorithm in time Õ(m
√

n)

w

N√n(w)

Compute N√n(w): the set of
√

n closest vertices from w



3/2-approximation algorithm in time Õ(m
√

n)

w

N√n(w)

Run Dijkstra from each vertex of N√n(w)



3/2-approximation algorithm in time Õ(m
√

n)

w

N√n(w)

Output max{max(d(x , y), d(y , x)) | x ∈ V (G), y ∈ S ∪ N√n(w)}



Correctness of the 3/2 approximation factor

w

a

b

> d/3

> d/3
< 2d/3

N√n(w)

c

6 d/3 + w(c, c ′)> 2d/3− w(c, c ′)

Say a and b realizes the diameter d = diam(G) = d(a, b)
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We can assume that d(a,S) > d/3. Why?
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a

b

> d/3

> d/3
< 2d/3

N√n(w)

c

6 d/3 + w(c, c ′)> 2d/3− w(c, c ′)

Similarly we can assume that d(w , b) < 2d/3.



Correctness of the 3/2 approximation factor
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c

6 d/3 + w(c, c ′)> 2d/3− w(c, c ′)

With high probability N√n(w) intersects S



Correctness of the 3/2 approximation factor

w

a

b

> d/3

> d/3
< 2d/3

N√n(w)

c

6 d/3 + w(c, c ′)> 2d/3− w(c, c ′)

So there is c ∈ N√n(w) along a shortest path w − cc ′ − b...



Correctness of the 3/2 approximation factor
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...with d(w , c) 6 d/3 and d(w , c ′) > d/3



Correctness of the 3/2 approximation factor

w

a

b

> d/3

> d/3

< 2d/3

N√n(w)

c

6 d/3 + w(c, c ′)

> 2d/3− w(c, c ′)

Thus d(w , c) > d/3− w(c, c ′), hence d(c, b) 6 d/3 + w(c, c ′)



Correctness of the 3/2 approximation factor

w

a

b

> d/3

> d/3
< 2d/3

N√n(w)

c

6 d/3 + w(c, c ′)> 2d/3− w(c, c ′)

Finally d(a, c) > 2d/3− w(c, c ′)



Lower bounds



SETH

∀k, ∃ε > 0, no classical algorithm solves n-var k-Sat in (2− ε)n

In 1999, Impagliazzo and Paturi introduce ETH and mention a
stronger version of it in their conclusion

SETH ⇒ ETH ⇒ P 6= NP

I ETH and SETH are then mainly used for NP-hard problems

I In 2005, SETH is used for the first time for a problem in P
I 2014-, dozens of papers show SETH-hardness of problems in P

Orthogonal Vectors, Diameter, Fréchet Distance, Edit Distance,
Longest Common Subsequence, Furthest Pair, dynamic problems,
problems from Machine Learning, Model Checking, Language Theory etc.
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Reduction from Sat to a problem in P

2-Orthogonal Vectors (2-OV):
Are there two orthogonal vectors in a given set of N 0, 1-vectors?

problem Sat
instance φ
n variables

problem 2-OV
instance V

N = 2n/2 vectors

reduction
time 6 1.99n

→ Solving 2-OV in N1.99 solves Sat 1.99n + 2 1.99n
2 , refuting SETH
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Sat → 2-Orthogonal Vectors [W05]
arbitrary equipartition of X : x1, x2, . . . , x n

2
, x n

2 +1, x n
2 +2, . . . , xn

Find an assignment
I A of the red variables and
I B of the blue variables

such that all the clauses are satisfied by A or by B

C1 C2 C3 C4 C5 C6 C7 C8R B
A1
A2
A3
A4
B1
B2
B3
B4

1 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 1 1
1 0 0 0 1 1 0 1 1 1
0 1 1 1 0 0 1 1 1 0
0 1 0 1 0 1 0 1 0 0
0 1 1 1 1 1 0 0 0 1
0 1 0 1 0 0 1 0 0 1
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A1 assigns red variables



Sat → 2-Orthogonal Vectors [W05]
arbitrary equipartition of X : x1, x2, . . . , x n

2
, x n

2 +1, x n
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A1 does not satisfy C1



Sat → 2-Orthogonal Vectors [W05]
arbitrary equipartition of X : x1, x2, . . . , x n

2
, x n

2 +1, x n
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A1 satisfies C2
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2
, x n

2 +1, x n
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first vector (1, 0, 1, 0, 0, 1, 1, 0, 1, 0)
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Sat → 2-Orthogonal Vectors [W05]
arbitrary equipartition of X : x1, x2, . . . , x n

2
, x n

2 +1, x n
2 +2, . . . , xn

Find an assignment
I A of the red variables and
I B of the blue variables

such that all the clauses are satisfied by A or by B
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0 0 0 0 0 0

0 0 0 0 0 0



Consequence for 2-Orthogonal Vectors

From a Sat-instance on n variables and m clauses, we created
N := 2 n

2 +1 vectors in dimension d := m + 2

An algorithm solving 2-OV in time 2o(d)N2−ε

would solve Sat in 2o(m)2n(1−ε/2) → breaking SETH

Most useful consequence here:
N2−o(1)-time is required even if d = logO(1) N
Same for k-OV and Nk−o(1)-time
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2-Orthogonal Vectors → Diameter [RV13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

A
vectors

B
vectors

1

2

3

4

I
indices

a b

a2[3] = 1

b4[2] = 1

So far, all the pairs but of A× B are at distance 6 2



2-Orthogonal Vectors → Diameter [RV13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

A
vectors

B
vectors

1

2

3

4

I
indices

a b

a2[3] = 1

b4[2] = 1

we put an edge between vector v and index i iff v [i ] = 1



2-Orthogonal Vectors → Diameter [RV13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

A
vectors

B
vectors

1

2

3

4

I
indices

a b

a2[3] = 1

b4[2] = 1a4

b2

A pair (a4,b2) is at distance 2⇔ 〈a4, b2〉 6= 0



2-Orthogonal Vectors → Diameter [RV13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

A
vectors

B
vectors

1

2

3

4

I
indices

a b

a2[3] = 1

b4[2] = 1

diam(G) = 3⇔ ∃(ai , bj) at distance 3 ⇔ orthogonal pair



2-Orthogonal Vectors → Diameter [RV13]

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

A
vectors

B
vectors

1

2

3

4

I
indices

a b

a2[3] = 1

b4[2] = 1

If no orthogonal pair, diam(G) = 2



3 vs 5 undirected Diameter

Theorem (Li ’20)
Approximating sparse undirected unweighted Diameter within
factor better than 5

3 requires time n 3
2−o(1), unless SETH fails.

Plan: hardness of 3 vs 5 Diameter from N-vector 3-OV to
O(N2)-vertex Õ(N2)-edge Diameter-instances.

2 vs 3 hardness from 2-OV [RV13]

Vectors a, b, c, . . ., Indices i , j , k, . . .,
ind(a, b, c) = i , with a[i ] = b[i ] = c[i ] = 1 (exists if a, b, c not ⊥)
index i contradicts a, b, c ⊥



3 vs 5 undirected Diameter

Theorem (Li ’20)
Approximating sparse undirected unweighted Diameter within
factor better than 5

3 requires time n 3
2−o(1), unless SETH fails.

Plan: hardness of 3 vs 5 Diameter from N-vector 3-OV to
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3-Orthogonal Vectors → 3 vs 5 Diameter [Li20]

(a, b) (c, b) (c, d)

(a, i , j)

(c, i , j)

(a, i ′, j ′)
a[i] = a[j] = 1

P

S

b[i] = 1 or b[j] = 1

No orthogonal triple ⇒ diam(G) = 3,
i = ind(a, b, c), j = ind(a, c, d)
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(a, i , j)

(c, i , j)

(a, i ′, j ′)
a[i] = a[j] = 1

P

S

b[i] = 1 or b[j] = 1

Orthogonal triple (a,b,c) ⇒ d((a, b), (b, c)) = 5,
(a, b)− (a, i , j)− (x , i ′, j ′)− (c, i ′′, j ′′)− (c, b)
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b[i] = 1 or b[j] = 1

Orthogonal triple (a,b,c) ⇒ d((a, b), (b, c)) = 5,
(a, b)− (a, i , j)− (a, i ′, j ′)− (c, i ′′, j ′′)− (c, b)



3-Orthogonal Vectors → 3 vs 5 Diameter [Li20]

(a, b) (c, b) (c, d)

(a, i , j)

(c, i , j)

(a, i ′, j ′)
a[i] = a[j] = 1

P

S

b[i] = 1 or b[j] = 1

Orthogonal triple (a,b,c) ⇒ d((a, b), (b, c)) = 5,
(a, b)− (a, i , j)− (a, i ′, j ′)− (c, i′, j′)− (c, b)



3-Orthogonal Vectors → 3 vs 5 Diameter [Li20]

(a, b) (c, b) (c, d)

(a, i , j)

(c, i , j)

(a, i ′, j ′)
a[i] = a[j] = 1

P

S

b[i] = 1 or b[j] = 1

Orthogonal triple (a,b,c) ⇒ d((a, b), (b, c)) = 5,
i ′ or j ′ contradicts a, b, c ⊥



4 vs 7 undirected Diameter

Theorem (B. ’21)
Approximating sparse undirected unweighted Diameter within
factor better than 7

4 requires time n 4
3−o(1), unless SETH fails.

Plan: hardness of 4 vs 7 Diameter from N-vector 4-OV to
O(N3)-vertex Õ(N3)-edge Diameter-instances.

2 vs 3 hardness from 2-OV [RV13]
3 vs 5 hardness from 3-OV [Li20]
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factor better than 7
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Construction with weights

(a, b, c)

(a, b, i , j , k)
(a, b, i ′, j ′, k ′)

({d , e}, i , j , k)

(p1, p2, i , j , k)

(p′1, p′2, i ′, j ′, k ′)

T

C

P

I

(3, 0)

(2, 3)

(2, 3)

(0, 5)
a[i] = a[j] = a[k] = 1

maj(b[i],b[j],b[k]) = 1

d[i] = d[j] = d[k] = e[i] = e[j] = e[k] = 1

∃h ∈ {i, j, k},
c[h] = b[h] = 1
∃h ∈ {i, j, k},

c[h] = b[h] = 1

a ∈ {d, e}a ∈ {d, e}

a[p1] = b[p1] = c[p1] =
a[p2] = b[p2] = c[p2] = 1

3
a[p1] = b[p1] = c[p1] =

a[p2] = b[p2] = c[p2] = 1

3

d[p1] = e[p2] = 1
or

d[p2] = e[p1] = 1

(d , c, b)



Construction with weights

(a, b, c)

(a, b, i , j , k)
(a, b, i ′, j ′, k ′)

({d , e}, i , j , k)

(p1, p2, i , j , k)

(p′1, p′2, i ′, j ′, k ′)

T

C

P

I

(3, 0)

(2, 3)

(2, 3)

(0, 5)
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maj(b[i],b[j],b[k]) = 1
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∃h ∈ {i, j, k},
c[h] = b[h] = 1
∃h ∈ {i, j, k},

c[h] = b[h] = 1

a ∈ {d, e}a ∈ {d, e}
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d[p2] = e[p1] = 1

(d , c, b)
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Construction with weights

(a, b, c)
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T
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c[h] = b[h] = 1

∃h ∈ {i, j, k},
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a ∈ {d, e}
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a[p1] = b[p1] = c[p1] =
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3

a[p1] = b[p1] = c[p1] =
a[p2] = b[p2] = c[p2] = 1

3

d[p1] = e[p2] = 1
or

d[p2] = e[p1] = 1

(d , c, b)



No orthogonal quadruple ⇒ diameter at most 4

(a, b, c)

(a, b, i , j , k)
(a, b, i ′, j ′, k ′)

({d , e}, i , j , k)

(p1, p2, i , j , k)

(p′1, p′2, i ′, j ′, k ′)

a[i] = a[j] = a[k] = 1

maj(b[i],b[j],b[k]) = 1

d[i] = d[j] = d[k] = e[i] = e[j] = e[k] = 1

∃h ∈ {i, j, k},
c[h] = b[h] = 1

a ∈ {d, e}

a[p1] = b[p1] = c[p1] =
a[p2] = b[p2] = c[p2] = 1

3

d[p1] = e[p2] = 1
or

d[p2] = e[p1] = 1

T

C

P

I

(3, 0)

(2, 3)

(2, 3)

(0, 5)

Automatic paths of length at most 4, except for T-T, T-C, T-P,
and C-C



No orthogonal quadruple ⇒ diameter at most 4

(a, b, c)

(a, b, i , j , k)
(a, b, i ′, j ′, k ′)

({d , e}, i , j , k)

(p1, p2, i , j , k)

(p′1, p′2, i ′, j ′, k ′)

a[i] = a[j] = a[k] = 1

maj(b[i],b[j],b[k]) = 1

d[i] = d[j] = d[k] = e[i] = e[j] = e[k] = 1

∃h ∈ {i, j, k},
c[h] = b[h] = 1

a ∈ {d, e}

a[p1] = b[p1] = c[p1] =
a[p2] = b[p2] = c[p2] = 1

3

d[p1] = e[p2] = 1
or

d[p2] = e[p1] = 1

T

C

P

I

(3, 0)

(2, 3)

(2, 3)

(0, 5)

T-T, T-C, C-C: (a, b, c) or (a, b, i ′, j ′, k ′)− (a, b, i , j , k)−
({a, d}, i , j , k)− (d , e, i , j , k)− (d , e, f ) or (d , e, i ′′, j ′′, k ′′)

with i = ind(a, b, c, d), j = ind(a, b, d , e), k = ind(a, d , e, f )



No orthogonal quadruple ⇒ diameter at most 4

(a, b, c)

(a, b, i , j , k)
(a, b, i ′, j ′, k ′)

({d , e}, i , j , k)

(p1, p2, i , j , k)

(p′1, p′2, i ′, j ′, k ′)

a[i] = a[j] = a[k] = 1

maj(b[i],b[j],b[k]) = 1

d[i] = d[j] = d[k] = e[i] = e[j] = e[k] = 1

∃h ∈ {i, j, k},
c[h] = b[h] = 1

a ∈ {d, e}

a[p1] = b[p1] = c[p1] =
a[p2] = b[p2] = c[p2] = 1

3

d[p1] = e[p2] = 1
or

d[p2] = e[p1] = 1

T

C

P

I

(3, 0)

(2, 3)

(2, 3)

(0, 5)

T-P: (a, b, c)− (p1, p2, i , j , k)− ({d , e}, i , j , k)

with p1 = ind(a, b, c, d), p2 = ind(a, b, c, e)



a, b, c , d orthogonal ⇒ d((a, b, c), (d , c , b)) > 7

(a, b, c)

(a, b, i , j , k)
(a, b, i ′, j ′, k ′)

({d , e}, i , j , k)

(p1, p2, i , j , k)

(p′1, p′2, i ′, j ′, k ′)

a[i] = a[j] = a[k] = 1

maj(b[i],b[j],b[k]) = 1

d[i] = d[j] = d[k] = e[i] = e[j] = e[k] = 1

∃h ∈ {i, j, k},
c[h] = b[h] = 1

a ∈ {d, e}

a[p1] = b[p1] = c[p1] =
a[p2] = b[p2] = c[p2] = 1

3

d[p1] = e[p2] = 1
or

d[p2] = e[p1] = 1

T

C

P

I

(3, 0)

(2, 3)

(2, 3)

(0, 5)

(d , c, b)

Set I cannot help for a path of length 6



a, b, c , d orthogonal ⇒ d((a, b, c), (d , c , b)) > 7

(a, b, c)

(a, b, i , j , k)
(a, b, i ′, j ′, k ′)

({d , e}, i , j , k)

(p1, p2, i , j , k)

(p′1, p′2, i ′, j ′, k ′)

a[i] = a[j] = a[k] = 1

maj(b[i],b[j],b[k]) = 1

d[i] = d[j] = d[k] = e[i] = e[j] = e[k] = 1

∃h ∈ {i, j, k},
c[h] = b[h] = 1

a ∈ {d, e}

a[p1] = b[p1] = c[p1] =
a[p2] = b[p2] = c[p2] = 1

3

d[p1] = e[p2] = 1
or

d[p2] = e[p1] = 1

T

C

P

I

(3, 0)

(2, 3)

(2, 3)

(0, 5)

(d , c, b)

(a, b, i , j , k) and (d , c, i , j , k) have to be part of the path



Removing the weights

(a, b, c)T(a, b, c)T ′(a, b, c)T ′′

(i)(i ′)

(a, b, i , j, k)
(a, b, i ′, j ′, k ′)

({d , e}, i , j, k)

(p1, p2, i , j, k)

(p′1, p′2, i ′, j ′, k ′)

a[i] = a[j] = a[k] = 1

maj(b[i], b[j], b[k]) = 1

d[i] = d[j] = d[k] = e[i] = e[j] = e[k] = 1

∃h ∈ {i, j, k},

c[h] = b[h] = 1

a ∈ {d, e}

a[p1] = b[p1] = c[p1] =
a[p2] = b[p2] = c[p2] = 1

a[i] = b[i] = 1

d[p1] = e[p2] = 1
or

d[p2] = e[p1] = 1

TT ′T ′′
I ′

C

P

I

(3, 0)(3, 0)(3, 0)(0, 1)

(2, 3)

(2, 3)

(0, 5)



Undirected unweighted Diameter
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Thank you for your attention!


