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DIAMETER

diam(G) = largest distance between a pair of vertices of G

% largest,, , d(u, v)? %\D

» In weighted graphs, no better known than APSP
> In unweighted graphs, solvable in O(n®)



DIAMETER

diam(G) = largest distance between a pair of vertices of G

% largest,, , d(u, v)? %\D

» In weighted graphs, no better known than APSP
> In unweighted graphs, solvable in O(n®)

Scope of the talk: Time vs Approximation trade-offs
Pareto front of (x, y), 3 x-approximation running in time O(|G|")
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Algorithms



3/2-approximation algorithm in time O(my/n)

Sample 100+/nlog n vertices uniformly at random — S



3/2-approximation algorithm in time O(my/n)

v=
N
m“ﬁ"ﬂ’v‘-‘ﬂ =

7
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Run Dijkstra from each vertex of S



3/2-approximation algorithm in time O(my/n)

Let w be the furthest vertex to S



3/2-approximation algorithm in time O(my/n)

Compute N (w): the set of \/n closest vertices from w



3/2-approximation algorithm in time O(my/n)

Run Dijkstra from each vertex of N z(w)



3/2-approximation algorithm in time O(my/n)

Output max{max(d(x,y),d(y,x)) | x € V(G),y € SUN sz(w)}



Correctness of the 3/2 approximation factor

Say a and b realizes the diameter d = diam(G) = d(a, b)



Correctness of the 3/2 approximation factor

We can assume that d(a,S) > d/3. Why?



Correctness of the 3/2 approximation factor

> d/3\\\ °

This implies that d(w, S) > d/3.



Correctness of the 3/2 approximation factor

Similarly we can assume that d(w, b) < 2d/3.



Correctness of the 3/2 approximation factor

With high probability N, 7(w) intersects S



Correctness of the 3/2 approximation factor

So there is ¢ € N ;(w) along a shortest path w — cc’ — b...



Correctness of the 3/2 approximation factor

..with d(w, c) < d/3 and d(w,c’) > d/3



Correctness of the 3/2 approximation factor

Thus d(w,c) > d/3 — w(c,c’), hence d(c, b) < d/3+ w(c, )



Correctness of the 3/2 approximation factor

Finally d(a,c) > 2d/3 — w(c, c’)



Lower bounds



SETH

Vk,3e > 0, no classical algorithm solves n-var k-SAT in (2 —¢)"

In 1999, Impagliazzo and Paturi introduce ETH and mention a
stronger version of it in their conclusion

SETH = ETH = P # NP

» ETH and SETH are then mainly used for NP-hard problems
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SETH

Vk,3e > 0, no classical algorithm solves n-var k-SAT in (2 —¢)"

In 1999, Impagliazzo and Paturi introduce ETH and mention a
stronger version of it in their conclusion

SETH = ETH = P # NP

» ETH and SETH are then mainly used for NP-hard problems

» In 2005, SETH is used for the first time for a problem in P

» 2014-, dozens of papers show SETH-hardness of problems in P
ORTHOGONAL VECTORS, DIAMETER, FRECHET DISTANCE, EDIT DISTANCE,

LoNGEST COMMON SUBSEQUENCE, FURTHEST PAIR, dynamic problems,
problems from Machine Learning, Model Checking, Language Theory etc.



Reduction from SAT to a problem in P

2-ORTHOGONAL VECTORS (2-OV):
Are there two orthogonal vectors in a given set of N 0, 1-vectors?

problem SAT i problem 2-OV
. reduction R .
instance ¢ _ —> instance V
i time < 1.99
n variables N = 2"/2 vectors




Reduction from SAT to a problem in P

2-ORTHOGONAL VECTORS (2-OV):
Are there two orthogonal vectors in a given set of N 0, 1-vectors?

problem SAT i problem 2-OV
. reduction R .
instance ¢ _ — instance V
i time < 1.99
n variables N = 2"/2 vectors

— Solving 2-OV in N1 solves SAT 1.99" + 2°2" | refuting SETH



SAT — 2-ORTHOGONAL VECTORS [WO05]

arbitrary equipartition of X: xi, xo, ... P X2, X241, X040, ..

Find an assignment
» A of the red variables and
» B of the blue variables
such that all the clauses are satisfied by A or by B
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arbitrary equipartition of X: xi, xo, ... P X2, X841, X040, Xn
Find an assignment
» A of the red variables and

» B of the blue variables
such that all the clauses are satisfied by A or by B

R B G G G G G G G G
Al 1 0 1

Ay A1 does not satisfy (3



SAT — 2-ORTHOGONAL VECTORS [WO05]
arbitrary equipartition of X: xi, xo, ... P X2, X841, X040, Xn
Find an assignment
» A of the red variables and

» B of the blue variables
such that all the clauses are satisfied by A or by B

R B G G G G G G G G
A1 0 1 0

Ay Aj satisfies G



SAT — 2-ORTHOGONAL VECTORS [WO05]
arbitrary equipartition of X: xi, xo, ... P X2, X841, X040, Xn
Find an assignment
» A of the red variables and

» B of the blue variables
such that all the clauses are satisfied by A or by B

R B G G G G G G G G
Av. 1. 0 1 0 0 1 0 0O 1 o0

Ay first vector (1,0,1,0,0,1,1,0,1,0)



SAT — 2-ORTHOGONAL VECTORS [WO05]

arbitrary equipartition of X: xi, xo, ... P X2, X241, X040, ..

Find an assignment

» A of the red variables and
» B of the blue variables
such that all the clauses are satisfied by A or by B
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SAT — 2-ORTHOGONAL VECTORS [WO05]

arbitrary equipartition of X: xi, xo, ... P X2, X241, X040, ..

Find an assignment

» A of the red variables and
» B of the blue variables
such that all the clauses are satisfied by A or by B

» Xn

R B G G G G G G G G
1 0 1.0 0 1 0 O 1 O
1 0 0 0 O 1 1 1 0 1
1 0 0 1 0 1 O 0 1 1
1 0o 0o 0 1 1 O 1 1 1
o 1 1 1 O O 1 1 1 O
0o 1 0o 1 0O 1 O 1 0 O
0 1 1 1 1 1 0 0 o0 1
0O 1.0 1 0 0 1 0 0 1




Consequence for 2-ORTHOGONAL VECTORS

From a SAT-instance on n variables and m clauses, we created
n - - .
N := 2211 vectors in dimension d := m + 2
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An algorithm solving 2-OV in time 2°(4) y2—¢
would solve SAT in 20(m2n(1=¢/2) _, breaking SETH



Consequence for 2-ORTHOGONAL VECTORS

From a SAT-instance on n variables and m clauses, we created
n - - .
N := 2211 vectors in dimension d := m + 2

An algorithm solving 2-OV in time 2°(4) y2—¢
would solve SAT in 20(m2n(1=¢/2) _, breaking SETH

Most useful consequence here:
N2—°(1)_time is required even if d = Iogo(l) N
Same for k-OV and N —°(1)_time



2-ORTHOGONAL VECTORS — DIAMETER [RV13]

a b

» (T E® ®

indices
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vectors vectors

So far, all the pairs but of A x B are at distance < 2



2-ORTHOGONAL VECTORS — DIAMETER [RV13]

indices

vectors vectors

we put an edge between vector v and index i iff v[i] =1



2-ORTHOGONAL VECTORS — DIAMETER [RV13]

indices

vectors vectors
A pair (a4,b2) is at distance 2 < (a4, b2) # 0



2-ORTHOGONAL VECTORS — DIAMETER [RV13]

indices

vectors vectors

diam(G) = 3 & J(aj, b;j) at distance 3 < orthogonal pair



2-ORTHOGONAL VECTORS — DIAMETER [RV13]

indices

vectors vectors

If no orthogonal pair, diam(G) = 2



3 vs 5 undirected Diameter

Theorem (Li "20)

Approximating sparse undirected unweighted DIAMETER within
3
factor better than % requires time nz—°1) unless SETH fails.
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3 vs 5 undirected Diameter

Theorem (Li "20)

Approximating sparse undirected unweighted DIAMETER within
3
factor better than % requires time nz—°1) unless SETH fails.

Plan: hardness of 3 vs 5 DIAMETER from N-vector 3-OV to
O(N?)-vertex O(N?)-edge DIAMETER-instances.

2 vs 3 hardness from 2-OV [RV13]

Vectors a, b, c, ..., Indices i, j, k, ...,
ind(a, b, c) = i, with a[i] = b[i] = c[i] =1 (exists if a, b, c not L)
index i contradicts a, b,c L



3-ORTHOGONAL VECTORS — 3 VS 5 DIAMETER [Li20]
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ali] = afj] =1 O L
(a,i,4) (a,7.]")
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(a, b) P (¢,b) (c,d)
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3-ORTHOGONAL VECTORS — 3 VS 5 DIAMETER [Li20]

S (c,ird)
ali] = afj] =1 L
(a,i,4) (a,7.]")
) \ O

b[i] = 1 dr b[j] = 1

(a, b) P (¢,b) (c,d)

[O O b]

No orthogonal triple = diam(G) = 3,
i =ind(a, b, c), j =ind(a,c,d)
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S (c,ird)
ali] = afj] =1 L
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J \ O
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3-ORTHOGONAL VECTORS — 3 VS 5 DIAMETER [Li20]

S (c,ir))
ali] = afi] =1 .
(a,i,)) (a,7',]")
_J \ O

b[i] = 1 dr b[j] = 1

a, b) (¢,b) (c,d)

[(o r @ b]

Orthogonal triple (a,b,c) = d((a, b), (b, c)) =5,
i’ or j/ contradicts a, b, c L
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4 vs 7 undirected Diameter

Theorem (B. '21)

Approximating sparse undirected unweighted DIAMETER within
4
factor better than % requires time nifo(l), unless SETH fails.

Plan: hardness of 4 vs 7 DIAMETER from N-vector 4-OV to
O(N3)-vertex O(N3)-edge DIAMETER-instances.

2 vs 3 hardness from 2-OV [RV13]
3 vs 5 hardness from 3-OV [Li20]



Construction with weights
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Construction with weights

d[i] = dfj] = d[k] = e[i] = e[j] = e[k] = 1"
({d, e}, i,j, k)OO P

acl{d, e}

(o,;) (p1,p2,i,j, k) ali] = alj] = a[k] = 1 C(M)
00 (a,b,i,j, )O——O

(L, pb, 7, J, K) maj(bli], b[j]. blk]) =1 (a, b, ", j', k')




Construction with weights

d[i] = dfj] = d[k] = e[i] = e[j] = e[k] = 1"
({d, e}, i,j, k)OO P

(0,5)

I (p17p27i7j;k)

CH-NNND 3 | mai(blil,blil,bk]) =1 (a,b,7,, K')
alp1] = b[p1] >¢[p1] =

a[p2] = b[p2] = c[p2] =

ali] = alj] = alk] = 1 ¢
( 7b7 7-/7 k)O O

{ (a, b, c)




Construction with weights

d[i] = d[j] = d[k] = efi] = e[j] = e[k] = 1”
({d7 e}7i7.j7k P

d[p1] = co,ar[pz] =1
dlp2] = e[p}=1

(O,;) (p17 P2, /7J a[i] — a[_|] _ a[k] -1 C(2,3)
v (6.0 K00

(p1, P51, J  K') maj(bl[i], b[j],blk]) =1 (a, b, /", j, k')

~¢|




Construction with weights

dfi] = d[j] = d[k] = e[i] =
({d7 e}? i?.j? k

{

eli =ek] =1

|

d[p1] = co,ar[pz] =1

d[ps] = elpy}=T1 ac

(0,5)

(p17 P2, Ivj

(‘37 b7i7_j7 k)(

(p1, P2, 1,5 K) maj(b[i], b[j], b[k]) =

afi] = alj] = a[k] =
3

P
{d.e}
[ oE)
C
—O

a[pI] = b[pl] — l] - Jh ¢ ivja k}7
alp2] = blpa] = clpa] >1_ c[h] =b[h] = 1
\() T(3A,0)
(a, b, c)




Construction with weights

d[i] = d[j] = d[k] = efi] = e[j] = e[k] = 1”
({d7 e}7i7.j7k P

d[p1] = co,ar[pz] =1
dlp2] = e[p}=1

a[i] = a[j] :'a[.k] -1 C(2,3)
(a, b, I/, k)()_o

acl{d, e}

(0,5)

(P17 P2, Ivj

(Pl Py, i, j, k) maj(bli], b[j]. bk]) =1 (a, b, 7, j’, k')




No orthogonal quadruple = diameter at most 4

d[i] = d[j] = d[k] = e]i] = e[j] = e[k] = e
({d e}, /W p

ac|{d,e}

d[pq] =§r[P2] =1
d[p2] = e[p

ali] = alj] = a[k] = 1 o
(37 b7 i:j7 k) —O
maj(b[i], b[i] b[k]) = 1| (a, b, i, j, k)

(péﬁ p/2’ I./7j/7 k/)

a[p1] = b[p1] =<p1] = Ih e {fi,j, k},
a[p2] = b[pz] = c[p2] = c[h] =|b[n] =1

(3.0)
‘ \O T

(a, b, c)

Automatic paths of length at most 4, except for T-T, T-C, T-P,
and C-C



No orthogonal quadruple = diameter at most 4

({d. e}.i.j. k) P

d[i] = d[j] = d[k] = e[i] = e[j] = e[k] = 1(2 3)’

d[p1] =§r[P2] =1
d[p2] = e[py} =1

ali] = afj] = a[k] = 1 C(“’|

ac|{d,e}

(av b, iJs k) —O
maj(bli], b[j],blk]) = 1| (a,b,/,j, k')

3h e |fi,j, k},
clh] =|b[h] = 1

G.0)
‘ \O T ’

T-T, T-C, C-C: (a,b,c) or (a,b,i",j', k') — (a, b, i,j, k) —
({a,d},i,j, k) —(d,e,i,j, k) —(d,e, f)or (d, e i", j" k")

with i =ind(a, b, c,d), j = ind(a, b, d, €), k =ind(a,d, e, )



No orthogonal quadruple = diameter at most 4

dfi] = d[j] = d[K] = efi] = efj] =ek] = 1 3”

({d. e}, ,w P

dlp] = e[po] =1 aclidel
(0,5) )

/ alij=aljl=alk] =1 C

(a, b, i,j, k) O——O
(p1, Po, .5 K') maj(b[il, b[i], bk]) = 1| (a,b,7,j, k)
= 3h e ffi,j, k},
a[p2] = b[pz] = c[pz] = clh] =|b[n] = 1

(3,0)

\O T

(a,b,¢c)

T_P: (aa b7 C) - (p17 P2, i7j7 k) - ({d7 e}7 ia.j? k)
with p; = ind(a, b, ¢, d), p» = ind(a, b, c, €)



a, b, c, d orthogonal = d((a, b,c),(d,c,b)) > 7

d[i] = dfj] = dk] = efi] = e[j] = el =1~
({d, e},i,j, k) P

dlpi] =§r[P2] =1

dlp2] = olp ac|idel

alij=aljl=alk] =1 c
(av b7 i:fv k) —O
maj(b[i], bli]blk]) =1| (a,b,/,),K)

(1, P, ', k') 3

Set | cannot help for a path of length 6



a, b, c, d orthogonal = d((a, b,c),(d,c,b)) > 7

d[i] = dfi] = dk] = efi] = e[j] = el =1~
({d.€).1.) L0 P

ac|{d,e}

dlpi] =§r[P2] =1
dlp2] =e[p

ali] = a[j] = alk] = 1 o
(37 b7 i:j7 k) —O
maj(b[i], b[i] b[k]) = 1| (a, b, i, j, k)

(1, P, .4, k') 3

Ih e lfi,j, k},
clh] =|b[h] =1

(a,b,i,j, k) and (d, c,i,j, k) have to be part of the path



Removing the weights

{ di] = d[j] = d[k] = e[i] = e[j] = e[k] = {z,g]

({d,e},ij k P
dlp1] = e[p2] = 1
[p1] gr[m] I
(0‘7) (Pr, P2, i, ali] = a[j] = a[k] —1 ¢
(a,b,i,j, k
(pillapévilvj,7k,) ma.] b[] bb] b[k] ~ (a b I,j k

a[p1] = b{p1] = c[p1] = €{i.j, }
a[p2] = b[p2] = c[p2] = 1 [h] = b[h]

(3,0)] ( & G,
TJ { (a,b,c)T/TJ { (abc) T




Undirected unweighted DIAMETER

N

runtime exponent

1
1 approximation factor 3 5 1o _ k1—1 2
2 3 4 2
2k=1
k

Thank you for your attention!



