# Approximation algorithm for Diameter, or lack thereof

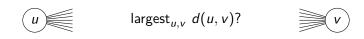
Édouard Bonnet

ENS Lyon, LIP

July 19th, 2021, LIS seminar

#### DIAMETER

diam(G) = largest distance between a pair of vertices of G



- ▶ In weighted graphs, no better known than APSP
- lacktriangle In unweighted graphs, solvable in  $ilde{O}(n^\omega)$

#### DIAMETER

diam(G) = largest distance between a pair of vertices of G

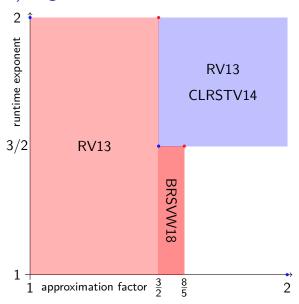


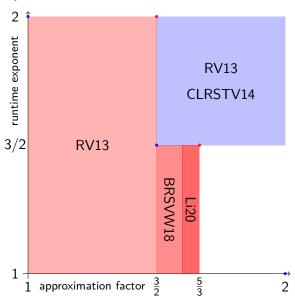
 $largest_{u,v} d(u,v)$ ?

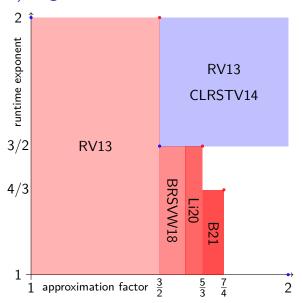


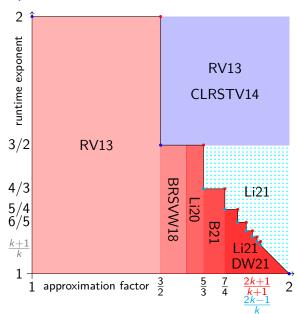
- In weighted graphs, no better known than APSP
- ▶ In unweighted graphs, solvable in  $\tilde{O}(n^{\omega})$

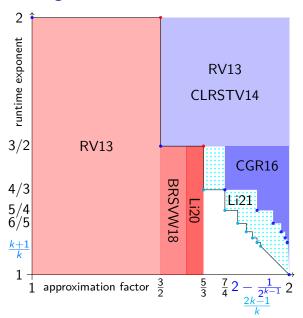
**Scope of the talk:** Time vs Approximation trade-offs Pareto front of (x, y),  $\exists x$ -approximation running in time  $\tilde{O}(|G|^y)$ 

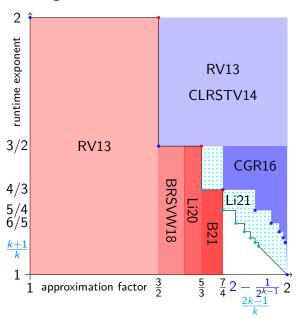


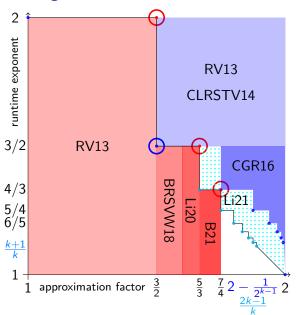


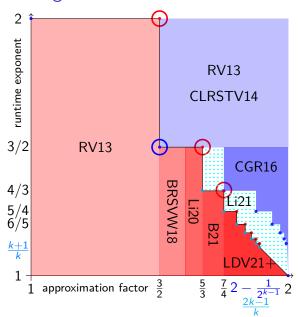




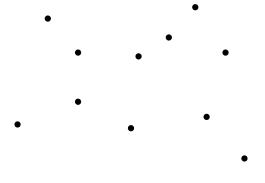




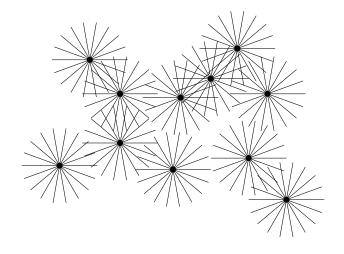




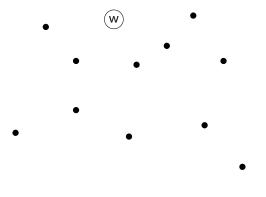
# Algorithms



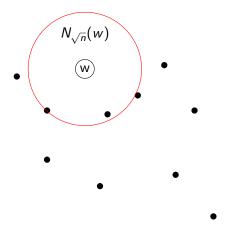
Sample  $100\sqrt{n}\log n$  vertices uniformly at random  $\to S$ 



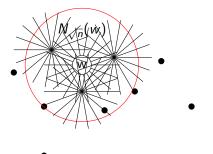
Run Dijkstra from each vertex of S



Let w be the furthest vertex to S

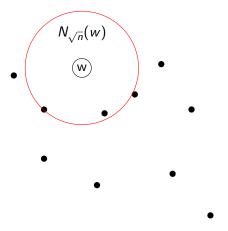


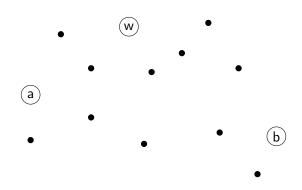
Compute  $N_{\sqrt{n}}(w)$ : the set of  $\sqrt{n}$  closest vertices from w



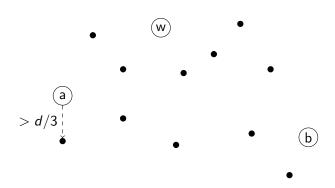
•

Run Dijkstra from each vertex of  $N_{\sqrt{n}}(w)$ 

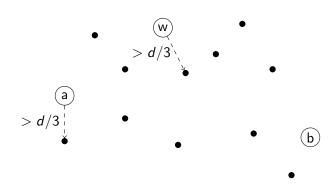




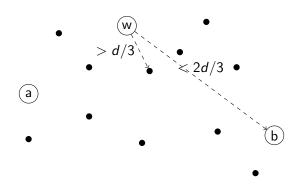
Say a and b realizes the diameter d = diam(G) = d(a, b)



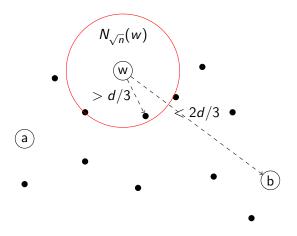
We can assume that d(a, S) > d/3. Why?



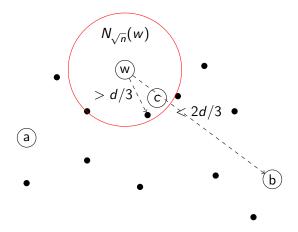
This implies that d(w, S) > d/3.



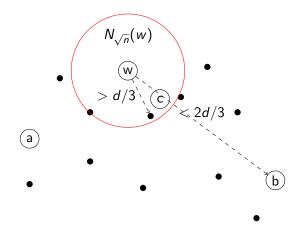
Similarly we can assume that d(w, b) < 2d/3.



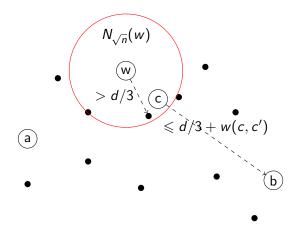
With high probability  $N_{\sqrt{n}}(w)$  intersects S



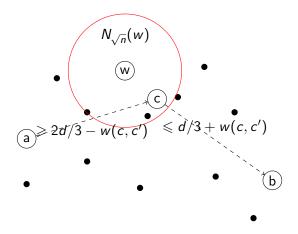
So there is  $c \in N_{\sqrt{n}}(w)$  along a shortest path w - cc' - b...



...with  $d(w,c) \leq d/3$  and d(w,c') > d/3



Thus d(w, c) > d/3 - w(c, c'), hence  $d(c, b) \le d/3 + w(c, c')$ 



Finally 
$$d(a, c) \ge 2d/3 - w(c, c')$$

# Lower bounds

#### **SETH**

 $\forall k, \exists \varepsilon > 0$ , no classical algorithm solves *n*-var k-SAT in  $(2 - \varepsilon)^n$ 

In 1999, Impagliazzo and Paturi introduce ETH and mention a stronger version of it in their conclusion

$$\mathsf{SETH} \Rightarrow \mathsf{ETH} \Rightarrow \mathsf{P} \neq \mathsf{NP}$$

► ETH and SETH are then mainly used for NP-hard problems

#### **SETH**

 $\forall k, \exists \varepsilon > 0$ , no classical algorithm solves *n*-var *k*-SAT in  $(2 - \varepsilon)^n$ 

In 1999, Impagliazzo and Paturi introduce ETH and mention a stronger version of it in their conclusion

$$\mathsf{SETH} \Rightarrow \mathsf{ETH} \Rightarrow \mathsf{P} \neq \mathsf{NP}$$

- ► ETH and SETH are then mainly used for NP-hard problems
- ▶ In 2005, SETH is used for the first time for a problem in P

ORTHOGONAL VECTORS,

#### **SETH**

 $\forall k, \exists \varepsilon > 0$ , no classical algorithm solves *n*-var k-SAT in  $(2 - \varepsilon)^n$ 

In 1999, Impagliazzo and Paturi introduce ETH and mention a stronger version of it in their conclusion

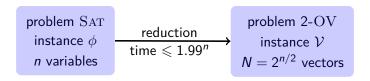
$$SETH \Rightarrow ETH \Rightarrow P \neq NP$$

- ► ETH and SETH are then mainly used for NP-hard problems
- ▶ In 2005, SETH is used for the first time for a problem in P
- 2014-, dozens of papers show SETH-hardness of problems in P

ORTHOGONAL VECTORS, DIAMETER, FRÉCHET DISTANCE, EDIT DISTANCE, LONGEST COMMON SUBSEQUENCE, FURTHEST PAIR, dynamic problems, problems from Machine Learning, Model Checking, Language Theory etc.

#### Reduction from SAT to a problem in P

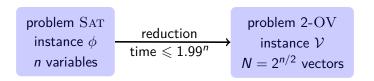
2-ORTHOGONAL VECTORS (2-OV): Are there two orthogonal vectors in a given set of *N* 0, 1-vectors?



#### Reduction from SAT to a problem in P

2-Orthogonal Vectors (2-OV):

Are there two orthogonal vectors in a given set of N 0, 1-vectors?



 $\rightarrow$  Solving 2-OV in  $N^{1.99}$  solves SAT  $1.99^n + 2^{\frac{1.99n}{2}}$ , refuting SETH

#### Sat $\rightarrow$ 2-Orthogonal Vectors [W05]

arbitrary equipartition of  $X: x_1, x_2, \dots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \dots, x_n$ 

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

#### Sat $\rightarrow$ 2-Orthogonal Vectors [W05]

arbitrary equipartition of  $X: x_1, x_2, \dots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \dots, x_n$ 

Find an assignment

- A of the red variables and
- ▶ B of the blue variables

such that all the clauses are satisfied by  $\boldsymbol{A}$  or by  $\boldsymbol{B}$ 

```
R B C<sub>1</sub> C<sub>2</sub> C<sub>3</sub> C<sub>4</sub> C<sub>5</sub> C<sub>6</sub> C<sub>7</sub> C<sub>8</sub>

A<sub>1</sub>
A<sub>2</sub>
A<sub>3</sub>
A<sub>4</sub>
B<sub>1</sub>
B<sub>2</sub>
B<sub>3</sub>
B<sub>4</sub>
```

#### Sat $\rightarrow$ 2-Orthogonal Vectors [W05]

arbitrary equipartition of  $X: x_1, x_2, \dots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \dots, x_n$ 

Find an assignment

- A of the red variables and
- ▶ B of the blue variables

such that all the clauses are satisfied by  $\boldsymbol{A}$  or by  $\boldsymbol{B}$ 

## Sat $\rightarrow$ 2-Orthogonal Vectors [W05]

arbitrary equipartition of  $X: x_1, x_2, \dots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \dots, x_n$ 

Find an assignment

- A of the red variables and
- ▶ B of the blue variables

# Sat $\rightarrow$ 2-Orthogonal Vectors [W05]

arbitrary equipartition of  $X: x_1, x_2, \dots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \dots, x_n$ 

#### Find an assignment

- A of the red variables and
- ▶ B of the blue variables

such that all the clauses are satisfied by  $\boldsymbol{A}$  or by  $\boldsymbol{B}$ 

## $SAT \rightarrow 2$ -Orthogonal Vectors [W05]

arbitrary equipartition of  $X: x_1, x_2, \dots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \dots, x_n$ 

Find an assignment

- A of the red variables and
- ▶ B of the blue variables

## Sat $\rightarrow$ 2-Orthogonal Vectors [W05]

arbitrary equipartition of  $X: x_1, x_2, \dots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \dots, x_n$ 

#### Find an assignment

- A of the red variables and
- ▶ B of the blue variables

|       | R | В | $C_1$ | $C_2$ | $C_3$ | $C_4$ | $C_5$ | $C_6$ | $C_7$ | <i>C</i> <sub>8</sub> |
|-------|---|---|-------|-------|-------|-------|-------|-------|-------|-----------------------|
| $A_1$ | 1 | 0 | 1     | 0     | 0     |       | -     | 0     | 1     | 0                     |
| $A_2$ | 1 | 0 | 0     | 0     | 0     | 1     | 1     | 1     | 0     | 1                     |
| $A_3$ | 1 | 0 | 0     | 1     | 0     | 1     | 0     | 0     | 1     | 1                     |
| $A_4$ | 1 | 0 | 0     | 0     | 1     | 1     | 0     | 1     | 1     | 1                     |
| $B_1$ | 0 | 1 | 1     | 1     | 0     | 0     | 1     | 1     | 1     | 0                     |
| $B_2$ | 0 | 1 | 0     | 1     | 0     | 1     | 0     | 1     | 0     | 0                     |
| $B_3$ | 0 | 1 | 1     | 1     | 1     | 1     | 0     | 0     | 0     | 1                     |
| $B_4$ | 0 | 1 | 0     | 1     | 0     | 0     | 1     | 0     | 0     | 1                     |

## Sat $\rightarrow$ 2-Orthogonal Vectors [W05]

arbitrary equipartition of  $X: x_1, x_2, \dots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \dots, x_n$ 

#### Find an assignment

- A of the red variables and
- ▶ B of the blue variables

|       | R | В | $C_1$ | $C_2$ | $C_3$ | $C_4$ | $C_5$ | $C_6$ | $C_7$ | <i>C</i> <sub>8</sub> |
|-------|---|---|-------|-------|-------|-------|-------|-------|-------|-----------------------|
| $A_1$ | 1 | 0 | 1     | 0     | 0     | 1     | 0     | 0     | 1     | 0                     |
| $A_2$ | 1 | 0 | 0     | 0     | 0     | 1     | 1     | 1     | 0     | 1                     |
| $A_3$ | 1 | 0 | 0     | 1     | 0     | 1     | 0     | 0     | 1     | 1                     |
| $A_4$ | 1 | 0 | 0     | 0     | 1     | 1     | 0     | 1     | 1     | 1                     |
| $B_1$ | 0 | 1 | 1     | 1     | 0     | 0     | 1     | 1     | 1     | 0                     |
| $B_2$ | 0 | 1 | 0     | 1     | 0     | 1     | 0     | 1     | 0     | 0                     |
| $B_3$ | 0 | 1 | 1     | 1     | 1     | 1     | 0     | 0     | 0     | 1_                    |
| $B_4$ | 0 | 1 | 0     | 1     | 0     | 0     | 1     | 0     | 0     | 1                     |

## Consequence for 2-ORTHOGONAL VECTORS

From a SAT-instance on n variables and m clauses, we created  $N:=2^{\frac{n}{2}+1}$  vectors in dimension d:=m+2

## Consequence for 2-ORTHOGONAL VECTORS

From a SAT-instance on n variables and m clauses, we created  $N:=2^{\frac{n}{2}+1}$  vectors in dimension d:=m+2

An algorithm solving 2-OV in time  $2^{o(d)}N^{2-\varepsilon}$  would solve SAT in  $2^{o(m)}2^{n(1-\varepsilon/2)} \to \text{breaking SETH}$ 

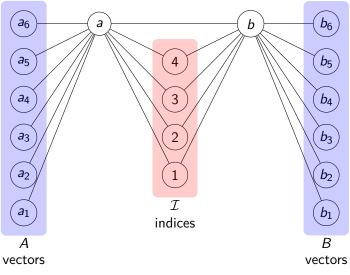
## Consequence for 2-ORTHOGONAL VECTORS

From a SAT-instance on n variables and m clauses, we created  $N:=2^{\frac{n}{2}+1}$  vectors in dimension d:=m+2

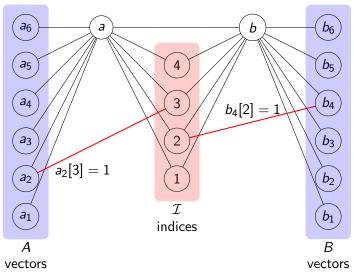
An algorithm solving 2-OV in time  $2^{o(d)}N^{2-\varepsilon}$  would solve SAT in  $2^{o(m)}2^{n(1-\varepsilon/2)} \to \text{breaking SETH}$ 

#### Most useful consequence here:

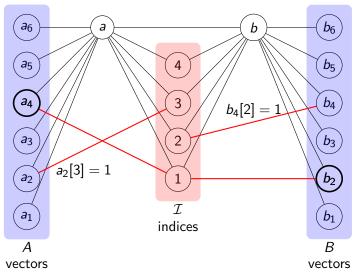
 $N^{2-o(1)}$ -time is required even if  $d = \log^{O(1)} N$ Same for k-OV and  $N^{k-o(1)}$ -time



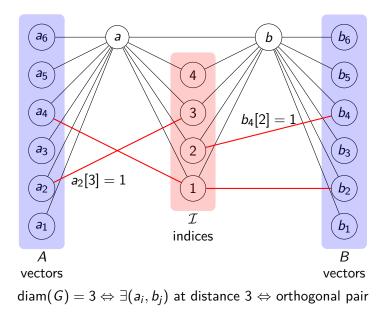
So far, all the pairs but of  $A \times B$  are at distance  $\leqslant 2$ 

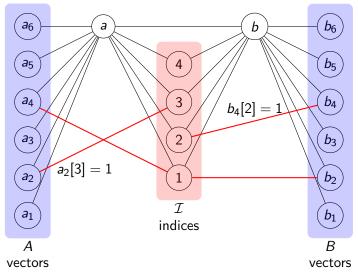


we put an edge between vector v and index i iff v[i] = 1



A pair (a4,b2) is at distance  $2 \Leftrightarrow \langle a_4,b_2 \rangle \neq 0$ 





If no orthogonal pair, diam(G) = 2

### Theorem (Li '20)

Approximating sparse undirected unweighted DIAMETER within factor better than  $\frac{5}{3}$  requires time  $n^{\frac{3}{2}-o(1)}$ , unless SETH fails.

### Theorem (Li '20)

Approximating sparse undirected unweighted DIAMETER within factor better than  $\frac{5}{3}$  requires time  $n^{\frac{3}{2}-o(1)}$ , unless SETH fails.

**Plan:** hardness of 3 vs 5 DIAMETER from *N*-vector 3-OV to  $O(N^2)$ -vertex  $\tilde{O}(N^2)$ -edge DIAMETER-instances.

### Theorem (Li '20)

Approximating sparse undirected unweighted DIAMETER within factor better than  $\frac{5}{3}$  requires time  $n^{\frac{3}{2}-o(1)}$ , unless SETH fails.

**Plan:** hardness of 3 vs 5 DIAMETER from *N*-vector 3-OV to  $O(N^2)$ -vertex  $\tilde{O}(N^2)$ -edge DIAMETER-instances.

2 vs 3 hardness from 2-OV [RV13]

### Theorem (Li '20)

Approximating sparse undirected unweighted DIAMETER within factor better than  $\frac{5}{3}$  requires time  $n^{\frac{3}{2}-o(1)}$ , unless SETH fails.

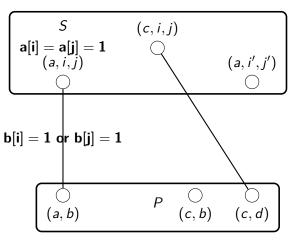
**Plan:** hardness of 3 vs 5 DIAMETER from *N*-vector 3-OV to  $O(N^2)$ -vertex  $\tilde{O}(N^2)$ -edge DIAMETER-instances.

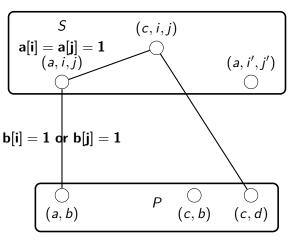
2 vs 3 hardness from 2-OV [RV13]

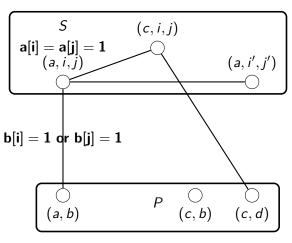
Vectors a,b,c,..., Indices i,j,k,..., ind(a,b,c)=i, with a[i]=b[i]=c[i]=1 (exists if a,b,c not  $\bot$ ) index i contradicts a,b,c  $\bot$ 

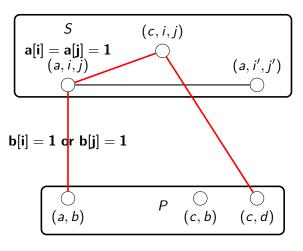
$$\begin{array}{c|c} S & (c,i,j) \\ \mathbf{a}[\mathbf{i}] = \mathbf{a}[\mathbf{j}] = \mathbf{1} & \bigcirc \\ (a,i,j) & & (a,i',j') \\ \bigcirc & & \bigcirc \end{array}$$

$$\bigcirc \qquad \qquad P \quad \bigcirc \qquad \bigcirc \\
(a,b) \qquad \qquad (c,b) \quad (c,d)$$

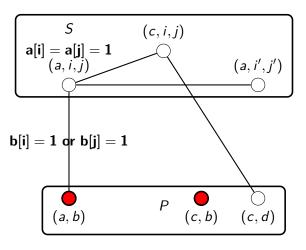




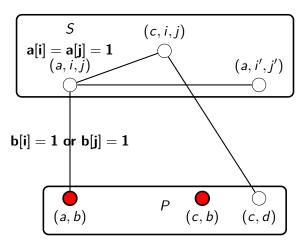




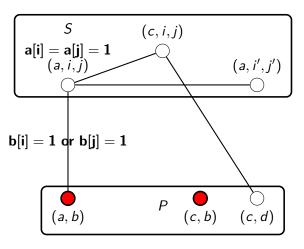
No orthogonal triple  $\Rightarrow$  diam(G) = 3, i = ind(a, b, c), j = ind(a, c, d)



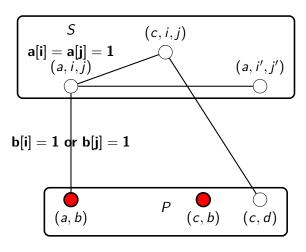
Orthogonal triple  $(a,b,c) \Rightarrow d((a,b),(b,c)) = 5$ , (a,b) - (a,i,j) - (x,i',j') - (c,i'',j'') - (c,b)



Orthogonal triple  $(a,b,c) \Rightarrow d((a,b),(b,c)) = 5$ , (a,b) - (a,i,j) - (a,i',j') - (c,i'',j'') - (c,b)



Orthogonal triple  $(a,b,c) \Rightarrow d((a,b),(b,c)) = 5,$ (a,b) - (a,i,j) - (a,i',j') - (c,i',j') - (c,b)



Orthogonal triple (a,b,c)  $\Rightarrow$  d((a,b),(b,c)) = 5, i' or j' contradicts  $a,b,c \perp$ 

### Theorem (B. '21)

Approximating sparse undirected unweighted DIAMETER within factor better than  $\frac{7}{4}$  requires time  $n^{\frac{4}{3}-o(1)}$ , unless SETH fails.

### Theorem (B. '21)

Approximating sparse undirected unweighted DIAMETER within factor better than  $\frac{7}{4}$  requires time  $n^{\frac{4}{3}-o(1)}$ , unless SETH fails.

**Plan:** hardness of 4 vs 7 DIAMETER from *N*-vector 4-OV to  $O(N^3)$ -vertex  $\tilde{O}(N^3)$ -edge DIAMETER-instances.

### Theorem (B. '21)

Approximating sparse undirected unweighted DIAMETER within factor better than  $\frac{7}{4}$  requires time  $n^{\frac{4}{3}-o(1)}$ , unless SETH fails.

**Plan:** hardness of 4 vs 7 DIAMETER from *N*-vector 4-OV to  $O(N^3)$ -vertex  $\tilde{O}(N^3)$ -edge DIAMETER-instances.

2 vs 3 hardness from 2-OV [RV13] 3 vs 5 hardness from 3-OV [Li20]

$$d[i] = d[j] = d[k] = e[i] = e[j] = e[k] = 1
 ({d, e}, i, j, k) \bigcirc P$$

$$(p_1, p_2, i, j, k)$$

$$(p'_1, p'_2, i', j', k')$$

$$\begin{array}{c|c} \hline (0,5) & (p_1,p_2,i,j,k) \\ I & \bigcirc & \bigcirc \\ (p_1',p_2',i',j',k') & \hline \\ & & \mathbf{a[i]} = \mathbf{a[j]} = \mathbf{a[k]} = \mathbf{1} \\ & (a,b,i,j,k) \bigcirc & \bigcirc \\ & \mathbf{maj(b[i],b[j],b[k])} = \mathbf{1} \ (a,b,i',j',k') \\ \hline \end{array}$$

$$\bigcirc \qquad \qquad T \\
(a,b,c)$$

$$\mathbf{d[i]} = \mathbf{d[j]} = \mathbf{d[k]} = \mathbf{e[i]} = \mathbf{e[j]} = \mathbf{e[k]} = \mathbf{1}^{(2,3)} \\
 (\{d,e\},i,j,k) \bigcirc P$$

$$(p_1, p_2, i, j, k)$$

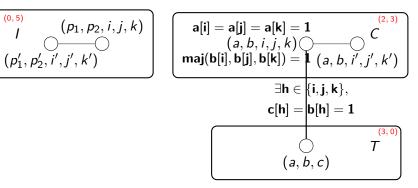
$$(p_1', p_2', i', j', k')$$

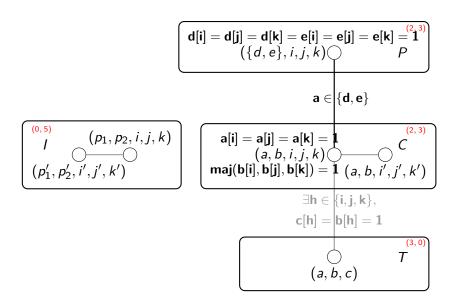
$$\bigcirc \qquad \qquad \begin{matrix} (3,0) \\ T \\ (a,b,c) \end{matrix}$$

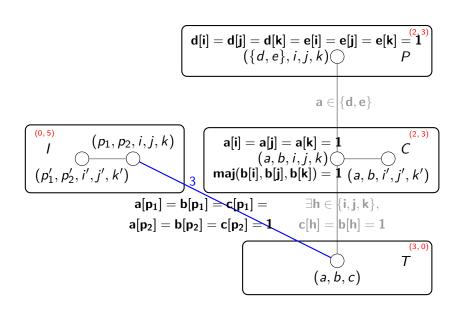
$$\mathbf{d[i]} = \mathbf{d[j]} = \mathbf{d[k]} = \mathbf{e[i]} = \mathbf{e[j]} = \mathbf{e[k]} = \mathbf{1}^{(2,3)} \\
 (\{d,e\},i,j,k) \bigcirc \qquad P$$

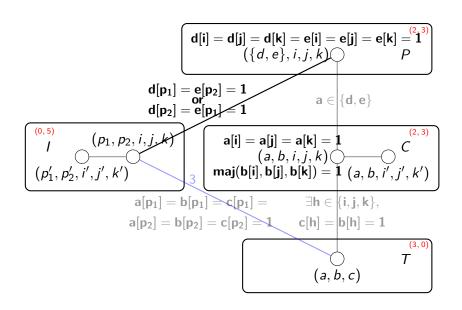
$$(p_1, p_2, i, j, k)$$

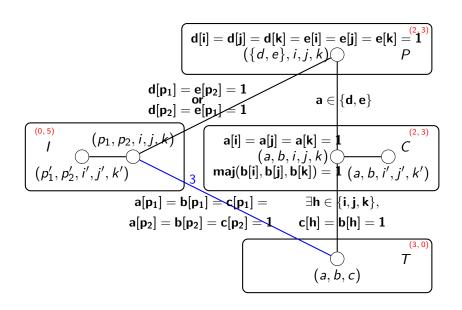
$$(p_1', p_2', i', j', k')$$

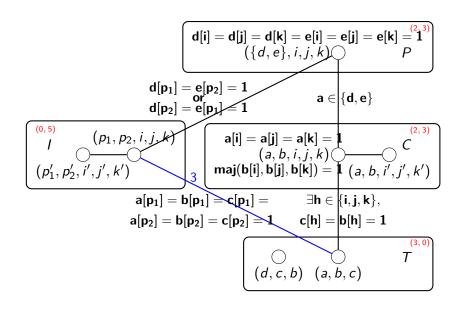




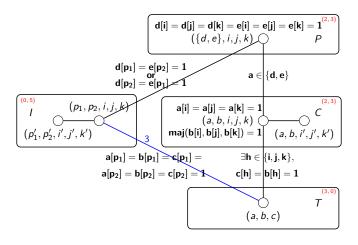






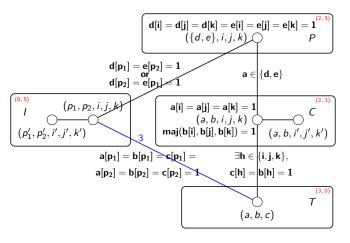


## No orthogonal quadruple $\Rightarrow$ diameter at most 4



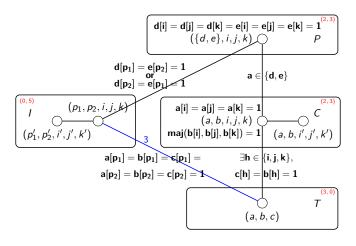
Automatic paths of length at most 4, except for T-T, T-C, T-P, and C-C

## No orthogonal quadruple $\Rightarrow$ diameter at most 4



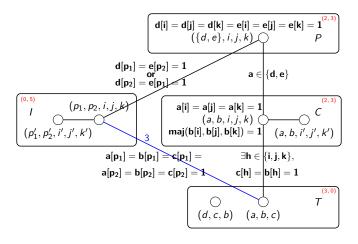
T-T, T-C, C-C: 
$$(a, b, c)$$
 or  $(a, b, i', j', k') - (a, b, i, j, k) - (\{a, d\}, i, j, k) - (d, e, i, j, k) - (d, e, f)$  or  $(d, e, i'', j'', k'')$  with  $i = \text{ind}(a, b, c, d)$ ,  $j = \text{ind}(a, b, d, e)$ ,  $k = \text{ind}(a, d, e, f)$ 

## No orthogonal quadruple $\Rightarrow$ diameter at most 4



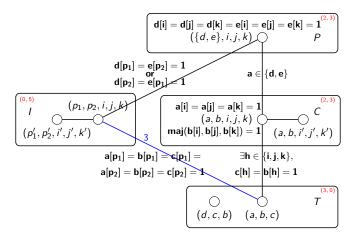
T-P: 
$$(a, b, c) - (p_1, p_2, i, j, k) - (\{d, e\}, i, j, k)$$
  
with  $p_1 = \text{ind}(a, b, c, d), p_2 = \text{ind}(a, b, c, e)$ 

# a, b, c, d orthogonal $\Rightarrow d((a, b, c), (d, c, b)) \geqslant 7$



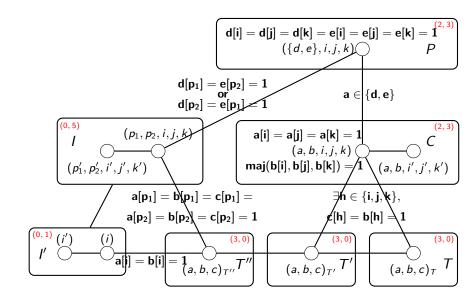
Set I cannot help for a path of length 6

# a, b, c, d orthogonal $\Rightarrow d((a, b, c), (d, c, b)) \geqslant 7$

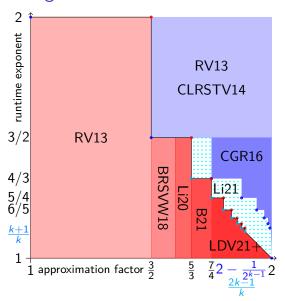


(a,b,i,j,k) and (d,c,i,j,k) have to be part of the path

# Removing the weights



## Undirected unweighted DIAMETER



Thank you for your attention!