Twin-width for digraphs

Édouard Bonnet

ENS Lyon, LIP

meeting ANR DIGRAPHS

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=0$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=2$

Twin-width of digraphs

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=0$

Twin-width of digraphs

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=3$ overall maximum red degree $=3$

Twin-width of digraphs

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=3$ overall maximum red degree $=3$

Twin-width of digraphs

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=3$ overall maximum red degree $=3$

Twin-width of digraphs

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=3$

Twin-width of digraphs

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=3$

Twin-width of digraphs

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=3$

Classes with bounded twin-width

- cographs $=$ twin-width 0
- trees, bounded treewidth, clique-width/rank-width
- grids

Trees

If possible, contract two leaves with the same parent

Trees

If not, contract a deepest leaf with its parent

Trees

If not, contract a deepest leaf with its parent

Trees

If possible, contract two leaves with the same parent

Trees

Cannot create a red degree-3 vertex

Trees

Generalization to orientations of bounded treewidth graphs, and to undirected bounded rank-width graphs

Grids

Grids

The following sequence works for any orientation

Grids

Grids

Grids

Grids

Grids

4-sequence for orientations of planar grids

Orientations of bounded twin-width classes

Perhaps every "sparse" class of bounded twin-width has an orientation closure of bounded twin-width?

Orientations of bounded twin-width classes

Perhaps every "sparse" class of bounded twin-width has an orientation closure of bounded twin-width?

Theorem
The class of all orientations of graphs from a $K_{t, t^{-}}$free class of bounded twin-width has itself bounded twin-width.

We will see later why

Simple operations preserving twin-width

For graphs:

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one apex: at most "doubles"
- substitution $G(v \leftarrow H)$: max of the twin-width of G and H

For digraphs:

- any map $\{\rightarrow, \leftrightarrow, \cdots\} \rightarrow\{\rightarrow, \leftarrow, \leftrightarrow, \cdots\}$: may only decrease
- taking induced subdigraphs: may only decrease
- adding one apex: at most "quadruples"
- substitution $G(v \leftarrow H)$: max of the twin-width of G and H

Substitution and lexicographic product

$$
G=\vec{C}_{5}
$$

Substitution and lexicographic product

$G=\overrightarrow{C_{5}}, H=\overrightarrow{P_{4}}, \quad$ substitution $G[v \leftarrow H]$

Substitution and lexicographic product

$G=\vec{C}_{5}, H=\overrightarrow{P_{4}}, \quad$ lexicographic product $G[H]$

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

$\operatorname{tww}(G[H])=\max (\operatorname{tww}(G), \operatorname{tww}(H))$

The following classes have bounded twin-width, and

 $O(1)$-sequences can be computed in polynomial time.- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size,
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs with embedding,
- d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- flat classes,
- subgraphs of every $K_{t, t}$-free class above,
- first-order transductions of all the above.

Twin-width in the language of matrices

$$
\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Encode a bipartite graph (or, if symmetric, any graph)

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|l|l|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Contraction of two columns (similar with two rows)

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|lllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

How is the twin-width (re)defined?

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|lllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

How to tune it for non-bipartite graph?

Twin-width in the language of matrices

$$
\left[\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & r & 0 & & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & & 0 & 0 & 1 \\
0 & 1 & r & 0 & & 0 & 1 & 0 \\
1 & 0 & r & 1 & & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Digraph encoding:

- $i \rightarrow j: 1$ at $(i, j),-1$ at (j, i),
- $i \leftrightarrow j: 2$ at (i, j) and (j, i),
- otherwise: 0 at (i, j) and (j, i).

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|l|l|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Maximum number of non-constant "zones" per column or row part $=$ error value

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Maximum number of non-constant "zones" per column or row part
... until there are a single row part and column part

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Twin-width as maximum error value of a contraction sequence

Grid minor

t-grid minor: $t \times t$-division where every cell is non-empty Non-empty cell: not full of 0 entries

$$
\left[\begin{array}{ll|ll|ll|ll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Grid minor

t-grid minor: $t \times t$-division where every cell is non-empty Non-empty cell: not full of 0 entries
$\left[\begin{array}{ll|ll|ll|ll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

A matrix is said t-grid free if it does not have a t-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{cc|ccc|ccc}
11 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
10 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
10 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Every mixed cell is witnessed by a 2×2 square $=$ corner

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

$R_{4}\left[\begin{array}{ll|lll|l|ll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
\approx (maximum) number of cells with a corner per row/column part

Mixed value

$R_{4}\left[\begin{array}{ll|lll|l|ll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$

But we add the number of boundaries containing a corner

Mixed value

$R_{4}\left[\begin{array}{cc|ccc|c|cc}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ R_{3} \\ R_{2} \\ R_{1} & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
\therefore merging row parts do not increase mixed value of column part

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If G admits a t-mixed free adjacency matrix, then $\operatorname{tww}(G)=2^{2^{O(t)}}$. Holds for binary structures in general

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|l|l|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$

1 1 1 1 1 1 1 0 0 1							
0	1	1		0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1		1	1	0	0
1	-						

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Question
For every k, is there a c_{k} such that every $n \times m 0,1$-matrix with at least $c_{k} 1$ per row and column admits a k-grid minor?

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92)
For every k, there is a c_{k} such that every $n \times m 0$, 1-matrix with at least $c_{k} \max (n, m) 1$ entries admits a k-grid minor.

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92)
For every k, there is a c_{k} such that every $n \times m 0$, 1-matrix with at least $c_{k} \max (n, m) 1$ entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture '80s)
Any proper permutation class contains only $2^{O(n)}$ n-permutations.

Klazar showed Füredi-Hajnal \Rightarrow Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004

Marcus-Tardos one-page inductive proof

Let M be an $n \times n 0$, 1-matrix without k-grid minor

Marcus-Tardos one-page inductive proof

Draw a regular $\frac{n}{k^{2}} \times \frac{n}{k^{2}}$ division on top of M

Marcus-Tardos one-page inductive proof

A cell is wide if it has at least k columns with a 1

Marcus-Tardos one-page inductive proof

A cell is tall if it has at least k rows with a 1

Marcus-Tardos one-page inductive proof

There are less than $k\binom{k^{2}}{k}$ wide cells per column part. Why?

Marcus-Tardos one-page inductive proof

There are less than $k\binom{k^{2}}{k}$ tall cells per row part

Marcus-Tardos one-page inductive proof

In W and T, at most $2 \cdot \frac{n}{k^{2}} \cdot k\binom{k^{2}}{k} \cdot k^{4}=2 k^{3}\binom{k^{2}}{k} n$ entries 1

Marcus-Tardos one-page inductive proof

There are at most $(k-1)^{2} c_{k} \frac{n}{k^{2}}$ remaining 1 . Why?

Marcus-Tardos one-page inductive proof

Choose $c_{k}=2 k^{4}\binom{k^{2}}{k}$ so that $(k-1)^{2} c_{k} \frac{n}{k^{2}}+2 k^{3}\binom{k^{2}}{k} n \leqslant c_{k} n$

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part Impossible!

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$ Step 2: find a contraction sequence with error value $g(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Refinement of \mathcal{D}_{i} where each part coincides on the non-mixed cells

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Now to bound the twin-width of a class \mathscr{C} :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with \mathscr{C}

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Theorem
The following are equivalent.

- (i) \mathscr{C} has bounded twin-width.
- (ii) \mathscr{C} has bounded "oriented twin-width."
- (iii) \mathscr{C} is t-mixed free.

Oriented twin-width: put red arcs from contracted vertices, and consider the red out-degree.
(i) \Rightarrow (ii): immediate.
(ii) \Rightarrow (iii): same simple proof as (i) \Rightarrow (iii).
(iii) \Rightarrow (i): what we just saw.

Bounded twin-width - unit interval graphs

Warm-up with unit interval graphs: order by left endpoints

Bounded twin-width - unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Bounded twin-width - posets of bounded antichain

Put the k chains in order one after the other

Bounded twin-width - posets of bounded antichain

A $3 k$-mixed minor implies a 3 -mixed minor between two chains

Bounded twin-width - posets of bounded antichain

Transitivity implies that a zone is constant

Bounded twin-width - posets of bounded antichain

And symmetrically

Sparse twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant 21) If \mathscr{C} is a hereditary class of bounded twin-width, tfae.

- (i) \mathscr{C} is $K_{t, t}-$ free.
- (ii) \mathscr{C} is d-grid free.
- (iii) Every n-vertex graph $G \in \mathscr{C}$ has at most gn edges.
- (iv) The subgraph closure of \mathscr{C} has bounded twin-width.
- (v) \mathscr{C} has bounded expansion.

Sparse twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant 21)

If \mathscr{C} is a hereditary class of bounded twin-width, tfae.

- (i) \mathscr{C} is $K_{t, t}-$ free.
- (ii) \mathscr{C} is d-grid free.
- (iii) Every n-vertex graph $G \in \mathscr{C}$ has at most gn edges.
- (iv) The subgraph closure of \mathscr{C} has bounded twin-width.
- (v) \mathscr{C} has bounded expansion.
d-grid freeness is preserved by turning some 1 into -1 or 2
Theorem
The class of all orientations of graphs from a $K_{t, t^{-}}$free class of bounded twin-width has itself bounded twin-width.

Sparse twin-width (2)

In the sparse setting d-mixed minor are replaced by d-grid minor
Theorem
If \mathscr{C} is a hereditary $K_{t, t}-f r e e ~ c l a s s, ~ t f a e . ~$

- (i) \mathscr{C} has bounded twin-width.
- (ii) \mathscr{C} is d-grid free.

First-order model checking

FO Model Checking($\left\{E_{2}\right\}$) Parameter: $|\varphi|$ Input: A digraph G and a first-order sentence $\varphi \in F O(\{E\})$ Question: $G \models \varphi$?

First-order model checking

FO Model Checking($\left\{E_{2}\right\}$)
Parameter: $|\varphi|$
Input: A digraph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?
Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \forall y\left(E(x, y) \Rightarrow \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee y=x_{i}\right)
$$

$G \models \varphi$? $\Leftrightarrow k$-Vertex Cover

First-order model checking

FO Model Checking ($\left\{E_{2}\right\}$)
Parameter: $|\varphi|$
Input: A digraph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?
Example:
$\varphi=\bigvee_{1 \leqslant q \leqslant k, q \text { is odd }} \exists x_{1} \notin\{s\} E\left(s, x_{1}\right) \wedge\left(\forall x_{2} \notin\left\{s, x_{1}\right\} \neg E\left(x_{1}, x_{2}\right) \vee\right.$
$\left(\exists x_{3} \notin\left\{s, x_{1}, x_{2}\right\} E\left(x_{2}, x_{3}\right) \wedge\left(\forall x_{4} \cdots\left(\exists x_{q} \notin\left\{s, x_{1}, \ldots, x_{q-1}\right\} E\left(x_{q-1}, x_{q}\right)\right.\right.\right.$

$$
\left.\left.\left.\left.\wedge\left(\forall x_{q+1} \neg E\left(x_{q}, x_{q+1}\right) \vee x_{q+1} \in\left\{s, x_{1}, \ldots, x_{q}\right\}\right)\right) \cdots\right)\right)\right)
$$

$G \models \varphi ? \Leftrightarrow$

First-order model checking

FO Model Checking($\left\{E_{2}\right\}$)
 Parameter: $|\varphi|$

Input: A digraph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?
Example:
$\varphi=\bigvee_{1 \leqslant q \leqslant k, q \text { is odd }} \exists x_{1} \notin\{s\} E\left(s, x_{1}\right) \wedge\left(\forall x_{2} \notin\left\{s, x_{1}\right\} \neg E\left(x_{1}, x_{2}\right) \vee\right.$
$\left(\exists x_{3} \notin\left\{s, x_{1}, x_{2}\right\} E\left(x_{2}, x_{3}\right) \wedge\left(\forall x_{4} \cdots\left(\exists x_{q} \notin\left\{s, x_{1}, \ldots, x_{q-1}\right\} E\left(x_{q-1}, x_{q}\right)\right.\right.\right.$

$$
\left.\left.\left.\left.\wedge\left(\forall x_{q+1} \neg E\left(x_{q}, x_{q+1}\right) \vee x_{q+1} \in\left\{s, x_{1}, \ldots, x_{q}\right\}\right)\right) \cdots\right)\right)\right)
$$

$G \models \varphi$? \Leftrightarrow Short Generalized Geography

First-order model checking

FO Model Checking($\left\{E_{2}\right\}$)
Parameter: $|\varphi|$
Input: A digraph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?

Also expressible in FO: k-Independent Set, k-Clique, k-Dominating Set, "transitive", etc.

First-order model checking

```
FO Model Checking( \(\left\{E_{2}\right\}\) ) Parameter: \(|\varphi|\) Input: A digraph \(G\) and a first-order sentence \(\varphi \in F O(\{E\})\) Question: \(G \models \varphi\) ?
```

Not expressible in FO: " k-colorable" for any $k \geqslant 2$, "cyclic", "Eulerian", "Hamiltonian", etc.

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula
$\begin{array}{ll}\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\ \varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }\end{array}$

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula
$\begin{array}{ll}\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\ \varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }\end{array}$

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{aligned}
& \varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
& \vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{aligned}
$$

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{aligned}
& \varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
& \vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{aligned}
$$

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

Theorem (B., Kim, Thomassé, Watrigant '20)
Transductions of bounded twin-width classes have bounded twin-width.

Dependence and monadic dependence

A class \mathscr{C} is dependent, if the hereditary closure of every interpretation of \mathscr{C} misses some graph monadically dependent, if every transduction of \mathscr{C} misses some graph [Baldwin, Shelah '85]

Dependence and monadic dependence

A class \mathscr{C} is dependent, if the hereditary closure of every interpretation of \mathscr{C} misses some graph monadically dependent, if every transduction of \mathscr{C} misses some graph [Baldwin, Shelah '85]

Theorem (Downey, Fellows, Taylor '96)
FO model checking is AW[*]-complete on general graphs, thus unlikely FPT on independent classes

Could it be that on every dependent class, it is FPT?

Known FPT FO model checking -tractable classes

Theorem (B., Kim, Thomassé, Watrigant '20)
FO Model Checking solvable in $f(|\varphi|, d) n$ on graphs with a d-sequence.

Equivalences for ordered graphs

Theorem (B., Giocanti, Ossona de Mendez, Toruńczyk, Thomassé, Simon '21+)
Let \mathscr{C} be a hereditary class of ordered graphs, the following are equivalent.
(i) \mathscr{C} has bounded twin-width.
(ii) \mathscr{C} is tractable.
(iii) \mathscr{C} is dependent.
(iv) \mathscr{C} is monadically dependent.
(v) \mathscr{C} has subfactorial growth.
(vi) \mathscr{C} has exponential growth.

Other settings where bounded twin-width \Leftrightarrow tractable \Leftrightarrow dependent?

Open question:

Let \mathscr{T} be a hereditary class of tournaments.
\mathscr{T} bounded twin-width $\Leftrightarrow \mathscr{T}$ tractable?

Other settings where bounded twin-width \Leftrightarrow tractable \Leftrightarrow dependent?

Open question:

Let \mathscr{T} be a hereditary class of tournaments.
\mathscr{T} bounded twin-width $\Leftrightarrow \mathscr{T}$ tractable?

Large transitive subtournaments \rightarrow totally ordered pieces but no global order...

Caccetta-Häggkvist conjecture

CH: Every n-vertex oriented graph without directed cycles of length at most ℓ has minimum out-degree at most $(n-1) / \ell$.
" $\ell=3$ " has received the most attention

Caccetta-Häggkvist conjecture

CH: Every n-vertex oriented graph without directed cycles of length at most ℓ has minimum out-degree at most $(n-1) / \ell$.
" $\ell=3$ " has received the most attention

The (assumed exhaustive list of) extremal configurations are built with lexicographic products so have bounded twin-width

Recap and open questions

We have seen that:
(1) Oriented twin-width is functionally equivalent to twin-width.
(2) Orientations of $K_{t, t}-$ free bounded twin-width classes have bounded twin-width.
(3) Maximum "delimiting power" of twin-width on ordered graphs.

Open questions

- Marcus-Tardos-free proof of (1).
- Bounded twin-width \Leftrightarrow tractable among hereditary classes of tournaments.
- Revisiting conjectures like CH with a bounded/unbounded twin-width win-win argument.

