Édouard Bonnet

ENS Lyon, LIP

meeting ANR DIGRAPHS

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 0 overall maximum red degree = 0

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 1 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 1 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 0overall maximum red degree = 0

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 3 overall maximum red degree = 3

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 1 overall maximum red degree = 3

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 0
overall maximum red degree =
$$3$$

Classes with bounded twin-width

- cographs = twin-width 0
- trees, bounded treewidth, clique-width/rank-width
- grids
- ▶

If possible, contract two leaves with the same parent

If not, contract a deepest leaf with its parent

If not, contract a deepest leaf with its parent

If possible, contract two leaves with the same parent

Cannot create a red degree-3 vertex

Generalization to orientations of bounded *treewidth* graphs, and to undirected bounded *rank-width* graphs

The following sequence works for any orientation

4-sequence for orientations of planar grids

Orientations of bounded twin-width classes

Perhaps every "sparse" class of bounded twin-width has an orientation closure of bounded twin-width?

Orientations of bounded twin-width classes

Perhaps every "sparse" class of bounded twin-width has an orientation closure of bounded twin-width?

Theorem

The class of all orientations of graphs from a $K_{t,t}$ -free class of bounded twin-width has itself bounded twin-width.

We will see later why

Simple operations preserving twin-width

For graphs:

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one apex: at most "doubles"
- ▶ substitution $G(v \leftarrow H)$: max of the twin-width of G and H

For digraphs:

- ▶ any map $\{\rightarrow, \leftrightarrow, \cdots\} \rightarrow \{\rightarrow, \leftarrow, \leftrightarrow, \cdots\}$: may only decrease
- taking induced subdigraphs: may only decrease
- adding one apex: at most "quadruples"
- ▶ substitution $G(v \leftarrow H)$: max of the twin-width of G and H

 $G = \vec{C_5}, H = \vec{P_4}, \text{ substitution } G[v \leftarrow H]$

 $G = \vec{C_5}, H = \vec{P_4},$ lexicographic product G[H]

More generally any modular decomposition

More generally any modular decomposition

 $\mathsf{tww}(G[H]) = \mathsf{max}(\mathsf{tww}(G), \mathsf{tww}(H))$

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size,
- unit interval graphs,
- K_t-minor free graphs,
- map graphs with embedding,
- d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- flat classes,
- subgraphs of every K_{t,t}-free class above,
- first-order transductions of all the above.

Encode a bipartite graph (or, if symmetric, any graph)

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Contraction of two columns (similar with two rows)

How is the twin-width (re)defined?

How to tune it for non-bipartite graph?

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Digraph encoding:

▶
$$i \rightarrow j$$
: 1 at (i, j) , -1 at (j, i) ,

•
$$i \leftrightarrow j$$
: 2 at (i, j) and (j, i) ,

• otherwise: 0 at (i, j) and (j, i).

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1			1		
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Maximum number of non-constant "zones" per column or row part = error value

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

Maximum number of non-constant "zones" per column or row part ... until there are a single row part and column part

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

Twin-width as maximum error value of a contraction sequence

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: not full of 0 entries

1	1	1	1	1	1	1	0		
0	1	1	0	0	1	0	1		
0	0	0	0	0	0	0	1		
0	1	0	0	1	0	1	0		
1	0	0	1	1	0	1	0		
0	1	1	1	1	1	0	0		
$\lfloor 1$	0	1	1	1	0	0	1		
4-grid minor									

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: not full of 0 entries

1	1	1	1	1	1	1	0		
0	1	1	0	0	1	0	1		
0	0	0	0	0	0	0	1		
0	1	0	0	1	0	1	0		
1	0	0	1	1	0	1	0		
0	1	1	1	1	1	0	0		
1	0	1	1	1	0	0	1		
4-grid minor									

A matrix is said *t*-grid free if it does not have a *t*-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

1	1	1	1	1	1	1	0				
1 0	1	1	0	0	1	0	1				
0 0	0	0	0	0	0	0	1				
0	1	0	0	1	0	1	0				
1	0	0	1	1	0	1	0				
0	1	1	1	1	1	0	0				
1	0	1	1	1	0	0	1				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										

3-mixed minor

Mixed minor

Mixed cell: not horizontal nor vertical

Every mixed cell is witnessed by a 2×2 square = corner

Mixed minor

Mixed cell: not horizontal nor vertical

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

pprox (maximum) number of cells with a corner per row/column part

Mixed value

But we add the number of boundaries containing a corner

Mixed value

 \therefore merging row parts do not increase mixed value of column part

Theorem (B., Kim, Thomassé, Watrigant '20) If G admits **a** t-mixed free adjacency matrix, then tww(G) = $2^{2^{O(t)}}$.

Holds for binary structures in general

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

	1						0
0	1	1					1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1	1	1	1	1	0
0	1	1					1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Question

For every k, is there a c_k such that every $n \times m 0, 1$ -matrix with at least $c_k 1$ per row and column admits a k-grid minor?

Stanley-Wilf conjecture / Marcus-Tardos theorem Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92) For every k, there is a c_k such that every $n \times m$ 0,1-matrix with at least $c_k \max(n, m)$ 1 entries admits a k-grid minor. Stanley-Wilf conjecture / Marcus-Tardos theorem Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92) For every k, there is a c_k such that every $n \times m$ 0,1-matrix with at least $c_k \max(n, m)$ 1 entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture '80s) Any proper permutation class contains only $2^{O(n)}$ n-permutations.

Klazar showed Füredi-Hajnal \Rightarrow Stanley-Wilf in 2000 Marcus and Tardos showed Füredi-Hajnal in 2004

Let *M* be an $n \times n$ 0, 1-matrix without *k*-grid minor

Draw a regular $\frac{n}{k^2} \times \frac{n}{k^2}$ division on top of M

A cell is *wide* if it has at least k columns with a 1

A cell is *tall* if it has at least k rows with a 1

There are less than $k\binom{k^2}{k}$ wide cells per column part. Why?

There are less than $k\binom{k^2}{k}$ tall cells per row part

In W and T, at most $2 \cdot \frac{n}{k^2} \cdot k \binom{k^2}{k} \cdot k^4 = 2k^3 \binom{k^2}{k} n$ entries 1

There are at most $(k-1)^2 c_k \frac{n}{k^2}$ remaining 1. Why?

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)**Step 2:** find a contraction sequence with error value g(t)

Refinement of \mathcal{D}_i where each part coincides on the non-mixed cells

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Now to bound the twin-width of a class \mathscr{C} :

1) Find a *good* vertex-ordering procedure

2) Argue that, in this order, a *t*-mixed minor would conflict with \mathscr{C}

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Theorem

The following are equivalent.

- ▶ (i) C has bounded twin-width.
- ▶ (ii) 𝒞 has bounded "oriented twin-width."
- (iii) C is t-mixed free.

Oriented twin-width: put red arcs from contracted vertices, and consider the red out-degree.

(i)
$$\Rightarrow$$
 (ii): immediate.
(ii) \Rightarrow (iii): same simple proof as (i) \Rightarrow (iii).
(iii) \Rightarrow (i): what we just saw.

Bounded twin-width – unit interval graphs

Warm-up with unit interval graphs: order by left endpoints

Bounded twin-width - unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

$$\overline{T_1}$$
 $\overline{T_2}$ $\overline{T_3}$ $\overline{T_k}$

Put the k chains in order one after the other

A 3k-mixed minor implies a 3-mixed minor between two chains

Transitivity implies that a zone is constant

And symmetrically

Sparse twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant 21) If \mathscr{C} is a hereditary class of bounded twin-width, tfae.

- (i) \mathscr{C} is $K_{t,t}$ -free.
- (ii) C is d-grid free.
- ▶ (iii) Every n-vertex graph $G \in C$ has at most gn edges.
- ▶ (iv) The subgraph closure of C has bounded twin-width.
- ▶ (v) C has bounded expansion.

Sparse twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant 21) If \mathscr{C} is a hereditary class of bounded twin-width, tfae.

- ► (i) C is K_{t,t}-free.
- (ii) C is d-grid free.
- ▶ (iii) Every n-vertex graph $G \in C$ has at most gn edges.
- ▶ (iv) The subgraph closure of C has bounded twin-width.
- ▶ (v) C has bounded expansion.

d-grid freeness is preserved by turning some 1 into -1 or 2

Theorem

The class of all orientations of graphs from a $K_{t,t}$ -free class of bounded twin-width has itself bounded twin-width.

Sparse twin-width (2)

In the sparse setting d-mixed minor are replaced by d-grid minor

Theorem

If \mathscr{C} is a hereditary $K_{t,t}$ -free class, tfae.

- ▶ (i) C has bounded twin-width.
- ▶ (ii) 𝒞 is d-grid free.

First-order model checking

FO MODEL CHECKING($\{E_2\}$) Parameter: $|\varphi|$ Input: A digraph *G* and a first-order sentence $\varphi \in FO(\{E\})$ Question: $G \models \varphi$?

First-order model checking

FO MODEL CHECKING($\{E_2\}$) Parameter: $|\varphi|$ Input: A digraph *G* and a first-order sentence $\varphi \in FO(\{E\})$ Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \forall y \ (E(x, y) \Rightarrow \bigvee_{1 \leq i \leq k} x = x_i \lor y = x_i)$$

 $G \models \varphi$? \Leftrightarrow *k*-Vertex Cover

First-order model checking

FO MODEL CHECKING($\{E_2\}$) **Parameter:** $|\varphi|$ **Input:** A digraph *G* and a first-order sentence $\varphi \in FO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \bigvee_{1 \leqslant q \leqslant k, \ q \text{ is odd}} \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor$$

 $(\exists x_3 \notin \{s, x_1, x_2\} E(x_2, x_3) \land (\forall x_4 \cdots (\exists x_q \notin \{s, x_1, \dots, x_{q-1}\} E(x_{q-1}, x_q) \land (\forall x_{q+1} \neg E(x_q, x_{q+1}) \lor x_{q+1} \in \{s, x_1, \dots, x_q\})) \cdots)))$ $G \models \varphi? \Leftrightarrow$

First-order model checking

FO MODEL CHECKING($\{E_2\}$) **Parameter:** $|\varphi|$ **Input:** A digraph *G* and a first-order sentence $\varphi \in FO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \bigvee_{1 \leqslant q \leqslant k, \ q \text{ is odd}} \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor$$

$$(\exists x_3 \notin \{s, x_1, x_2\} E(x_2, x_3) \land (\forall x_4 \cdots (\exists x_q \notin \{s, x_1, \dots, x_{q-1}\} E(x_{q-1}, x_q) \land (\forall x_{q+1} \neg E(x_q, x_{q+1}) \lor x_{q+1} \in \{s, x_1, \dots, x_q\})) \cdots)))$$

$$G \models \varphi? \Leftrightarrow \text{ SHORT GENERALIZED GEOGRAPHY}$$

First-order model checking

FO MODEL CHECKING($\{E_2\}$) **Parameter:** $|\varphi|$ **Input:** A digraph *G* and a first-order sentence $\varphi \in FO(\{E\})$ **Question:** $G \models \varphi$?

Also expressible in FO: *k*-INDEPENDENT SET, *k*-CLIQUE, *k*-DOMINATING SET, "transitive", etc.

First-order model checking

FO MODEL CHECKING($\{E_2\}$) **Parameter:** $|\varphi|$ **Input:** A digraph *G* and a first-order sentence $\varphi \in FO(\{E\})$ **Question:** $G \models \varphi$?

Not expressible in FO: "k-colorable" for any $k \ge 2$, "cyclic", "Eulerian", "Hamiltonian", etc.

FO simple interpretation: redefine the edges by a first-order formula

 $\begin{aligned} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$

FO simple interpretation: redefine the edges by a first-order formula

$$\begin{aligned} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$$

FO simple interpretation: redefine the edges by a first-order formula

$$\begin{aligned} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$$

FO simple interpretation: redefine the edges by a first-order formula

$$\begin{aligned} \varphi(x,y) &= \neg E(x,y) \qquad (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$$

$$\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$$

$$\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$$

FO simple interpretation: redefine the edges by a first-order formula

$$\begin{aligned} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$$

$$\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$$

$$\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$$

FO simple interpretation: redefine the edges by a first-order formula

$$\begin{aligned} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$$

FO simple interpretation: redefine the edges by a first-order formula

$$\begin{split} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{split}$$

FO transduction: color by O(1) unary relations, interpret, delete

Theorem (B., Kim, Thomassé, Watrigant '20) Transductions of bounded twin-width classes have bounded twin-width.

Dependence and monadic dependence

A class \mathscr{C} is **dependent**, if the hereditary closure of every interpretation of \mathscr{C} misses some graph **monadically dependent**, if every transduction of \mathscr{C} misses some graph [Baldwin, Shelah '85]

Dependence and monadic dependence

A class \mathscr{C} is **dependent**, if the hereditary closure of every interpretation of \mathscr{C} misses some graph **monadically dependent**, if every transduction of \mathscr{C} misses some graph [Baldwin, Shelah '85]

Theorem (Downey, Fellows, Taylor '96) FO model checking is AW[*]-complete on general graphs, thus unlikely FPT on independent classes

Could it be that on every dependent class, it is FPT?

Known FPT FO model checking -tractable classes

Theorem (B., Kim, Thomassé, Watrigant '20)

FO MODEL CHECKING solvable in $f(|\varphi|, d)n$ on graphs with a d-sequence.

Equivalences for ordered graphs

Theorem (B., Giocanti, Ossona de Mendez, Toruńczyk, Thomassé, Simon '21+)

Let \mathscr{C} be a hereditary class of ordered graphs, the following are equivalent.

- (i) \mathscr{C} has bounded twin-width.
- (*ii*) *C* is tractable.
- (iii) *C* is dependent.
- (iv) C is monadically dependent.
- (v) \mathscr{C} has subfactorial growth.
- (vi) C has exponential growth.

Other settings where bounded twin-width \Leftrightarrow tractable \Leftrightarrow dependent?

Open question:

Let \mathcal{T} be a hereditary class of tournaments. \mathcal{T} bounded twin-width $\Leftrightarrow \mathcal{T}$ tractable? Other settings where bounded twin-width \Leftrightarrow tractable \Leftrightarrow dependent?

Open question:

Let \mathcal{T} be a hereditary class of tournaments. \mathcal{T} bounded twin-width $\Leftrightarrow \mathcal{T}$ tractable?

Large transitive subtournaments \rightarrow totally ordered pieces but no global order...

Caccetta-Häggkvist conjecture

CH: Every *n*-vertex oriented graph without directed cycles of length at most ℓ has minimum out-degree at most $(n-1)/\ell$.

" $\ell=3$ " has received the most attention

Caccetta-Häggkvist conjecture

CH: Every *n*-vertex oriented graph without directed cycles of length at most ℓ has minimum out-degree at most $(n-1)/\ell$.

" $\ell = 3$ " has received the most attention

The (assumed exhaustive list of) extremal configurations are built with lexicographic products so have bounded twin-width

Recap and open questions

We have seen that:

- (1) Oriented twin-width is functionally equivalent to twin-width.
- (2) Orientations of $K_{t,t}$ -free bounded twin-width classes have bounded twin-width.
- (3) Maximum "delimiting power" of twin-width on *ordered* graphs.

Open questions

- Marcus-Tardos-free proof of (1).
- ▶ Bounded twin-width ⇔ tractable among hereditary classes of tournaments.
- Revisiting conjectures like CH with a bounded/unbounded twin-width win-win argument.