Introduction to twin-width

Édouard Bonnet

ENS Lyon, LIP

December 7th, Dresden Seminar Algebra–Geometrie–Kombinatorik, Germany

The genesis: PERMUTATION PATTERN

The genesis: PERMUTATION PATTERN

The genesis: PERMUTATION PATTERN

Theorem (Guillemot, Marx '14)

PERMUTATION PATTERN can be solved in time $f(|\sigma|)|\tau|$.

Guillemot and Marx's win-win algorithm

Is σ in $\tau?$

Theorem (Marcus, Tardos '04)

 $\forall t, \exists c_t \forall n \times n \ 0, 1\text{-matrix with} \ge c_t n \ 1\text{-entries has a t-grid minor.}$

4-grid minor	1	1	1	1	1	1	1	0
	0	1	1	0	0	1	0	1
	0	0	0	0	0	0	0	1
	0	1	0	0	1	0	1	0
	1	0	0	1	1	0	1	0
	0	1	1	1	1	1	0	0
	1	0	1	1	1	0	0	1

Guillemot and Marx's win-win algorithm

Is σ in $\tau?$

Theorem (Marcus, Tardos '04)

 $\forall t, \exists c_t \forall n \times n \ 0, 1$ -matrix with $\geq c_t n \ 1$ -entries has a t-grid minor.

 $\geq c_{|\sigma|}n$ 1-entries: answer YES from the $|\sigma|$ -grid minor, or $< c_{|\sigma|}n$ 1-entries: merge of two "similar" rectangles of 1s

Guillemot and Marx's win-win algorithm

Is σ in $\tau?$

Theorem (Marcus, Tardos '04)

 $\forall t, \exists c_t \forall n \times n \ 0, 1$ -matrix with $\geq c_t n \ 1$ -entries has a t-grid minor.

 $\geq c_{|\sigma|}n$ 1-entries: answer YES from the $|\sigma|$ -grid minor, or $< c_{|\sigma|}n$ 1-entries: merge of two "similar" rectangles of 1s

If the latter always holds: exploitable "decomposition" of au

Graphs

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} \mbox{Maximum red degree} = 0 \\ \mbox{overall maximum red degree} = 0 \end{array}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \end{array}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \end{array}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} Maximum \ red \ degree = 0 \\ \textbf{overall maximum red degree} = 2 \end{array}$

Extension to binary structures over a finite signature

- ► Red edges appear between two vertices X, Y such that, for some binary relation R, R(x, y) holds for some x ∈ X and y ∈ Y, and R(x', y') does not, for some x' ∈ X and y' ∈ Y.
- Contraction only allowed within vertices satisfying the same unary relations.

We now contract to up to 2^h remaining vertices, with h the number of unary relations.

If possible, contract two twin leaves

If not, contract a deepest leaf with its parent

If not, contract a deepest leaf with its parent

If possible, contract two twin leaves

Cannot create a red degree-3 vertex

Generalization to bounded treewidth and even bounded rank-width

4-sequence for planar grids

Marcus-Tardos-like characterization of bounded twin-width

 $\mathsf{Mixed}\ \mathsf{cell} = \mathsf{not}\ \mathsf{horizontal}\ \mathsf{nor}\ \mathsf{vertical}$

k-mixed minor = k-division where every cell is mixed

Marcus-Tardos-like characterization of bounded twin-width

 $Mixed \ cell = not \ horizontal \ nor \ vertical$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ \end{bmatrix}$$

3-mixed minor

k-mixed minor = k-division where every cell is mixed

Mixed number of a graph $G = \min_{\leq} \max\{k : \operatorname{Adj}_{\leq}(G) \text{ has a } k \text{-mixed minor}\}$ Theorem (B., Kim, Thomassé, Watrigant '20) A class has bounded twin-width iff it has bounded mixed number.

Marcus-Tardos-like characterization of bounded twin-width

 $\mathsf{Mixed}\ \mathsf{cell} = \mathsf{not}\ \mathsf{horizontal}\ \mathsf{nor}\ \mathsf{vertical}$

k-mixed minor = k-division where every cell is mixed

Grid rank of a graph $G = \min_{\leq} \max\{k : \operatorname{Adj}_{\leq}(G) \text{ has a } k\text{-division with all cells of rank } \geqslant k\}$ Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22) A class has bounded twin-width iff it has bounded grid rank.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Ok, but do bounded twin-width classes have good properties?

Different conditions imposed in the sequence of red graphs

bd #edges: redefines bd linear cliquewidth

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi$? \Leftrightarrow *k*-Dominating Set

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi$? \Leftrightarrow k-Independent Set

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists X_1 \exists X_2 \exists X_3 (\forall x \bigvee_{1 \leqslant i \leqslant 3} X_i(x)) \land \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3} (X_i(x) \land X_i(y) \to \neg E(x,y))$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists X_1 \exists X_2 \exists X_3 (\forall x \bigvee_{1 \leqslant i \leqslant 3} X_i(x)) \land \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3} (X_i(x) \land X_i(y) \to \neg E(x,y))$$

 $G \models \varphi$? \Leftrightarrow 3-Coloring

The lens of contraction sequences

Class of bounded	constraint on red graphs	efficient model-checking
linear rank-width	bd #edges	MSO
rank-width	bd component	MSO
twin-width	bd degree	?

The lens of contraction sequences

Class of bounded	constraint on red graphs	efficient model-checking
linear rank-width	bd #edges	MSO
rank-width	bd component	MSO
twin-width	bd degree	?

We will reprove the result in bold, and fill the ?

Courcelle's theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics '00)

MSO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ given a witness that the clique-width/component twin-width of the input G is at most d.

generalizes

Theorem (Courcelle '90)

MSO model checking can be solved in time $f(|\varphi|, t) \cdot |V(G)|$ on incidence graphs of graphs G of treewidth at most t.

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$\mathsf{tp}_k^\mathcal{L}(\mathscr{A}, ec{a} \in A^m) = \{ arphi(ec{x}) \in \mathcal{L}[k] : \mathscr{A} \models arphi(ec{a}) \},$$

$$\mathsf{tp}_k^{\mathcal{L}}(\mathscr{A}) = \{ \varphi \in \mathcal{L}[k] : \mathscr{A} \models \varphi \}.$$

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$\operatorname{\mathsf{tp}}_k^\mathcal{L}(\mathscr{A}, ec{a} \in A^m) = \{ arphi(ec{x}) \in \mathcal{L}[k] : \mathscr{A} \models arphi(ec{a}) \},$$

$$\mathrm{tp}_k^{\mathcal{L}}(\mathscr{A}) = \{ \varphi \in \mathcal{L}[k] : \mathscr{A} \models \varphi \}.$$

Fact

For $\mathcal{L} \in \{FO, MSO\}$, the number of rank-k m-types is bounded by a function of k and m only.

2-player game on two σ -structures \mathscr{A}, \mathscr{B} (for us, colored graphs)

At each round, Spoiler picks a structure (\mathscr{B}) and a vertex therein

Duplicator answers with a vertex in the other structure

After q rounds, Duplicator wishes that $a_i \mapsto b_i$ is an isomorphism between $\mathscr{A}[a_1, \ldots, a_k]$ and $\mathscr{B}[b_1, \ldots, b_k]$

After q rounds, Duplicator wishes that $a_i \mapsto b_i$ is an isomorphism between $\mathscr{A}[a_1, \ldots, a_k]$ and $\mathscr{B}[b_1, \ldots, b_k]$

When no longer possible, Spoiler wins

When no longer possible, Spoiler wins

If Duplicator can survive k rounds, we write $\mathscr{A} \equiv_{k}^{\mathsf{FO}} \mathscr{B}$ Here $\mathscr{A} \equiv_{2}^{\mathsf{FO}} \mathscr{B}$ and $\mathscr{A} \not\equiv_{3}^{\mathsf{FO}} \mathscr{B}$

Same game but Spoiler can now play set moves
MSO Ehrenfeucht-Fraissé game

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

To which Duplicator answers a set in the other structure

MSO Ehrenfeucht-Fraissé game

Again we write $\mathscr{A} \equiv_k^{\mathsf{MSO}} \mathscr{B}$ if Duplicator can survive k rounds

k-round EF games capture rank-*k* types

Theorem (Ehrenfeucht-Fraissé)

For every σ -structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in \{FO, MSO\}$,

$$\mathscr{A} \equiv^{\mathcal{L}}_{k} \mathscr{B}$$
 if and only if $tp^{\mathcal{L}}_{k}(\mathscr{A}) = tp^{\mathcal{L}}_{k}(\mathscr{B})$.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)

For every σ -structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in \{FO, MSO\}$,

$$\mathscr{A} \equiv^{\mathcal{L}}_{k} \mathscr{B}$$
 if and only if $tp^{\mathcal{L}}_{k}(\mathscr{A}) = tp^{\mathcal{L}}_{k}(\mathscr{B})$.

Proof.

Induction on k.

(⇒) $\mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to x = a or X = A. k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)

For every σ -structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in \{FO, MSO\}$,

$$\mathscr{A} \equiv^{\mathcal{L}}_{k} \mathscr{B}$$
 if and only if $tp^{\mathcal{L}}_{k}(\mathscr{A}) = tp^{\mathcal{L}}_{k}(\mathscr{B})$.

Proof.

Induction on k.

(⇒) $\mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to x = a or X = A.

(\Leftarrow) If $\operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{A}) = \operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{B})$, then the type $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{A}, a)$ is equal to some $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{B}, b)$. Move *a* can be answered by playing *b*.

Partitioned sentences: sentences on (E, U_1, \ldots, U_d) -structures, interpreted as a graph vertex partitioned in *d* parts

Maintain for every red component C of every trigraph G_i

 $\mathsf{tp}_k^{\mathsf{MSO}}(G,\mathcal{P}_i,C) = \{\varphi \in \mathsf{MSO}_{E,U_1,\dots,U_d}[k] : (G\langle C \rangle, \mathcal{P}_i \langle C \rangle) \models \varphi\}.$

Partitioned sentences: sentences on (E, U_1, \ldots, U_d) -structures, interpreted as a graph vertex partitioned in *d* parts

Maintain for every red component C of every trigraph G_i

 $\mathsf{tp}_k^{\mathsf{MSO}}(G,\mathcal{P}_i,C) = \{\varphi \in \mathsf{MSO}_{E,U_1,\dots,U_d}[k] : (G\langle C \rangle, \mathcal{P}_i \langle C \rangle) \models \varphi\}.$

For each $v \in V(G)$, $tp_k(G, \mathcal{P}_n, \{v\}) = type$ of K_1 $tp_k(G, \mathcal{P}_1, \{V(G)\}) = type$ of G

Partitioned sentences: sentences on (E, U_1, \ldots, U_d) -structures, interpreted as a graph vertex partitioned in *d* parts

Maintain for every red component C of every trigraph G_i

 $\mathsf{tp}_k^{\mathsf{MSO}}(G,\mathcal{P}_i,C) = \{\varphi \in \mathsf{MSO}_{E,U_1,\dots,U_d}[k] : (G\langle C \rangle, \mathcal{P}_i \langle C \rangle) \models \varphi\}.$

 $\tau = tp_k^{MSO}(G, \mathcal{P}_i, C)$ based on the $\tau_j = tp_k^{MSO}(G, \mathcal{P}_{i+1}, C_j)$?

Partitioned sentences: sentences on $(E, U_1, ..., U_d)$ -structures, interpreted as a graph vertex partitioned in *d* parts

Maintain for every red component C of every trigraph G_i

 $\mathsf{tp}_k^{\mathsf{MSO}}(G,\mathcal{P}_i,C) = \{\varphi \in \mathsf{MSO}_{E,U_1,\dots,U_d}[k] : (G\langle C \rangle, \mathcal{P}_i \langle C \rangle) \models \varphi\}.$

C arises from $C_1, \ldots, C_{d'}$: $\tau = F(\tau_1, \ldots, \tau_{d'}, B, X, Y)$

Duplicator combines her strategies in the red components

If Spoiler plays a vertex in the component of type τ_1 ,

Duplicator answers the corresponding winning move

If Spoiler plays a set, Duplicator looks at the intersection with C_1 ,

If Spoiler plays a set, Duplicator looks at the intersection with C_1 ,

calls her winning strategy in C'_1

same for the other components

same for the other components

same for the other components

and plays the union

Turning it into a uniform algorithm

Reminder:

- #non-equivalent partitioned sentences of rank k: f(d, k)
- ▶ #rank-k partitioned types bounded by $g(d, k) = 2^{f(d,k)}$

For each newly observed type τ ,

- ▶ keep a representative $(H, P)_{\tau}$ on at most $(d+1)^{g(d,k)}$ vertices
- determine the 0, 1-vector of satisfied sentences on $(H, \mathcal{P})_{\tau}$
- ▶ record the value of $F(\tau_1, ..., \tau_{d'}, B, X, Y)$ for future uses

Turning it into a uniform algorithm

Reminder:

- #non-equivalent partitioned sentences of rank k: f(d, k)
- #rank-k partitioned types bounded by $g(d, k) = 2^{f(d,k)}$

For each newly observed type τ ,

- ▶ keep a representative $(H, P)_{\tau}$ on at most $(d+1)^{g(d,k)}$ vertices
- determine the 0, 1-vector of satisfied sentences on $(H, \mathcal{P})_{\tau}$
- ▶ record the value of $F(\tau_1, \ldots, \tau_{d'}, B, X, Y)$ for future uses

To decide $G \models \varphi$, look at position φ in the 0, 1-vector of $tp_k^{MSO}(G)$
Back to twin-width

k-INDEPENDENT SET given a *d*-sequence

Complexity theory says that algorithms in time $f(k)|V(G)|^{o(k)}$ are unlikely to exist in general graphs

 $d^k|V(G)|$ is possible with a *d*-sequence $G = G_n, \ldots, G_1$

Algorithm: For every $D \in \binom{V(G_i)}{\leq k}$ such that $\mathcal{R}(G_i)[D]$ is connected, store in $\mathcal{T}[D, i]$ one largest independent set in $G\langle D \rangle$ intersecting every vertex of D.

k-INDEPENDENT SET given a *d*-sequence

Complexity theory says that algorithms in time $f(k)|V(G)|^{o(k)}$ are unlikely to exist in general graphs

 $d^k|V(G)|$ is possible with a *d*-sequence $G = G_n, \ldots, G_1$

Algorithm: For every $D \in \binom{V(G_i)}{\leq k}$ such that $\mathcal{R}(G_i)[D]$ is connected, store in $\mathcal{T}[D, i]$ one largest independent set in $G\langle D \rangle$ intersecting every vertex of D.

How to compute T[D, i] from all the T[D', i+1]?

k-INDEPENDENT SET: Update of partial solutions

Best partial solution inhabiting •?

k-INDEPENDENT SET: Update of partial solutions

3 unions of $\leqslant d + 2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

Generalization of the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant '20) FO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ on graphs G given with a d-sequence.

Gaifman's locality + MSO model checking algorithm

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

 $\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$ $\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

 $\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$ $\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

Stability and dependence of hereditary classes

Due to [Baldwin, Shelah '85; Braunfeld, Laskowski '22]

Stable class: no transduction of the class contains all ladders **Dependent class:** no transduction of the class contains all graphs

ladder

Stability and dependence of hereditary classes

Stable class: no transduction of the class contains all ladders **Dependent class:** no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow dependent but not stable Interval graphs \rightarrow not dependent

Stability and dependence of hereditary classes

Stable class: no transduction of the class contains all ladders **Dependent class:** no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow dependent but not stable Interval graphs \rightarrow not dependent

Bounded twin-width classes \rightarrow dependent, but in general not stable

Classes with known tractable FO model checking

FO MODEL CHECKING solvable in $f(|\varphi|, d)n$ on graphs with a *d*-sequence [B., Kim, Thomassé, Watrigant '20] First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class C of binary structures with bounded twin-width and transduction \mathcal{T} , the class $\mathcal{T}(C)$ has bounded twin-width.

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class C of binary structures with bounded twin-width and transduction \mathcal{T} , the class $\mathcal{T}(C)$ has bounded twin-width.

- Making copies does not change the twin-width
- Adding a unary relation at most doubles it

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class C of binary structures with bounded twin-width and transduction \mathcal{T} , the class $\mathcal{T}(C)$ has bounded twin-width.

- Making copies does not change the twin-width
- Adding a unary relation at most doubles it
- Refine parts of the partition sequence by types

The lens of contraction sequences

Class of bounded	FO transduction of	constraint on red graphs	efficient MC
linear rank-width	linear order	bd #edges	MSO
rank-width	tree order	bd component	MSO
twin-width	?	bd degree	FO

Permutations strike back

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21) A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24) Pattern-free permutations are bounded products of separable permutations.

Permutations strike back

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21) A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24) There is a function f such that for every permutation σ , for every permutation τ of $Av(\sigma)$ there are t separable permutations $\sigma_1, \sigma_2, \ldots, \sigma_t$ with $t \leq f(|\sigma|)$ and $\tau = \sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_t$.

Permutations strike back

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21) A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24) There is a function f such that for every permutation σ , for every permutation τ of $Av(\sigma)$ there are t separable permutations $\sigma_1, \sigma_2, \ldots, \sigma_t$ with $t \leq f(|\sigma|)$ and $\tau = \sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_t$.

As a by-product of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé '24)

There is a proper permutation class \mathcal{P} such that every class of binary structures has bounded twin-width if and only if it is a first-order transduction of \mathcal{P} .

Growth of Graph Classes

Number of unlabeled *n*-vertex graphs of C up to isomorphism, or Number of labeled *n*-vertex graphs of C

Growth of Graph Classes

Number of unlabeled *n*-vertex graphs of C up to isomorphism, or Number of labeled *n*-vertex graphs of C

Small: labeled growth $n!2^{O(n)}$ **Tiny:** unlabeled growth $2^{O(n)}$

Small and tiny classes

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) *Classes of bounded twin-width are small.*

And even,

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21) *Classes of bounded twin-width are tiny.*

Unifies the Marcus–Tardos(–Klazar) theorem and the same statement for classes excluding a minor

Small and tiny classes

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) *Classes of bounded twin-width are small.*

And even,

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21) *Classes of bounded twin-width are tiny.*

Unifies the Marcus–Tardos(–Klazar) theorem and the same statement for classes excluding a minor

Could the converse hold for hereditary classes?

Twin-width of groups

For a finitely-generated group: sup of the twin-width of the age of its Cayley graph

Twin-width of a group action $\phi: \Gamma \to \operatorname{Bij}(X)$ and $g \in \Gamma$: k_g , minimum grid number of the permutation matrix $M_{\phi(g)}^{<}$

Finite twin-width: for every $g \in \Gamma$, k_g is finite Finite uniform twin-width: $\exists t \text{ s.t.}$ for every $g \in \Gamma$, $k_g \leq t$

Twin-width of a group: use action of Γ on itself by left product

Examples of groups with finite twin-width: Abelian, hyperbolic, orderable, solvable, polynomial growth, etc. Examples of groups with finite twin-width: Abelian, hyperbolic, orderable, solvable, polynomial growth, etc.

Theorem (B., Geniet, Tessera, Thomassé '22) There is a finitely-generated group with infinite twin-width.

Small hereditary class of unbounded twin-width

Ordered binary structures

- Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22)
- Let $\mathscr C$ be a hereditary class of ordered graphs. The following are equivalent.
- (1) \mathscr{C} has bounded twin-width.
- (2) \mathscr{C} is dependent.
- (3) \mathscr{C} contains $2^{O(n)}$ ordered n-vertex graphs.
- (4) \mathscr{C} contains less than $\sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} k!$ ordered n-vertex graphs, for some n.
- (5) *C* does not include one of 25 hereditary ordered graph classes with unbounded twin-width.
- (6) FO-model checking is fixed-parameter tractable on \mathscr{C} .

Open questions

- Algorithm to compute/approximate twin-width
- Constructions of bounded-degree graphs of unbounded twin-width
- Common generalization with stable classes (see flip-width of Szymon Toruńczyk)
- Dividing line bounded/unbounded twin-width in groups
- Separation of finite twin-width and finite uniform twin-width
- Generalization to higher-arity relations
- Is small and tiny equivalent for hereditary classes?

Open questions

- Algorithm to compute/approximate twin-width
- Constructions of bounded-degree graphs of unbounded twin-width
- Common generalization with stable classes (see flip-width of Szymon Toruńczyk)
- Dividing line bounded/unbounded twin-width in groups
- Separation of finite twin-width and finite uniform twin-width
- Generalization to higher-arity relations
- Is small and tiny equivalent for hereditary classes?

Thank you for your attention!