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The genesis: Permutation Pattern
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Is 3124 in 57362841?

Theorem (Guillemot, Marx ’14)
Permutation Pattern can be solved in time f (|σ|)|τ |.
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Guillemot and Marx’s win-win algorithm
Is σ in τ?

Theorem (Marcus, Tardos ’04)
∀t, ∃ct ∀ n × n 0,1-matrix with > ctn 1-entries has a t-grid minor.
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4-grid minor

> c|σ|n 1-entries: answer YES from the |σ|-grid minor, or
< c|σ|n 1-entries: merge of two “similar” rectangles of 1s

If the latter always holds: exploitable “decomposition” of τ
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Graphs
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Two outcomes between a pair of vertices:
edge or non-edge



Trigraphs
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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing



Contraction sequence
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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overall maximum red degree = 0
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Extension to binary structures over a finite signature

I Red edges appear between two vertices X ,Y such that, for
some binary relation R, R(x , y) holds for some x ∈ X and
y ∈ Y , and R(x ′, y ′) does not, for some x ′ ∈ X and y ′ ∈ Y .

I Contraction only allowed within vertices satisfying the same
unary relations.

We now contract to up to 2h remaining vertices, with h the
number of unary relations.



Trees

If possible, contract two twin leaves



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex
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Trees

Cannot create a red degree-3 vertex



Trees

Generalization to bounded treewidth and even bounded rank-width



Grids

4-sequence for planar grids
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Marcus–Tardos-like characterization of bounded twin-width
Mixed cell = not horizontal nor vertical
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3-mixed minor

k-mixed minor = k-division where every cell is mixed

Mixed number of a graph G =
min
<

max{k : Adj<(G) has a k-mixed minor}

Theorem (B., Kim, Thomassé, Watrigant ’20)
A class has bounded twin-width iff it has bounded mixed number.
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3-mixed minor

k-mixed minor = k-division where every cell is mixed

Grid rank of a graph G =
min
<

max{k : Adj<(G) has a k-division with all cells of rank > k}

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk ’22)
A class has bounded twin-width iff it has bounded grid rank.



Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Ok, but do bounded twin-width classes have good properties?



Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
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Different conditions imposed in the sequence of red graphs

bd degree: defines bd twin-width

bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth



Graph model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔
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Question: G |= ϕ?

Example:
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∧
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Graph model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔



Graph model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔ 3-Coloring



The lens of contraction sequences

Class of bounded constraint on red graphs efficient model-checking

linear rank-width bd #edges MSO
rank-width bd component MSO
twin-width bd degree ?

We will reprove the result in bold, and fill the ?
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Courcelle’s theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
incidence graphs of graphs G of treewidth at most t.



Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Fact
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.



Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Fact
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.



FO Ehrenfeucht-Fraissé game

A B
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2-player game on two σ-structures A,B (for us, colored graphs)

A[a1, . . . , ak ]



FO Ehrenfeucht-Fraissé game
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At each round, Spoiler picks a structure (B) and a vertex therein

A[a1, . . . , ak ]



FO Ehrenfeucht-Fraissé game
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Duplicator answers with a vertex in the other structure

A[a1, . . . , ak ]
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A Bb1a1

a2

b2

a3

b2

a3

After q rounds, Duplicator wishes that ai 7→ bi is an isomorphism
between A[a1, . . . , ak ] and B[b1, . . . , bk ]
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A Bb1a1

a2

b2

a3

b2

a3

When no longer possible, Spoiler wins
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FO Ehrenfeucht-Fraissé game

A Bb1a1
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If Duplicator can survive k rounds, we write A ≡FO
k B

Here A ≡FO
2 B and A 6≡FO

3 B



MSO Ehrenfeucht-Fraissé game

A B

Same game but Spoiler can now play set moves
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MSO Ehrenfeucht-Fraissé game

A B

To which Duplicator answers a set in the other structure



MSO Ehrenfeucht-Fraissé game

A B

Again we write A ≡MSO
k B if Duplicator can survive k rounds



k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.



k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
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MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud )-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud [k] : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

For each v ∈ V (G), tpk(G ,Pn, {v}) = type of K1
tpk(G ,P1, {V (G)}) = type of G
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interpreted as a graph vertex partitioned in d parts
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C3, τ3

τ = tpMSO
k (G ,Pi ,C) based on the τj = tpMSO

k (G ,Pi+1,Cj)?



MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud )-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud [k] : (G〈C〉,Pi〈C〉) |= ϕ}.

B

X Y
C1, τ1

C2, τ2

C3, τ3

C arises from C1, . . . ,Cd ′ : τ = F (τ1, . . . , τd ′ ,B,X ,Y )



Showing τ = F (τ1, . . . , τd ′,B,X ,Y ) via MSO EF game
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Duplicator combines her strategies in the red components
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b1

b2

a2

a3
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a4
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b5
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a6

b6

a7

b7

If Spoiler plays a vertex in the component of type τ1,



Showing τ = F (τ1, . . . , τd ′,B,X ,Y ) via MSO EF game
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Duplicator answers the corresponding winning move



Showing τ = F (τ1, . . . , τd ′,B,X ,Y ) via MSO EF game
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Same in the component of type τ2
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Turning it into a uniform algorithm

Reminder:
I #non-equivalent partitioned sentences of rank k: f (d , k)
I #rank-k partitioned types bounded by g(d , k) = 2f (d ,k)

For each newly observed type τ ,
I keep a representative (H,P)τ on at most (d + 1)g(d ,k) vertices
I determine the 0, 1-vector of satisfied sentences on (H,P)τ
I record the value of F (τ1, . . . , τd ′ ,B,X ,Y ) for future uses

To decide G |= ϕ, look at position ϕ in the 0, 1-vector of tpMSO
k (G)
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Back to twin-width



k-Independent Set given a d-sequence

Complexity theory says that algorithms in time f (k)|V (G)|o(k) are
unlikely to exist in general graphs

dk |V (G)| is possible with a d-sequence G = Gn, . . . ,G1

Algorithm: For every D ∈
(V (Gi )

6k
)

such that R(Gi )[D] is
connected, store in T [D, i ] one largest independent set in
G〈D〉 intersecting every vertex of D.

How to compute T [D, i ] from all the T [D′, i + 1]?
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k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both



k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both



FO model checking on graphs of bounded twin-width

Generalization of the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Gaifman’s locality + MSO model checking algorithm



First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))
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Stability and dependence of hereditary classes
Due to [Baldwin, Shelah ’85; Braunfeld, Laskowski ’22]

Stable class: no transduction of the class contains all ladders
Dependent class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → dependent but not stable
Interval graphs → not dependent

Bounded twin-width classes → dependent, but in general not
stable
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Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

bounded
degree

map
graphs “sparse”

classes

stable

bounded
rank-width

cographs

posets of
bounded

width

L-interval

unit interval

bounded twin-width

pattern
avoiding
permuta-

tionsdense
classes

unstable

FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence
[B., Kim, Thomassé, Watrigant ’20]



First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant ’20)
For every class C of binary structures with bounded twin-width and
transduction T, the class T(C) has bounded twin-width.

I Making copies does not change the twin-width
I Adding a unary relation at most doubles it
I Refine parts of the partition sequence by types
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The lens of contraction sequences

Class of bounded FO transduction of constraint on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width ? bd degree FO



Permutations strike back

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé ’24)
Pattern-free permutations are bounded products of separable
permutations.

As a by-product of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé ’24)
There is a proper permutation class P such that every class of
binary structures has bounded twin-width if and only if it is
a first-order transduction of P.
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A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé ’24)
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Growth of Graph Classes

Number of unlabeled n-vertex graphs of C up to isomorphism, or
Number of labeled n-vertex graphs of C

2 1 3 1 2
3

1 2 3

1 3 2

or

Small: labeled growth n!2O(n)

Tiny: unlabeled growth 2O(n)
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Small and tiny classes

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Classes of bounded twin-width are small.

And even,

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
Classes of bounded twin-width are tiny.

Unifies the Marcus–Tardos(–Klazar) theorem and the same
statement for classes excluding a minor

Could the converse hold for hereditary classes?
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Twin-width of groups

For a finitely-generated group:
sup of the twin-width of the age of its Cayley graph

Twin-width of a group action
φ : Γ→ Bij(X ) and g ∈ Γ:
kg , minimum grid number of the permutation matrix M<

φ(g)

Finite twin-width: for every g ∈ Γ, kg is finite
Finite uniform twin-width: ∃t s.t. for every g ∈ Γ, kg 6 t

Twin-width of a group: use action of Γ on itself by left product



Finite and infinite twin-width

Examples of groups with finite twin-width:
Abelian, hyperbolic, orderable, solvable, polynomial growth, etc.

Theorem (B., Geniet, Tessera, Thomassé ’22)
There is a finitely-generated group with infinite twin-width.

Small hereditary class of unbounded twin-width
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Ordered binary structures

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé,
Toruńczyk ’22)
Let C be a hereditary class of ordered graphs. The following are
equivalent.
(1) C has bounded twin-width.
(2) C is dependent.
(3) C contains 2O(n) ordered n-vertex graphs.
(4) C contains less than

∑bn/2c
k=0

( n
2k
)

k! ordered n-vertex graphs,
for some n.

(5) C does not include one of 25 hereditary ordered graph classes
with unbounded twin-width.

(6) FO-model checking is fixed-parameter tractable on C.



Open questions

I Algorithm to compute/approximate twin-width
I Constructions of bounded-degree graphs of unbounded

twin-width
I Common generalization with stable classes

(see flip-width of Szymon Toruńczyk)
I Dividing line bounded/unbounded twin-width in groups
I Separation of finite twin-width and finite uniform twin-width
I Generalization to higher-arity relations
I Is small and tiny equivalent for hereditary classes?

Thank you for your attention!
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