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The genesis: PERMUTATION PATTERN

Theorem (Guillemot, Marx '14)
PERMUTATION PATTERN can be solved in time f(|o])|7|.



Guillemot and Marx's win-win algorithm

Isoin 77

Theorem (Marcus, Tardos '04)

Vt, dc: ¥V n x n 0,1-matrix with > c¢;n 1-entries has a t-grid minor.
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4-grid minor [0 1|0 0|1 0|1 O
1 0f0 1|1 01 O
0 1]J1 1]11 1{0 O
|1 0]1 11 0|0 1]




Guillemot and Marx's win-win algorithm

Isoin 77

Theorem (Marcus, Tardos '04)

Vt, dc: ¥V n x n 0,1-matrix with > c¢;n 1-entries has a t-grid minor.

1 1)1 1|1 1|1 0
0 1|11 0J0 1]j0 1
0 0/]0 0]0 0]JO 1
4-grid minor [0 1|0 0|1 0|1 O
1 0f0 1|1 01 O
0 1]J1 1]11 1{0 O
|1 0]1 11 0|0 1]

> (g l-entries: answer YES from the |o|-grid minor, or
< ¢g|n l-entries: merge of two “similar” rectangles of 1s



Guillemot and Marx's win-win algorithm

Isoin 77

Theorem (Marcus, Tardos '04)

Vt, dc: ¥V n x n 0,1-matrix with > c¢;n 1-entries has a t-grid minor.

1 1)1 1|1 1|1 0
0 1|11 0J0 1]j0 1
0 0/]0 0]0 0]JO 1
4-grid minor [0 1|0 0|1 0|1 O
1 0f0 1|1 01 O
0 1]J1 1]11 1{0 O
|1 0]1 11 0|0 1]

> (g l-entries: answer YES from the |o|-grid minor, or
< ¢g|n l-entries: merge of two “similar” rectangles of 1s

If the latter always holds: exploitable “"decomposition” of



Graphs

Two outcomes between a pair of vertices:
edge or non-edge



Trigraphs

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

Identification of two non-necessarily adjacent vertices
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Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

edges to N(u)AN(v) turn red, for N(u) N N(v) red is absorbing



Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G,,, G,_1, ..., Go, G such that
G; is obtained by performing one contraction in Gj41.
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A contraction sequence of G:
Sequence of trigraphs G = G,,, G,_1, ..., Go, Gy such that
G; is obtained by performing one contraction in Gj41.



Contraction sequence

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = G,,, G,_1, ..., Go, G such that
G; is obtained by performing one contraction in Gj41.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 0
overall maximum red degree = 0
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 0
overall maximum red degree = 2



Extension to binary structures over a finite signature

» Red edges appear between two vertices X, Y such that, for
some binary relation R, R(x,y) holds for some x € X and
y €Y, and R(x',y’) does not, for some x' € X and y' € Y.

» Contraction only allowed within vertices satisfying the same
unary relations.

We now contract to up to 2 remaining vertices, with h the
number of unary relations.



Trees

If possible, contract two twin leaves



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex
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Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Generalization to bounded treewidth and even bounded rank-width
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4-sequence for planar grids



Marcus—Tardos-like characterization of bounded twin-width

Mixed cell = not horizontal nor vertical
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k-mixed minor = k-division where every cell is mixed

Mixed number of a graph G =
m<in max{k : Adj_(G) has a k-mixed minor}

Theorem (B., Kim, Thomassé, Watrigant '20)

A class has bounded twin-width iff it has bounded mixed number.



Marcus—Tardos-like characterization of bounded twin-width

Mixed cell = not horizontal nor vertical

11j1111)]110
01]1 00J101
00j000|0O01
01|00 1010
10011010
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11 0]1 11|00 1]
3-mixed minor

k-mixed minor = k-division where every cell is mixed

Grid rank of a graph G =
m<in max{k : Adj_(G) has a k-division with all cells of rank > k}

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruiczyk '22)
A class has bounded twin-width iff it has bounded grid rank.



Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),
unit interval graphs,

Ki-minor free graphs,

map graphs,

subgraphs of d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,

VV VYV VYVYyVVYVYVYY

strong products of two bounded twin-width classes, one with
bounded degree, etc.



Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),
unit interval graphs,

Ki-minor free graphs,

map graphs,

subgraphs of d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,

VV VYV VYVYyVVYVYVYY

strong products of two bounded twin-width classes, one with
bounded degree, etc.

Ok, but do bounded twin-width classes have good properties?



Different conditions imposed in the sequence of red graphs

NS BEN
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bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth



Graph model checking

GraPH FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?
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GraPH FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
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Example:

@ = IxyIxp - - - AxVx \/ X =x;V \/ E(x, x;) V E(xi, x)
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Graph model checking

Grara FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Example:
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Graph model checking

Grara FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Example:

@ = IxqIxg - - - Ixg /\ —(xi = xj) A =E(xi, X)) A —E(x;, x;)
1<i<j<k

G = ¢? & k-INDEPENDENT SET



Graph model checking

GrarPH FO/MSO MODEL CHECKING Parameter: |y
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G |= ¢?

Example:
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Graph model checking

GrarPH FO/MSO MODEL CHECKING Parameter: |y
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G |= ¢?

Example:

¢ = 3X13X3X3(Vx \/ Xi(x)) AVxYy N\ (Xi(x)AXi(y) = —E(x,y))

1<i<3 1<i<3

G = ¢? & 3-COLORING



The lens of contraction sequences

Class of bounded  constraint on red graphs efficient model-checking

linear rank-width  bd #edges MSO
rank-width bd component MSO
twin-width bd degree ?




The lens of contraction sequences

Class of bounded  constraint on red graphs efficient model-checking

linear rank-width  bd #edges MSO
rank-width bd component MSO
twin-width bd degree ?

We will reprove the result in bold, and fill the ?



Courcelle’s theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics '00)

MSO model checking can be solved in time f(|p|,d) - |V(G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle '90)

MSO model checking can be solved in time f(|p|, t) - |V(G)| on
incidence graphs of graphs G of treewidth at most t.



Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpk(f,3 € A™) = {p(X) € LIK] : o F ¢(3)},

tpi () = {p € LIK] : o |= ¢}



Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpk(f,3 € A™) = {p(X) € LIK] : o F ¢(3)},

tpi () = {p € LIK] : o |= ¢}

Fact

For £ € {FO, MSO}, the number of rank-k m-types is bounded by
a function of k and m only.



FO Ehrenfeucht-Fraissé game

AN SN SN N NI

2-player game on two o-structures &, B (for us, colored graphs)



FO Ehrenfeucht-Fraissé game

AN SN SN N NI

At each round, Spoiler picks a structure (98) and a vertex therein



FO Ehrenfeucht-Fraissé game
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Duplicator answers with a vertex in the other structure



FO Ehrenfeucht-Fraissé game

AN SN SN N NI

After g rounds, Duplicator wishes that a; — b; is an isomorphism
between f[a1,...,ak] and B[b, ..., by]
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After g rounds, Duplicator wishes that a; — b; is an isomorphism
between f[a1,...,ak] and B[b, ..., by]



FO Ehrenfeucht-Fraissé game
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When no longer possible, Spoiler wins



FO Ehrenfeucht-Fraissé game

AN SN SN N NI

When no longer possible, Spoiler wins



FO Ehrenfeucht-Fraissé game

NN SN S N N

PR

If Duplicator can survive k rounds, we write & = —FO B
Here of =5° % and of #5°



MSO Ehrenfeucht-Fraissé game
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Same game but Spoiler can now play set moves
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MSO Ehrenfeucht-Fraissé game

[N ENE SN SNESNE SN S a

<N

To which Duplicator answers a set in the other structure



MSO Ehrenfeucht-Fraissé game

RSN NS SN S

PR

Again we write &/ E,'\("SO A if Duplicator can survive k rounds



k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every o-structures o/ , B and logic L € {FO, MSO},

o =£ B if and only if tpE (o) = tpf(RB).



k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every o-structures o/ , B and logic L € {FO, MSO},

o =£ B if and only if tpE (o) = tpf(RB).
Proof.
Induction on k.

(=) L[k + 1] formulas are Boolean combinations of Ixp or IXp
where ¢ € L[k]. Use the answer of Duplicator to x = a or X = A.



k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every o-structures o/ , B and logic L € {FO, MSO},

o =£ B if and only if tpE (o) = tpf(RB).
Proof.
Induction on k.

(=) L[k + 1] formulas are Boolean combinations of Ixp or IXp
where ¢ € L[k]. Use the answer of Duplicator to x = a or X = A.

(<) If tpf, 1 (A) = tpf,1(B), then the type tpf (A, a) is equal to
some tpf(B7 b). Move a can be answered by playing b. O



MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;

tp}/50(G. P1, €) = {ip € MSOg ts....u,[K] : (G(C).Pi(C)) = o}



MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;

tp}/50(G. P1, €) = {ip € MSOg ts....u,[K] : (G(C).Pi(C)) = o}

For each v € V(G)r tpk(Gapn, {V}) = type of Kl
tpx (G, P1,{V(G)}) = type of G



MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;
tpk *°(G. Pi, €) = {p € MSOg uy,...u,[K] : (G(C), Pi(C)) = ¢}

C3, 73

Gr/ [ =

G, m

\. J

7 = tpM39(G, P;, C) based on the Tj = tpMSO(G, Piy1, G)?




MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;
tpk *°(G. Pi, €) = { € MSOg uy,...u,K] : (G(C), Pi(C)) = ¢}

(3,73

G/ = -

\. J \

C arises from Cy,...,Cq: 7= F(71,...,7q/, B, X, Y)




Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Duplicator combines her strategies in the red components



Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

If Spoiler plays a vertex in the component of type 71,



Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Duplicator answers the corresponding winning move
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If Spoiler plays a set, Duplicator looks at the intersection with (i,



Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game
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If Spoiler plays a set, Duplicator looks at the intersection with (i,



Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game
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calls her winning strategy in C{
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Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

same for the other components



Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

and plays the union
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Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

that fully defines the winning strategy of Duplicator



Turning it into a uniform algorithm

Reminder:
» +non-equivalent partitioned sentences of rank k: f(d, k)
> #rank-k partitioned types bounded by g(d, k) = 2f(d:K)

For each newly observed type T,
> keep a representative (H,P), on at most (d + 1)8(¢:K) vertices
» determine the 0, 1-vector of satisfied sentences on (H,P),

» record the value of F(71,...,7q, B, X, Y) for future uses



Turning it into a uniform algorithm

Reminder:
» +non-equivalent partitioned sentences of rank k: f(d, k)
> #rank-k partitioned types bounded by g(d, k) = 2f(d:K)

For each newly observed type T,
> keep a representative (H,P), on at most (d + 1)8(¢:K) vertices
» determine the 0, 1-vector of satisfied sentences on (H,P),

» record the value of F(71,...,7q, B, X, Y) for future uses

To decide G = ¢, look at position ¢ in the 0, 1-vector of tp}'°9(G)



Back to twin-width



k-INDEPENDENT SET given a d-sequence

Complexity theory says that algorithms in time f(k)|V/(G)|°() are
unlikely to exist in general graphs

d¥|V(G)| is possible with a d-sequence G = G,, ..., G
Algorithm: For every D € (V(G)) such that R(G;)[D] is

connected, store in T[D, ] one largest independent set in
G(D) intersecting every vertex of D.



k-INDEPENDENT SET given a d-sequence

Complexity theory says that algorithms in time f(k)|V/(G)|°() are
unlikely to exist in general graphs

d¥|V(G)| is possible with a d-sequence G = G,, ..., G
Algorithm: For every D € (V(G)) such that R(G;)[D] is

connected, store in T[D, ] one largest independent set in
G(D) intersecting every vertex of D.

How to compute T[D, ] from all the T[D',i + 1]?



k-INDEPENDENT SET: Update of partial solutions

Best partial solution inhabiting e?



k-INDEPENDENT SET: Update of partial solutions

3 unions of < d 4 2 red connected subgraphs to consider in Gji1
with u, or v, or both



FO model checking on graphs of bounded twin-width

Generalization of the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant '20)

FO model checking can be solved in time f(|¢|,d) - |V(G)| on
graphs G given with a d-sequence.

Gaifman's locality + MSO model checking algorithm



First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

e(x,y) = =E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)
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FO transduction: color by O(1) unary relations, interpret, delete
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First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

IR
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V(R(x) A B(y) A 3zR(z) AN E(y,z) A —3zB(z) A E(y, z))



First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete
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First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete



Stability and dependence of hereditary classes
Due to [Baldwin, Shelah '85; Braunfeld, Laskowski '22]

Stable class: no transduction of the class contains all ladders
Dependent class: no transduction of the class contains all graphs
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Stability and dependence of hereditary classes

Stable class: no transduction of the class contains all ladders
Dependent class: no transduction of the class contains all graphs

g%o
="
%

O

ladder

Bounded-degree graphs — stable
Unit interval graphs — dependent but not stable
Interval graphs — not dependent

Bounded twin-width classes — dependent, but in general not
stable



Classes with known tractable FO model checking
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FO MoDEL CHECKING solvable in f(|¢], d)n on graphs with a d-sequence
[B., Kim, Thomassé, Watrigant '20]



First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class C of binary structures with bounded twin-width and
transduction I, the class I (C) has bounded twin-width.
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First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class C of binary structures with bounded twin-width and
transduction I, the class I (C) has bounded twin-width.

» Making copies does not change the twin-width
» Adding a unary relation at most doubles it

> Refine parts of the partition sequence by types



The lens of contraction sequences

Class of bounded  FO transduction of  constraint on red graphs efficient MC

linear rank-width  linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width ? bd degree FO




Permutations strike back

Theorem (B., Nesetfil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24)

Pattern-free permutations are bounded products of separable
permutations.
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There is a function f such that for every permutation o, for every
permutation T of Av(c) there are t separable permutations
01,02...,0t with t < f(|o|) and T =010020...00.



Permutations strike back

Theorem (B., Nesettil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24)

There is a function f such that for every permutation o, for every
permutation T of Av(c) there are t separable permutations
01,02...,0t with t < f(|o|) and T =010020...00.

As a by-product of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé '24)

There is a proper permutation class P such that every class of
binary structures has bounded twin-width if and only if it is
a first-order transduction of P.



Growth of Graph Classes

Number of unlabeled n-vertex graphs of C up to isomorphism, or
Number of labeled n-vertex graphs of C
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Growth of Graph Classes

Number of unlabeled n-vertex graphs of C up to isomorphism, or
Number of labeled n-vertex graphs of C

OROR®)
O{){)d% or @-0-0
O-@0-6

Small: labeled growth n!29(")

Tiny: unlabeled growth 20()



Small and tiny classes

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Classes of bounded twin-width are small.

And even,

Theorem (B., Nesetfil, Ossona de Mendez, Siebertz, Thomassé '21)

Classes of bounded twin-width are tiny.

Unifies the Marcus—Tardos(—Klazar) theorem and the same
statement for classes excluding a minor



Small and tiny classes

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Classes of bounded twin-width are small.

And even,

Theorem (B., Nesetfil, Ossona de Mendez, Siebertz, Thomassé '21)

Classes of bounded twin-width are tiny.

Unifies the Marcus—Tardos(—Klazar) theorem and the same
statement for classes excluding a minor

Could the converse hold for hereditary classes?



Twin-width of groups

For a finitely-generated group:
sup of the twin-width of the age of its Cayley graph

Twin-width of a group action

¢: T —Bij(X)and g €T:
kg, minimum grid number of the permutation matrix I\/qu(g)

Finite twin-width: for every g € I', kg is finite
Finite uniform twin-width: 3t s.t. for every g €T, k, <t

Twin-width of a group: use action of I' on itself by left product



Finite and infinite twin-width

Examples of groups with finite twin-width:
Abelian, hyperbolic, orderable, solvable, polynomial growth, etc.



Finite and infinite twin-width

Examples of groups with finite twin-width:
Abelian, hyperbolic, orderable, solvable, polynomial growth, etc.

Theorem (B., Geniet, Tessera, Thomassé '22)
There is a finitely-generated group with infinite twin-width.

Small hereditary class of unbounded twin-width



Ordered binary structures

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé,
Toruhczyk '22)

Let € be a hereditary class of ordered graphs. The following are
equivalent.

(1) € has bounded twin-width.

2

(2) € is dependent.
(3) € contains 29" ordered n-vertex graphs.
(4)

4) € contains less than ,Enz/gJ (2’2) k! ordered n-vertex graphs,
for some n.

(5) € does not include one of 25 hereditary ordered graph classes
with unbounded twin-width.

(6) FO-model checking is fixed-parameter tractable on €.



Open questions

v

vvyyy

Algorithm to compute/approximate twin-width

Constructions of bounded-degree graphs of unbounded
twin-width

Common generalization with stable classes
(see flip-width of Szymon Toruhczyk)

Dividing line bounded/unbounded twin-width in groups
Separation of finite twin-width and finite uniform twin-width
Generalization to higher-arity relations

Is small and tiny equivalent for hereditary classes?



Open questions

» Algorithm to compute/approximate twin-width

» Constructions of bounded-degree graphs of unbounded
twin-width

v

Common generalization with stable classes
(see flip-width of Szymon Toruhczyk)

Dividing line bounded/unbounded twin-width in groups
Separation of finite twin-width and finite uniform twin-width

Generalization to higher-arity relations

vvyyy

Is small and tiny equivalent for hereditary classes?

Thank you for your attention!



