Introduction to twin-width

Édouard Bonnet

ENS Lyon, LIP

December 7th, Dresden Seminar Algebra-Geometrie-Kombinatorik, Germany

The genesis: Permutation Pattern

Is 3124 in $57362841 ?$

The genesis: Permutation Pattern

The genesis: Permutation Pattern

Theorem (Guillemot, Marx '14)
Permutation Pattern can be solved in time $f(|\sigma|)|\tau|$.

Guillemot and Marx's win-win algorithm

Is σ in τ ?
Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ 1-entries has a t-grid minor.

$$
\text { 4-grid minor }\left[\begin{array}{cc|cc|cc|cc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Guillemot and Marx's win-win algorithm

Is σ in τ ?
Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ 1-entries has a t-grid minor.

$$
\text { 4-grid minor }\left[\begin{array}{cc|cc|cc|cc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

$\geqslant c_{|\sigma|} n$ 1-entries: answer YES from the $|\sigma|$-grid minor, or $<c_{|\sigma|} n$ 1-entries: merge of two "similar" rectangles of 1 s

Guillemot and Marx's win-win algorithm

Is σ in τ ?
Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ 1-entries has a t-grid minor.

$$
\text { 4-grid minor }\left[\begin{array}{cc|cc|cc|cc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

$\geqslant c_{|\sigma|} n$ 1-entries: answer YES from the $|\sigma|$-grid minor, or $<c_{|\sigma|} n$ 1-entries: merge of two "similar" rectangles of 1 s

If the latter always holds: exploitable "decomposition" of τ

Graphs

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=0$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=2$

Extension to binary structures over a finite signature

- Red edges appear between two vertices X, Y such that, for some binary relation $R, R(x, y)$ holds for some $x \in X$ and $y \in Y$, and $R\left(x^{\prime}, y^{\prime}\right)$ does not, for some $x^{\prime} \in X$ and $y^{\prime} \in Y$.
- Contraction only allowed within vertices satisfying the same unary relations.

We now contract to up to 2^{h} remaining vertices, with h the number of unary relations.

Trees

If possible, contract two twin leaves

Trees

If not, contract a deepest leaf with its parent

Trees

If not, contract a deepest leaf with its parent

Trees

If possible, contract two twin leaves

Trees

Cannot create a red degree-3 vertex

Trees

Generalization to bounded treewidth and even bounded rank-width

Grids

Grids

Grids

Grids

Grids

Grids

Grids

4-sequence for planar grids

Marcus-Tardos-like characterization of bounded twin-width

Mixed cell $=$ not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

k-mixed minor $=k$-division where every cell is mixed

Marcus-Tardos-like characterization of bounded twin-width

Mixed cell $=$ not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

k-mixed minor $=k$-division where every cell is mixed

Mixed number of a graph $G=$ $\min _{<} \max \left\{k: \operatorname{Adj}_{<}(G)\right.$ has a k-mixed minor $\}$

Theorem (B., Kim, Thomassé, Watrigant '20)
A class has bounded twin-width iff it has bounded mixed number.

Marcus-Tardos-like characterization of bounded twin-width

Mixed cell $=$ not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

k-mixed minor $=k$-division where every cell is mixed

Grid rank of a graph $G=$ $\min _{<} \max \left\{k: \operatorname{Adj}_{<}(G)\right.$ has a k-division with all cells of rank $\left.\geqslant k\right\}$
Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22)
A class has bounded twin-width iff it has bounded grid rank.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 \& '21)
The following classes have bounded twin-width, and
$O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 \& '21)
The following classes have bounded twin-width, and
$O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Ok, but do bounded twin-width classes have good properties?

Different conditions imposed in the sequence of red graphs

bd component: redefines bd cliquewidth

bd \#edges: redefines bd linear cliquewidth

Graph model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Graph model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow$

Graph model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Dominating Set

Graph model checking

```
Graph FO/MSO Model Checking Parameter: \(|\varphi|\)
Input: A graph \(G\) and a first-order/monadic second-order sentence \(\varphi \in F O / M S O(\{E\})\)
Question: \(G \models \varphi\) ?
```

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow$

Graph model checking

```
Graph FO/MSO Model Checking Parameter: \(|\varphi|\)
Input: A graph \(G\) and a first-order/monadic second-order sentence \(\varphi \in F O / M S O(\{E\})\)
Question: \(G \models \varphi\) ?
```

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Independent Set

Graph model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\begin{aligned}
& \varphi=\exists X_{1} \exists X_{2} \exists X_{3}\left(\forall x \bigvee_{1 \leqslant i \leqslant 3} X_{i}(x)\right) \wedge \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3}\left(X_{i}(x) \wedge X_{i}(y) \rightarrow \neg E(x, y)\right) \\
& G \models \varphi ? \Leftrightarrow
\end{aligned}
$$

Graph model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:
$\varphi=\exists X_{1} \exists X_{2} \exists X_{3}\left(\forall x \bigvee_{1 \leqslant i \leqslant 3} X_{i}(x)\right) \wedge \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3}\left(X_{i}(x) \wedge X_{i}(y) \rightarrow \neg E(x, y)\right)$
$G \models \varphi$? \Leftrightarrow 3-Coloring

The lens of contraction sequences

Class of bounded	constraint on red graphs	efficient model-checking
linear rank-width	bd \#edges	MSO
rank-width	bd component	MSO
twin-width	bd degree	$?$

The lens of contraction sequences

Class of bounded	constraint on red graphs	efficient model-checking
linear rank-width	bd \#edges	MSO
rank-width	bd component	MSO
twin-width	bd degree	$?$

We will reprove the result in bold, and fill the ?

Courcelle's theorems

We will reprove with contraction sequences:
Theorem (Courcelle, Makowsky, Rotics '00)
MSO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ given a witness that the clique-width/component twin-width of the input G is at most d.
generalizes
Theorem (Courcelle '90)
MSO model checking can be solved in time $f(|\varphi|, t) \cdot|V(G)|$ on incidence graphs of graphs G of treewidth at most t.

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$
\begin{gathered}
\operatorname{tp}_{k}^{\mathcal{L}}\left(\mathscr{A}, \vec{a} \in A^{m}\right)=\{\varphi(\vec{x}) \in \mathcal{L}[k]: \mathscr{A} \models \varphi(\vec{a})\}, \\
\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A})=\{\varphi \in \mathcal{L}[k]: \mathscr{A} \models \varphi\} .
\end{gathered}
$$

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$
\begin{gathered}
\operatorname{tp}_{k}^{\mathcal{L}}\left(\mathscr{A}, \vec{a} \in A^{m}\right)=\{\varphi(\vec{x}) \in \mathcal{L}[k]: \mathscr{A} \models \varphi(\vec{a})\}, \\
\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A})=\{\varphi \in \mathcal{L}[k]: \mathscr{A} \models \varphi\} .
\end{gathered}
$$

Fact
For $\mathcal{L} \in\{F O, M S O\}$, the number of rank-k m-types is bounded by a function of k and m only.

FO Ehrenfeucht-Fraissé game

2-player game on two σ-structures \mathscr{A}, \mathscr{B} (for us, colored graphs)

FO Ehrenfeucht-Fraissé game

At each round, Spoiler picks a structure (\mathscr{B}) and a vertex therein

FO Ehrenfeucht-Fraissé game

Duplicator answers with a vertex in the other structure

FO Ehrenfeucht-Fraissé game

After q rounds, Duplicator wishes that $a_{i} \mapsto b_{i}$ is an isomorphism between $\mathscr{A}\left[a_{1}, \ldots, a_{k}\right]$ and $\mathscr{B}\left[b_{1}, \ldots, b_{k}\right]$

FO Ehrenfeucht-Fraissé game

After q rounds, Duplicator wishes that $a_{i} \mapsto b_{i}$ is an isomorphism between $\mathscr{A}\left[a_{1}, \ldots, a_{k}\right]$ and $\mathscr{B}\left[b_{1}, \ldots, b_{k}\right]$

FO Ehrenfeucht-Fraissé game

When no longer possible, Spoiler wins

FO Ehrenfeucht-Fraissé game

When no longer possible, Spoiler wins

FO Ehrenfeucht-Fraissé game

If Duplicator can survive k rounds, we write $\mathscr{A} \equiv{ }_{k}^{\mathrm{FO}} \mathscr{B}$ Here $\mathscr{A} \equiv{ }_{2}^{\mathrm{FO}} \mathscr{B}$ and $\mathscr{A} \not \equiv{ }_{3}^{\mathrm{FO}} \mathscr{B}$

MSO Ehrenfeucht-Fraissé game

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

To which Duplicator answers a set in the other structure

MSO Ehrenfeucht-Fraissé game

Again we write $\mathscr{A} \equiv{ }_{k}^{\mathrm{MSO}} \mathscr{B}$ if Duplicator can survive k rounds

k-round EF games capture rank- k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in\{F O, M S O\}$,

$$
\mathscr{A} \equiv \equiv_{k}^{\mathcal{L}} \mathscr{B} \text { if and only if } t p_{k}^{\mathcal{L}}(\mathscr{A})=t p_{k}^{\mathcal{L}}(\mathscr{B}) .
$$

k-round EF games capture rank- k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in\{F O, M S O\}$,

$$
\mathscr{A} \equiv \equiv_{k}^{\mathcal{L}} \mathscr{B} \text { if and only if } t p_{k}^{\mathcal{L}}(\mathscr{A})=t p_{k}^{\mathcal{L}}(\mathscr{B}) .
$$

Proof.
Induction on k.
$(\Rightarrow) \mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to $x=a$ or $X=A$.

k-round EF games capture rank- k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in\{F O, M S O\}$,

$$
\mathscr{A} \equiv \equiv_{k}^{\mathcal{L}} \mathscr{B} \text { if and only if } t p_{k}^{\mathcal{L}}(\mathscr{A})=t p_{k}^{\mathcal{L}}(\mathscr{B})
$$

Proof.
Induction on k.
$(\Rightarrow) \mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to $x=a$ or $X=A$.
(\Leftarrow) If $\operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{A})=\operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{B})$, then the type $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{A}, a)$ is equal to some $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{B}, b)$. Move a can be answered by playing b.

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, U_{1}, \ldots, U_{d})-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}[k]:\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \models \varphi\right\} .
$$

MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, U_{1}, \ldots, U_{d})-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}[k]:\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \models \varphi\right\} .
$$

For each $v \in V(G), \operatorname{tp}_{k}\left(G, \mathcal{P}_{n},\{v\}\right)=$ type of K_{1}

$$
\operatorname{tp}_{k}\left(G, \mathcal{P}_{1},\{V(G)\}\right)=\text { type of } G
$$

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, U_{1}, \ldots, U_{d})-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}[k]:\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \mid=\varphi\right\} .
$$

$$
\tau=\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right) \text { based on the } \tau_{j}=\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i+1}, C_{j}\right) ?
$$

MSO model checking for component twin-width d
Partitioned sentences: sentences on $\left(E, U_{1}, \ldots, U_{d}\right)$-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}[k]:\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \models \varphi\right\} .
$$

C arises from $C_{1}, \ldots, C_{d^{\prime}}: \tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Duplicator combines her strategies in the red components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

If Spoiler plays a vertex in the component of type τ_{1},

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Duplicator answers the corresponding winning move

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

If Spoiler plays a set, Duplicator looks at the intersection with C_{1},

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

If Spoiler plays a set, Duplicator looks at the intersection with C_{1},

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

calls her winning strategy in C_{1}^{\prime}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

same for the other components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

same for the other components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

same for the other components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Turning it into a uniform algorithm

Reminder:

- \#non-equivalent partitioned sentences of rank $k: f(d, k)$
- \#rank-k partitioned types bounded by $g(d, k)=2^{f(d, k)}$

For each newly observed type τ,

- keep a representative $(H, \mathcal{P})_{\tau}$ on at most $(d+1)^{g(d, k)}$ vertices
- determine the 0,1 -vector of satisfied sentences on $(H, \mathcal{P})_{\tau}$
- record the value of $F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ for future uses

Turning it into a uniform algorithm

Reminder:

- \#non-equivalent partitioned sentences of rank $k: f(d, k)$
- \#rank-k partitioned types bounded by $g(d, k)=2^{f(d, k)}$

For each newly observed type τ,

- keep a representative $(H, \mathcal{P})_{\tau}$ on at most $(d+1)^{g(d, k)}$ vertices
- determine the 0,1 -vector of satisfied sentences on $(H, \mathcal{P})_{\tau}$
- record the value of $F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ for future uses

To decide $G \models \varphi$, look at position φ in the 0,1 -vector of $\operatorname{tp}_{k}^{\mathrm{MSO}}(G)$

Back to twin-width

k-Independent Set given a d-sequence

Complexity theory says that algorithms in time $f(k)|V(G)|^{o(k)}$ are unlikely to exist in general graphs
$d^{k}|V(G)|$ is possible with a d-sequence $G=G_{n}, \ldots, G_{1}$
Algorithm: For every $D \in\binom{V\left(G_{i}\right)}{\leqslant k}$ such that $\mathcal{R}\left(G_{i}\right)[D]$ is connected, store in $T[D, i]$ one largest independent set in $G\langle D\rangle$ intersecting every vertex of D.

k-Independent Set given a d-sequence

Complexity theory says that algorithms in time $f(k)|V(G)|^{o(k)}$ are unlikely to exist in general graphs
$d^{k}|V(G)|$ is possible with a d-sequence $G=G_{n}, \ldots, G_{1}$
Algorithm: For every $D \in\binom{V\left(G_{i}\right)}{\leqslant k}$ such that $\mathcal{R}\left(G_{i}\right)[D]$ is connected, store in $T[D, i]$ one largest independent set in $G\langle D\rangle$ intersecting every vertex of D.

How to compute $T[D, i]$ from all the $T\left[D^{\prime}, i+1\right]$?
k-Independent Set: Update of partial solutions

Best partial solution inhabiting •?
k-Independent Set: Update of partial solutions

3 unions of $\leqslant d+2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

FO model checking on graphs of bounded twin-width

Generalization of the previous algorithm to:
Theorem (B., Kim, Thomassé, Watrigant '20)
FO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ on graphs G given with a d-sequence.

Gaifman's locality + MSO model checking algorithm

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{gathered}
\varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
\vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{gathered}
$$

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{aligned}
& \varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
& \vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{aligned}
$$

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

Stability and dependence of hereditary classes

Due to [Baldwin, Shelah '85; Braunfeld, Laskowski '22]
Stable class: no transduction of the class contains all ladders Dependent class: no transduction of the class contains all graphs

Stability and dependence of hereditary classes

Stable class: no transduction of the class contains all ladders Dependent class: no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow dependent but not stable Interval graphs \rightarrow not dependent

Stability and dependence of hereditary classes

Stable class: no transduction of the class contains all ladders Dependent class: no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow dependent but not stable Interval graphs \rightarrow not dependent

Bounded twin-width classes \rightarrow dependent, but in general not stable

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|, d) n$ on graphs with a d-sequence [B., Kim, Thomassé, Watrigant '20]

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)
For every class \mathcal{C} of binary structures with bounded twin-width and transduction \mathscr{T}, the class $\mathscr{T}(\mathcal{C})$ has bounded twin-width.

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)
For every class \mathcal{C} of binary structures with bounded twin-width and transduction \mathscr{T}, the class $\mathscr{T}(\mathcal{C})$ has bounded twin-width.

- Making copies does not change the twin-width
- Adding a unary relation at most doubles it

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)
For every class \mathcal{C} of binary structures with bounded twin-width and transduction \mathscr{T}, the class $\mathscr{T}(\mathcal{C})$ has bounded twin-width.

- Making copies does not change the twin-width
- Adding a unary relation at most doubles it
- Refine parts of the partition sequence by types

The lens of contraction sequences

Class of bounded	FO transduction of	constraint on red graphs	efficient MC
linear rank-width	linear order	bd \#edges	MSO
rank-width	tree order	bd component	MSO
twin-width	$?$	bd degree	FO

Permutations strike back

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24)
Pattern-free permutations are bounded products of separable permutations.

Permutations strike back

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24)
There is a function f such that for every permutation σ, for every permutation τ of $\operatorname{Av}(\sigma)$ there are t separable permutations $\sigma_{1}, \sigma_{2} \ldots, \sigma_{t}$ with $t \leqslant f(|\sigma|)$ and $\tau=\sigma_{1} \circ \sigma_{2} \circ \ldots \circ \sigma_{t}$.

Permutations strike back

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24)

There is a function f such that for every permutation σ, for every permutation τ of $\operatorname{Av}(\sigma)$ there are t separable permutations $\sigma_{1}, \sigma_{2} \ldots, \sigma_{t}$ with $t \leqslant f(|\sigma|)$ and $\tau=\sigma_{1} \circ \sigma_{2} \circ \ldots \circ \sigma_{t}$.

As a by-product of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé '24)

There is a proper permutation class \mathcal{P} such that every class of binary structures has bounded twin-width if and only if it is a first-order transduction of \mathcal{P}.

Growth of Graph Classes

Number of unlabeled n-vertex graphs of \mathcal{C} up to isomorphism, or Number of labeled n-vertex graphs of \mathcal{C}

Growth of Graph Classes

Number of unlabeled n-vertex graphs of \mathcal{C} up to isomorphism, or Number of labeled n-vertex graphs of \mathcal{C}

Small: labeled growth $n!2^{O(n)}$
Tiny: unlabeled growth $2^{O(n)}$

Small and tiny classes

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Classes of bounded twin-width are small.

And even,
Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
Classes of bounded twin-width are tiny.
Unifies the Marcus-Tardos(-Klazar) theorem and the same statement for classes excluding a minor

Small and tiny classes

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Classes of bounded twin-width are small.

And even,
Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
Classes of bounded twin-width are tiny.
Unifies the Marcus-Tardos(-Klazar) theorem and the same statement for classes excluding a minor

Could the converse hold for hereditary classes?

Twin-width of groups

For a finitely-generated group:
sup of the twin-width of the age of its Cayley graph
Twin-width of a group action
$\phi: \Gamma \rightarrow \operatorname{Bij}(X)$ and $g \in \Gamma$:
k_{g}, minimum grid number of the permutation matrix $M_{\phi(g)}^{<}$
Finite twin-width: for every $g \in \Gamma, k_{g}$ is finite
Finite uniform twin-width: $\exists t$ s.t. for every $g \in \Gamma, k_{g} \leqslant t$

Twin-width of a group: use action of Γ on itself by left product

Finite and infinite twin-width

Examples of groups with finite twin-width:
Abelian, hyperbolic, orderable, solvable, polynomial growth, etc.

Finite and infinite twin-width

Examples of groups with finite twin-width:
Abelian, hyperbolic, orderable, solvable, polynomial growth, etc.

Theorem (B., Geniet, Tessera, Thomassé '22)
There is a finitely-generated group with infinite twin-width.
Small hereditary class of unbounded twin-width

Ordered binary structures

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22)
Let \mathscr{C} be a hereditary class of ordered graphs. The following are equivalent.
(1) \mathscr{C} has bounded twin-width.
(2) \mathscr{C} is dependent.
(3) \mathscr{C} contains $2^{O(n)}$ ordered n-vertex graphs.
(4) \mathscr{C} contains less than $\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} k$! ordered n-vertex graphs, for some n.
(5) \mathscr{C} does not include one of 25 hereditary ordered graph classes with unbounded twin-width.
(6) FO-model checking is fixed-parameter tractable on \mathscr{C}.

Open questions

- Algorithm to compute/approximate twin-width
- Constructions of bounded-degree graphs of unbounded twin-width
- Common generalization with stable classes (see flip-width of Szymon Toruńczyk)
- Dividing line bounded/unbounded twin-width in groups
- Separation of finite twin-width and finite uniform twin-width
- Generalization to higher-arity relations
- Is small and tiny equivalent for hereditary classes?

Open questions

- Algorithm to compute/approximate twin-width
- Constructions of bounded-degree graphs of unbounded twin-width
- Common generalization with stable classes (see flip-width of Szymon Toruńczyk)
- Dividing line bounded/unbounded twin-width in groups
- Separation of finite twin-width and finite uniform twin-width
- Generalization to higher-arity relations
- Is small and tiny equivalent for hereditary classes?

Thank you for your attention!

