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Find a largest collection of disks that pairwise intersect



a

Example of a solution



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.

ci cj

Guess two farthest disks in an optimum solution S.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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Hence, all the centers of S lie inside the bold digon.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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Two disks centered in the same-color region intersect.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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We solve Max Clique in a co-bipartite graph.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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We solve Max Independent Set in a bipartite graph.



Disk graphs

Inherits the NP-hardness of planar graphs.



So what is known for Max Clique on disk graphs?
I Polynomial-time 2-approximation
I Polynomial-time 2.553-approximation for unit balls
I NP-hardness only known in dimension log n



Theorem (BGKRzS ’18)
The disjoint union of two odd cycles is not a complement of disk
graph

iocp = induced odd cycle packing number
iocp 6 1



Can we solve Max Independent Set more efficiently if there
are no two vertex-disjoint odd cycles as an induced subgraph?

Theorem (BGKRzS ’18)
QPTAS and 2Õ(n2/3)-algorithm for MIS for iocp 6 1 .

Corollary
QPTAS and 2Õ(n2/3)-algorithm for Max Clique on disk graphs.
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What about unit ball graphs?

x1, . . . , xs ∈ R3 are the consecutive centers an odd-cycle.

Move continuously a vector with the following steps:

x1

x2

x3

x4 x5

The curve drawn by the directions on the unit sphere is antipodal
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What would happen with the complement of two odd cycles?
As two antipodal curves intersect, we have one of the following:

xi

x
y

yj

yj−1

yj+1
xi−1

xi+1

xi

x
yj

y

Left case: d(xi , y) + d(yj , x) > d(xi , x) + d(yj , y)

d(yj , xi±1) 6 2 < d(xi , xi±1)
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What would happen with the complement of two odd cycles?
As two antipodal curves intersect, we have one of the following:

xi

x
y

yj

yj−1

yj+1
xi−1

xi+1

xi

x
yj

y

Left case: d(xi , y) + d(yj , x) > d(xi , x) + d(yj , y)

Hence, d(yj , x) < d(xi , x) (and similarly d(xi , y) < d(yj , y))



EPTAS for MIS on graphs with constant VCdim and iocp

VC dim of S = maximum size of a set with all intersections with S.
VCdim(G) = VC dimension of the neighborhood set-system.
α(G) = size of a maximum independent set in G .

Theorem
Max Independent Set can be 1 + ε-approximated in time
2Õ(1/ε3)nO(1) on graphs G with

I VCdim(G) = O(1),
I α(G) = Ω(n), and
I iocp(G) 6 1.
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ε-nets

Classic result of Haussler and Welzl in VC dimension theory

Theorem (ε-nets)
A set-system (S,U) with VC dimension d and only sets of size at
least ε|U| has a hitting set of size O(d

ε log 1
ε ).

Furthermore, any sample of size 10d
ε log 1

ε is a hitting set w.h.p.

We will apply that result to the set-system
({N(u) ∩ I | u ∈ V (G), |N(u) ∩ I| > ε3|I|}, I).
In words, the large neighborhoods over I.
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First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)
< ε3|I|< ε|I|

We pick randomly S of Õ(1/ε3) vertices.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

S

N(S)
< ε3|I|< ε|I|

With probability f (ε) > 0, S ⊆ I.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)

< ε3|I|< ε|I|

We delete the neighborhood of S.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)
< ε3|I|

< ε|I|

The remaining vertices have few vertices in I.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)
< ε3|I|

< ε|I|

This is due to the theorem of ε-nets.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)

< ε3|I|< ε|I|

We compute a shortest odd cycle C .



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)

< ε3|I|

< ε|I|

If |C | 6 1/ε2, we delete its neighborhood.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)

< ε3|I|< ε|I|

So, we might assume that |C | > 1/ε2.



Second step: find a small odd cycle transversal

bipartitebipartite

In column, the successive neighborhood of C , layers.
Rows indicate the closest neighbor on C , strata.
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Rows indicate the closest neighbor on C , strata.



Second step: find a small odd cycle transversal

bipartite

bipartite

Deleting a j-th neighborhood of C , leaves a bipartite to the right.

Rows indicate the closest neighbor on C , strata.



Second step: find a small odd cycle transversal

bipartite

bipartite

Deleting a j-th neighborhood of C , leaves a bipartite to the right.

Rows indicate the closest neighbor on C , strata.



Second step: find a small odd cycle transversal

bipartite

bipartite

We delete the lightest of the ≈ 1/ε first layers.

Rows indicate the closest neighbor on C , strata.
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bipartitebipartite

≈ 1/ε consecutive strata form an odd cycle transversal.

Rows indicate the closest neighbor on C , strata.



Second step: find a small odd cycle transversal

bipartitebipartite

We remove the lightest block of strata.

Rows indicate the closest neighbor on C , strata.



Other shapes?

2-subdivisions: graphs where each edge is subdivided exactly twice
co-2-subdivisions: complements of 2-subdivisions

Lemma
For some α > 1, Max Clique on co-2-subdivisions is not
α-approximable algorithm in 2n0.99 , unless the ETH fails.

Theorem
Intersection graphs of the following objects contain all the
co-2-subdivisions:

I (filled) triangles
I (filled) ellipses arbitrarily close to unit disks
I balls (3-dimensional disks), even with arbitrarily close radii
I unit 4-dimensional disks

hence, they inherit the same lower bound
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Open questions

I Is Max Clique NP-hard on disk and unit ball graphs?
I A first step might be to show NP-hardness for Max

Independent Set with iocp 1.
I Actually what about ocp 1?

Thank you for your attention!
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