EPTAS for Max Clique on Disks and Unit Balls

Marthe Bonamy, Édouard Bonnet, Nicolas Bousquet, Pierre
Charbit, and Stéphan Thomassé

LIP, ENS Lyon

October 8th 2018, FOCS, Paris

Find a largest collection of disks that pairwise intersect

Example of a solution

Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.

Guess two farthest disks in an optimum solution S.

Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.

Hence, all the centers of S lie inside the bold digon.

Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.

Two disks centered in the same-color region intersect.

Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.

We solve Max Clique in a co-bipartite graph.

Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.

We solve Max Independent Set in a bipartite graph.

Disk graphs

Unweighted problems

3-Colourability [?]
Clique [?]
Clique cover [?]
Colourability [?]
Domination [?]
Feedback vertex set [?]
Graph isomorphism [?]
Hamiltonian cycle [?]
Hamiltonian path [?]
Independent dominating set [?]
Independent set [?]
Maximum bisection [?]
Maximum cut [?]
Minimum bisection [?]
Monopolarity [?]
Polarity [?]
Recognition [?]

NP-complete	$[+]$ Details
Unknown to ISGCI	$[+]$ Details
NP-complete	$[+]$ Details
Unknown to ISGCI	$[+]$ Details
NP-complete	$[+]$ Details
NP-hard	$[+]$ Details

Inherits the NP-hardness of planar graphs.

So what is known for Max Clique on disk graphs?

- Polynomial-time 2-approximation
- Polynomial-time 2.553-approximation for unit balls
- NP-hardness only known in dimension $\log n$

Theorem (BGKRzS '18)
The disjoint union of two odd cycles is not a complement of disk graph

iocp $=$ induced odd cycle packing number iocp $\leqslant 1$

Can we solve Max Independent Set more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

Can we solve Max Independent Set more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

Theorem (BGKRzS '18)
QPTAS and $2 \tilde{O}\left(n^{2 / 3}\right)$-algorithm for MIS for iocp $\leqslant 1$.
Corollary
QPTAS and $2^{\tilde{O}\left(n^{2 / 3}\right)}$-algorithm for MAX CliQue on disk graphs.

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

$$
x_{2}
$$

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

$$
x_{2}
$$

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

$$
x_{2}
$$

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

$$
x_{2}
$$

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

What about unit ball graphs?

$x_{1}, \ldots, x_{s} \in \mathbb{R}^{3}$ are the consecutive centers an odd-cycle.
Move continuously a vector with the following steps:

The curve drawn by the directions on the unit sphere is antipodal

What would happen with the complement of two odd cycles?
As two antipodal curves intersect, we have one of the following:

What would happen with the complement of two odd cycles?
As two antipodal curves intersect, we have one of the following:

Left case: $d\left(x_{i}, y\right)+d\left(y_{j}, x\right)>d\left(x_{i}, x\right)+d\left(y_{j}, y\right)$

What would happen with the complement of two odd cycles?
As two antipodal curves intersect, we have one of the following:

Left case: $d\left(x_{i}, y\right)+d\left(y_{j}, x\right)>d\left(x_{i}, x\right)+d\left(y_{j}, y\right)$

$$
d\left(y_{j}, x_{i \pm 1}\right) \leqslant 2<d\left(x_{i}, x_{i \pm 1}\right)
$$

What would happen with the complement of two odd cycles?
As two antipodal curves intersect, we have one of the following:

Left case: $d\left(x_{i}, y\right)+d\left(y_{j}, x\right)>d\left(x_{i}, x\right)+d\left(y_{j}, y\right)$
Hence, $d\left(y_{j}, x\right)<d\left(x_{i}, x\right)$ (and similarly $d\left(x_{i}, y\right)<d\left(y_{j}, y\right)$)

EPTAS for MIS on graphs with constant VCdim and iocp

VC dim of $\mathcal{S}=$ maximum size of a set with all intersections with \mathcal{S}. $\operatorname{VCdim}(G)=$ VC dimension of the neighborhood set-system. $\alpha(G)=$ size of a maximum independent set in G.

EPTAS for MIS on graphs with constant VCdim and iocp
VC dim of $\mathcal{S}=$ maximum size of a set with all intersections with \mathcal{S}.
$\operatorname{VCdim}(G)=\mathrm{VC}$ dimension of the neighborhood set-system.
$\alpha(G)=$ size of a maximum independent set in G.
Theorem
Max Independent Set can be $1+\varepsilon$-approximated in time $2^{\tilde{O}\left(1 / \varepsilon^{3}\right)} n^{O(1)}$ on graphs G with

- $\operatorname{VCdim}(G)=O(1)$,
- $\alpha(G)=\Omega(n)$, and
- $\operatorname{iocp}(G) \leqslant 1$.

ε-nets

Classic result of Haussler and Welzl in VC dimension theory
Theorem (ε-nets)
A set-system (\mathcal{S}, U) with VC dimension d and only sets of size at least $\varepsilon|U|$ has a hitting set of size $O\left(\frac{d}{\varepsilon} \log \frac{1}{\varepsilon}\right)$.

Furthermore, any sample of size $\frac{10 d}{\varepsilon} \log \frac{1}{\varepsilon}$ is a hitting set w.h.p.

ε-nets

Classic result of Haussler and Welzl in VC dimension theory
Theorem (ε-nets)
A set-system (\mathcal{S}, U) with VC dimension d and only sets of size at least $\varepsilon|U|$ has a hitting set of size $O\left(\frac{d}{\varepsilon} \log \frac{1}{\varepsilon}\right)$.

Furthermore, any sample of size $\frac{10 d}{\varepsilon} \log \frac{1}{\varepsilon}$ is a hitting set w.h.p.

We will apply that result to the set-system
$\left(\left\{N(u) \cap \mathcal{I}\left|u \in V(G),|N(u) \cap \mathcal{I}| \geqslant \varepsilon^{3}\right| \mathcal{I} \mid\right\}, \mathcal{I}\right)$.
In words, the large neighborhoods over I.

First step: sampling

\mathcal{I} is a fixed maximum independent set.
We can assume that $|\mathcal{I}|=\Theta(n)$.

We pick randomly S of $\tilde{O}\left(1 / \varepsilon^{3}\right)$ vertices.

First step: sampling

\mathcal{I} is a fixed maximum independent set.
We can assume that $|\mathcal{I}|=\Theta(n)$.

With probability $f(\varepsilon)>0, S \subseteq \mathcal{I}$.

First step: sampling

\mathcal{I} is a fixed maximum independent set.
We can assume that $|\mathcal{I}|=\Theta(n)$.

We delete the neighborhood of S.

First step: sampling

\mathcal{I} is a fixed maximum independent set.
We can assume that $|\mathcal{I}|=\Theta(n)$.

The remaining vertices have few vertices in \mathcal{I}.

First step: sampling

\mathcal{I} is a fixed maximum independent set.
We can assume that $|\mathcal{I}|=\Theta(n)$.

This is due to the theorem of ε-nets.

First step: sampling

\mathcal{I} is a fixed maximum independent set.
We can assume that $|\mathcal{I}|=\Theta(n)$.

We compute a shortest odd cycle C.

First step: sampling

\mathcal{I} is a fixed maximum independent set.
We can assume that $|\mathcal{I}|=\Theta(n)$.

If $|C| \leqslant 1 / \varepsilon^{2}$, we delete its neighborhood.

First step: sampling

\mathcal{I} is a fixed maximum independent set.
We can assume that $|\mathcal{I}|=\Theta(n)$.

G

So, we might assume that $|C|>1 / \varepsilon^{2}$.

Second step: find a small odd cycle transversal

In column, the successive neighborhood of C, layers. Rows indicate the closest neighbor on C, strata.

Second step: find a small odd cycle transversal

Deleting a j-th neighborhood of C, leaves a bipartite to the right.

Second step: find a small odd cycle transversal

Deleting a j-th neighborhood of C, leaves a bipartite to the right.

Second step: find a small odd cycle transversal

Deleting a j-th neighborhood of C, leaves a bipartite to the right.

Second step: find a small odd cycle transversal

We delete the lightest of the $\approx 1 / \varepsilon$ first layers.

Second step: find a small odd cycle transversal

$\approx 1 / \varepsilon$ consecutive strata form an odd cycle transversal.

Second step: find a small odd cycle transversal

$\approx 1 / \varepsilon$ consecutive strata form an odd cycle transversal.

Second step: find a small odd cycle transversal

$\approx 1 / \varepsilon$ consecutive strata form an odd cycle transversal.

Second step: find a small odd cycle transversal

We remove the lightest block of strata.

Other shapes?

2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2 -subdivisions

Lemma

For some $\alpha>1$, Max Clique on co-2-subdivisions is not α-approximable algorithm in $2^{2^{0.99}}$, unless the ETH fails.

Other shapes?

2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2 -subdivisions

Lemma

For some $\alpha>1$, Max Clique on co-2-subdivisions is not α-approximable algorithm in $2^{2^{0.99}}$, unless the ETH fails.

Theorem

Intersection graphs of the following objects contain all the co-2-subdivisions:

- (filled) triangles
- (filled) ellipses arbitrarily close to unit disks
- balls (3-dimensional disks), even with arbitrarily close radii
- unit 4-dimensional disks
hence, they inherit the same lower bound

Open questions

- Is Max Clique NP-hard on disk and unit ball graphs?
- A first step might be to show NP-hardness for MAX Independent Set with iocp 1.
- Actually what about ocp 1 ?

Open questions

- Is Max Clique NP-hard on disk and unit ball graphs?
- A first step might be to show NP-hardness for MAx Independent Set with iocp 1.
- Actually what about ocp 1 ?

Thank you for your attention!

