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Quantitative complexity theory:
» For some reference problems, assume that the current best
algorithm cannot be significantly improved.

» Via reductions, derive consequences for the other problems [1.

P> Forget about complexity classes.

Goal:
» Get an f(n, k)-time algorithm for I.

» Show a g(n, k)-time algorithm for I would improve the
complexity of a reference problem.

> Make f and g as close as possible.



Immediate consequence of ETH for graph problems

ETH = 3s > 0 s.t. n-variable 3-SAT is not in TIME(2°")

n-variable 3-SAT instances may have m = ©(n%) clauses



Immediate consequence of ETH for graph problems

ETH = 3s > 0 s.t. n-variable 3-SAT is not in TIME(2°")

n-variable 3-SAT instances may have m = ©(n%) clauses

n-variable m-clause 3-SAT —%p O(n + m)-vertex instance of

p only implies: ETH = T1 requires 22n') time on n-vertex graph
m &b &
X
Cl C2 C3 C4 C5 C6

1= MAX INDEPENDENT SET, built graphs have 3m vertices



Immediate consequence of ETH for graph problems

ETH = 3s > 0 s.t. n-variable 3-SAT is not in TIME(2°")

n-variable 3-SAT instances may have m = ©(n%) clauses

n-variable m-clause 3-SAT —%p O(n + m)-vertex instance of

p only implies: ETH = T1 requires 22n') time on n-vertex graph
& BB & A
X
G G G G G G
1= MAX INDEPENDENT SET, built graphs have 3m vertices

n-variable 3-SAT —p O(n)-clause 3-SAT?



Immediate consequence of ETH for graph problems

ETH = 3s > 0 s.t. n-variable 3-SAT is not in TIME(2°")

n-variable 3-SAT instances may have m = ©(n%) clauses

n-variable m-clause 3-SAT —%p O(n + m)-vertex instance of

p only implies: ETH = T1 requires 22n') time on n-vertex graph
& BB & A
X
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1= MAX INDEPENDENT SET, built graphs have 3m vertices

n-variable 3-SAT —p O(n)-clause 3-SAT? Unlikely



Sparsifying k-SAT

Theorem (Impagliazzo—Paturi—Zane '01)
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Sparsifying k-SAT

Theorem (Impagliazzo—Paturi—Zane '01)

For every € > 0, given an n-variable k-SAT formula p, t < 2°"

k-SAT formulas ©1,...,¢: can be computed in time n®1)2" s.t.
» o is satisfiable iff at least one ; is satisfiable, and

» for every i € [t], ; has at most at most C, ,n clauses.

Theorem
ETH = m-clause 3-SAT requires 2™ time.

Let s > 0 be such that n-variable 3-SAT is not in TIME(2°")

._ S /. _s
Set ¢ := 3 and ¢’ == 3¢

Sparsification + 2¢ ™-time algorithm on each instance

nO(1)25n 40, 25/C5,3n < sn
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Tight ETH lower bounds on planar graphs

Theorem

ETH = 1 requires 2°V") time on n-vertex planar graphs for I =
MAX INDEPENDENT SET, DOMINATING SET, 3-COLORING,
VERTEX COVER, FEEDBACK VERTEX SET, HAMILTONIAN
CYCLE, etc.



Can we explain other kinds of running times?

Theorem (Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij,
Wojtaszczyk '11, Cut&Count)

HAMILTONIAN CYCLE, FEEDBACK VERTEX SET, CONNECTED
DOMINATING SET can be solved in 29")n®) on n-vertex graphs
of treewidth w.

For CHROMATIC NUMBER, DISJOINT PATHS, CYCLE PACKING
20(wlogw) ,O(1) remains best.
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PERMUTATION k X k CLIQUE

Theorem (Lokshtanov—Marx-Saurabh "11)
ETH = PERMUTATION k x k CLIQUE requires 2%(k108K) tjime.

Reduce from 3-COLORING with g batches of size g s.t. g~ 39,
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CHROMATIC NUMBER parameterized by treewidth

k

For every non-edge (i,/)(i" # i,j' # j), add two adjacent vertices
linked to their row vertex and to every column vertex but theirs.
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CHROMATIC NUMBER parameterized by treewidth

k

ETH = CHROMATIC NUMBER cannot be solved in
20(wlogw) ,O(1) time on n-vertex graphs of treewidth at most w.






The three main hypotheses in P

Strong Exponential Time Hypothesis (SETH): Ve > 0, Jk s.t.
k-SAT is not in TIME(2(t=5)m),

3-SUM Hypothesis: Ve > 0, finding x,y,zst. x+y+z=0in
a list of n integers of [—n* n*] is not in TIME(n?>~¢).

All-Pairs Shortest-Path (APSP) Hypothesis: Ve > 0, Jc,
APSP with edge weights in [—n€, n°| is not in TIME(n®~¢).

All these assumptions fail for quantum computers.



The three main hypotheses in P

SETH: SAT is not solvable in 1.99".
» k-SAT is solvable in 2(1_@(%))"
1
> SAT is solvable 21~ ©(Ggmm))n

3-SUM Hypothesis: 3-SUM is not solvable in n'99

2 (loglog n)o(l)
log? n

> linear decision tree with depth O(n log?n)

» solvable in n even with real inputs

APSP Hypothesis: APSP is not solvable in n>%°
» solvable in cubic time by Floyd-Warshall algorithm
» improved to n3/20(v/ogn)
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SETH

Introduced in 1999, together with ETH, by Impagliazzo and Paturi
SETH = ETH = P # NP

» ETH and SETH are then mainly used for NP-hard problems

» In 2005, SETH is used for the first time for a problem in P

» 2014-, dozens of papers show SETH-hardness of problems in P
ORTHOGONAL VECTORS, DIAMETER, FRECHET DISTANCE, EDIT DISTANCE,

LoNGEsT COMMON SUBSEQUENCE, FURTHEST PAIR, dynamic problems,
problems from Machine Learning, Model Checking, Language Theory etc.
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Reducing from SAT to a problem in P!?

Why no truly subquadratic algorithm for I1 was found?

problem SAT problem [1

s reduction
i time < 1.99”
n variables size 21/2

» instance /

1.99" + (27/2)27¢ = 0(2=)") for &’ := max(1 — log 1.99, 5) > 0
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Given a set S of N vectors in {0,1}9, Ju,v € Ss.t. u-v =07

Trivial algorithms in O(N2d) and in O(29N)

Theorem (Williams '05)
SETH = ORTHOGONAL VECTORS cannot be solved in 2°(4) N2—¢.



SAT — ORTHOGONAL VECTORS

Partition the variables: x1,xo, . .. P X2, X241, X040, ..

Find an assignment
» A, of the red variables and
» B; of the blue variables

s.t. all the m clauses are satisfied by A; or by B;
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Ag We build 2 - 2"/2 vectors of {0,1}™+2
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SAT — ORTHOGONAL VECTORS

Partition the variables: x1,xo, . .. P X2, X241, X040, Xn

Find an assignment
» A, of the red variables and
» B; of the blue variables

s.t. all the m clauses are satisfied by A; or by B;

R B G G G G G G G G
AL, 1 0 1 0 0 1 0 0 1 o0

Ay first vector (1,0,1,0,0,1,1,0,1,0)



SAT — ORTHOGONAL VECTORS

Partition the variables: x1,xo, . .. PX2, X241, X040, .

Find an assignment

» A, of the red variables and

» B; of the blue variables

s.t. all the m clauses are satisfied by A; or by B;

By
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SAT — ORTHOGONAL VECTORS

Find an assignment

» B; of the blue variables

A1
Az
A3
Ay
By
B,
B3

Partition the variables: x1,xo, . .. P X2, X241, X040, Xn
» A, of the red variables and

s.t. all the m clauses are satisfied by A; or by B;
R B Cl C2 C3 C4 C5 C6 C7 Cg
1 0 1. 0 0 1 0 O 1 O
1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 O 1 1
1 0 0 0 1 1 0 1 1 1
0 1 1 1 0 O 1 1 1 O
0o 1.0 1 0 1 0 1 0 O
o0 1 1 1 1 1 0 0 0 1
0o 1.0 1 0 0 1 0 0 1




DIAMETER

diam(G) = largest distance between a pair of vertices of G

(L% longest,, , shortestPath(u, v)? %@

» In weighted graphs, nothing known better than APSP
> In unweighted graphs, solvable in O(n*)
> In unweighted sparse graphs, solvable in O(n?)

> In sparse graphs, 3-approximable in O(n'®)
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diam(G) = largest distance between a pair of vertices of G

(L% longest,, , shortestPath(u, v)? %@

» In weighted graphs, nothing known better than APSP
> In unweighted graphs, solvable in O(n*)

» In unweighted sparse graphs, solvable in O(n?)

> In sparse graphs, 3-approximable in O(n'%)

Theorem (Roditty-V. Williams '13)

SETH = Ve >0, ( % — £)-approximating sparse, unweighted
n-vertex DIAMETER requires n>°(1).

N-vector ORTHOGONAL VECTORS — O(N)-vertex DIAMETER



ORTHOGONAL VECTORS — DIAMETER

(5]
Na@eb{
S
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indices

HSOIOOOOXO

vectors vectors

So far, all the pairs but those of A x B are at distance < 2



ORTHOGONAL VECTORS — DIAMETER

indices

vectors vectors

we put an edge between vector v and index i iff v[i] =1



ORTHOGONAL VECTORS — DIAMETER

indices

vectors vectors

A pair aq, by is at distance 2 < a5 - by # 0



ORTHOGONAL VECTORS — DIAMETER

indices

vectors vectors

diam(G) = 3 & Ja, b; at distance 3 < orthogonal pair



3-SUM Hardness

Introduced in 1995 by Gajentaan and Overmars to explain why
some geometric problems require quadratic time

Given a point set, are there three aligned points?
computing the area of a union of triangles

Is there a hole in a union of triangles?

Is a rectangle covered by a set of infinite strips?
Is there a line separating (parallel) segments?

motion planning problems

vVvvyVvVvVvVvyyy

visibility problems



3-SUM —— 3 COLLINEAR POINTS

Each integer x is mapped to the point (x, x3)



3-SUM —— 3 COLLINEAR POINTS

Each integer x is mapped to the point (x, x3)

If a, b, ¢ are pairwise distinct
a+b+c=0%(a,a%),(b,b%),(c,c?) are aligned



APSP Hardness

Introduced by Williams and Vassilevska Williams in 2010

APSP is in TIME(n3~¢) iff so is one of:

| 2

vVvvyVvVvyvyy

finding a triangle with negative weight

finding the diameter or radius of a weighted graph

Does a given matrix represent a metric?

finding a shortest cycle in a graph with non-negative weights
(min, +) matrix multiplication

computing the Wiener index of a weighted graph

betweenness centrality of a vertex in a weighted graph

The hypothesis of weighted problems
Unweighted APSP can be solved in time O(n“)



APNT — NEGATIVE TRIANGLE: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
Vb € B,c € C, avertex a € A such that abc is a negative triangle?

One can show that APSP and APNT are equivalent
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APNT — NEGATIVE TRIANGLE: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
Vb € B,c € C, avertex a € A such that abc is a negative triangle?

o
(G
(G
(G
>
C

=|JU000

Partition A, B, C (size n) into t = n®/3 groups of size n/t = n'/3



APNT — NEGATIVE TRIANGLE: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
Vb € B,c € C, a vertex a € A such that abc is a negative triangle?

(G (G
(G (G
(G (G
(G (G
> >
B C

For each triple of classes, call NEGATIVE TRIANGLE
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APNT — NEGATIVE TRIANGLE: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
Vb € B,c € C, a vertex a € A such that abc is a negative triangle?

A

Continue with the same triple of classes while possible



APNT — NEGATIVE TRIANGLE: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
Vb € B,c € C, a vertex a € A such that abc is a negative triangle?

(G (G
(G (G
(G (G
(G (G
> >
B C

Report if all the pairs of B x C were satisfied



APNT — NEGATIVE TRIANGLE: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
Vb € B,c € C, a vertex a € A such that abc is a negative triangle?

(G (G
(G (G
(G (G
(G (G
> >
B C

Number of calls to NEGATIVE TRIANGLE: < n? + t3 = O(n?)



APNT — NEGATIVE TRIANGLE: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
Vb € B,c € C, a vertex a € A such that abc is a negative triangle?
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Things we did not talk about

» SETH lower bounds for parameterized problems
» fine-grained approximability, Gap-ETH (and its bypass)

» NSETH and (weak) evidence against reducing SETH,
3-SUM-H, APSP-H

» no strongly subquadratic algorithm under APSP-H
» Circuit variants of ETH and SETH
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» NSETH and (weak) evidence against reducing SETH,
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Thank you for your attention!



