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Fine-grained complexity

Quantitative complexity theory:
▶ For some reference problems, assume that the current best

algorithm cannot be significantly improved.
▶ Via reductions, derive consequences for the other problems Π.
▶ Forget about complexity classes.

Goal:
▶ Get an f (n, k)-time algorithm for Π.
▶ Show a g(n, k)-time algorithm for Π would improve the

complexity of a reference problem.
▶ Make f and g as close as possible.
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Immediate consequence of ETH for graph problems

ETH = ∃s > 0 s.t. n-variable 3-SAT is not in TIME(2sn)

n-variable 3-SAT instances may have m = Θ(n3) clauses

n-variable m-clause 3-SAT ρ−→P O(n + m)-vertex instance of Π

ρ only implies: ETH ⇒ Π requires 2Ω(n1/3) time on n-vertex graph
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Sparsifying k-SAT
Theorem (Impagliazzo–Paturi–Zane ’01)
For every ε > 0, given an n-variable k-SAT formula φ, t ⩽ 2εn

k-SAT formulas φ1, . . . , φt can be computed in time nO(1)2εn s.t.
▶ φ is satisfiable iff at least one φi is satisfiable, and
▶ for every i ∈ [t], φi has at most at most Cε,kn clauses.

Theorem
ETH ⇒ m-clause 3-SAT requires 2Ω(m) time.

Let s > 0 be such that n-variable 3-SAT is not in TIME(2sn)
Set ε := s

3 and ε′ := s
3Cε,3

Sparsification + 2ε′m-time algorithm on each instance

nO(1)2εn + 2εn · 2ε′Cε,3n < 2sn
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Tight ETH lower bounds

Theorem
ETH ⇒ Π requires 2Ω(n) time on n-vertex graphs for Π = Max
Independent Set, Dominating Set, 3-Coloring, Vertex
Cover, Feedback Vertex Set, Hamiltonian Cycle, etc.
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Tight ETH lower bounds on planar graphs
All these problems admit 2O(

√
n)-time algorithms in planar graphs

Planar 3-SAT: the variable-clause incidence graph is planar

Theorem (Lichtenstein ’82)
∃ρ, n-clause 3-SAT ρ−→P O(n2)-variable Planar 3-SAT.

a1

b1

−→ ξa1 a2

b1

b2

γ β

αδ

9-variable 18-clause planar instance that forces a1 = a2, b1 = b2
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Tight ETH lower bounds on planar graphs

Theorem
ETH ⇒ Π requires 2Ω(

√
n) time on n-vertex planar graphs for Π =

Max Independent Set, Dominating Set, 3-Coloring,
Vertex Cover, Feedback Vertex Set, Hamiltonian
Cycle, etc.



Can we explain other kinds of running times?

Theorem (Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij,
Wojtaszczyk ’11, Cut&Count)
Hamiltonian Cycle, Feedback Vertex Set, Connected
Dominating Set can be solved in 2O(w)nO(1) on n-vertex graphs
of treewidth w.

For Chromatic Number, Disjoint Paths, Cycle Packing
2O(w log w)nO(1) remains best.



Permutation k × k Clique

k

k

Theorem (Lokshtanov–Marx–Saurabh ’11)
ETH ⇒ Permutation k × k Clique requires 2Ω(k log k) time.

Reduce from 3-Coloring with q batches of size n
q s.t. q ≈ 3n/q.
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Chromatic Number parameterized by treewidth
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For every non-edge (i , j)(i ′ ̸= i , j ′ ̸= j), add two adjacent vertices
linked to their row vertex and to every column vertex but theirs.
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The obtained graph has chromatic number k + 1 iff the

Permutation k × k Clique instance is positive.
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Permutation k × k Clique instance is positive.



Chromatic Number parameterized by treewidth

k

k
ETH ⇒ Chromatic Number cannot be solved in

2o(w log w)nO(1) time on n-vertex graphs of treewidth at most w .





The three main hypotheses in P

Strong Exponential Time Hypothesis (SETH): ∀ε > 0, ∃k s.t.
k-SAT is not in TIME(2(1−ε)n).

3-SUM Hypothesis: ∀ε > 0, finding x , y , z s.t. x + y + z = 0 in
a list of n integers of [−n4, n4] is not in TIME(n2−ε).

All-Pairs Shortest-Path (APSP) Hypothesis: ∀ε > 0, ∃c,
APSP with edge weights in [−nc , nc ] is not in TIME(n3−ε).

All these assumptions fail for quantum computers.



The three main hypotheses in P

SETH: SAT is not solvable in 1.99n.
▶ k-SAT is solvable in 2(1−Θ( 1

k ))n

▶ SAT is solvable 2(1−Θ( 1
log m/n ))n

3-SUM Hypothesis: 3-SUM is not solvable in n1.99

▶ solvable in n2 (log log n)O(1)

log2 n even with real inputs
▶ linear decision tree with depth O(n log2n)

APSP Hypothesis: APSP is not solvable in n2.99

▶ solvable in cubic time by Floyd-Warshall algorithm
▶ improved to n3/2O(

√
log n)



SETH

Introduced in 1999, together with ETH, by Impagliazzo and Paturi

SETH ⇒ ETH ⇒ P ̸= NP

▶ ETH and SETH are then mainly used for NP-hard problems

▶ In 2005, SETH is used for the first time for a problem in P
▶ 2014-, dozens of papers show SETH-hardness of problems in P

Orthogonal Vectors, Diameter, Fréchet Distance, Edit Distance,
Longest Common Subsequence, Furthest Pair, dynamic problems,
problems from Machine Learning, Model Checking, Language Theory etc.
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Reducing from SAT to a problem in P!?

Why no truly subquadratic algorithm for Π was found?

problem SAT
instance φ

n variables

problem Π
instance I
size 2n/2

reduction
time ⩽ 1.99n

1.99n + (2n/2)2−ε = O(2(1−ε′)n) for ε′ := max(1 − log 1.99, ε
2) > 0
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Orthogonal Vectors

Given a set S of N vectors in {0, 1}d , ∃u, v ∈ S s.t. u · v = 0?

Trivial algorithms in O(N2d) and in O(2dN)

Theorem (Williams ’05)
SETH ⇒ Orthogonal Vectors cannot be solved in 2o(d)N2−ε.
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SAT −→ Orthogonal Vectors
Partition the variables: x1, x2, . . . , x n

2
, x n

2 +1, x n
2 +2, . . . , xn

Find an assignment
▶ Ai of the red variables and
▶ Bj of the blue variables

s.t. all the m clauses are satisfied by Ai or by Bj

C1 C2 C3 C4 C5 C6 C7 C8R B
A1
A2
A3
A4
B1
B2
B3
B4

1 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 1 1
1 0 0 0 1 1 0 1 1 1
0 1 1 1 0 0 1 1 1 0
0 1 0 1 0 1 0 1 0 0
0 1 1 1 1 1 0 0 0 1
0 1 0 1 0 0 1 0 0 1
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Diameter
diam(G) = largest distance between a pair of vertices of G

u vlongestu,v shortestPath(u, v)?

▶ In weighted graphs, nothing known better than APSP
▶ In unweighted graphs, solvable in Õ(nω)
▶ In unweighted sparse graphs, solvable in O(n2)
▶ In sparse graphs, 3

2 -approximable in Õ(n1.5)

Theorem (Roditty–V. Williams ’13)
SETH ⇒ ∀ε > 0, (3

2 − ε)-approximating sparse, unweighted
n-vertex Diameter requires n2−o(1).

N-vector Orthogonal Vectors −→ O(N)-vertex Diameter
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▶ In unweighted sparse graphs, solvable in O(n2)
▶ In sparse graphs, 3

2-approximable in Õ(n1.5)
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Orthogonal Vectors −→ Diameter

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

A
vectors

B
vectors

1

2

3

4

I
indices

a b

a2[3] = 1

b4[2] = 1

So far, all the pairs but those of A × B are at distance ⩽ 2



Orthogonal Vectors −→ Diameter
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a6 b6

A
vectors

B
vectors

1

2

3

4

I
indices

a b

a2[3] = 1

b4[2] = 1

we put an edge between vector v and index i iff v [i ] = 1



Orthogonal Vectors −→ Diameter
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B
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1

2

3

4

I
indices

a b

a2[3] = 1

b4[2] = 1a4

b2

A pair a4, b2 is at distance 2 ⇔ a4 · b2 ̸= 0



Orthogonal Vectors −→ Diameter

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

A
vectors

B
vectors

1

2

3

4

I
indices

a b

a2[3] = 1

b4[2] = 1

diam(G) = 3 ⇔ ∃ai , bj at distance 3 ⇔ orthogonal pair



3-SUM Hardness

Introduced in 1995 by Gajentaan and Overmars to explain why
some geometric problems require quadratic time

▶ Given a point set, are there three aligned points?
▶ computing the area of a union of triangles
▶ Is there a hole in a union of triangles?
▶ Is a rectangle covered by a set of infinite strips?
▶ Is there a line separating (parallel) segments?
▶ motion planning problems
▶ visibility problems



3-SUM −→ 3 Collinear Points
Each integer x is mapped to the point (x , x3)

(a, a3)

(c, c3)
(b, b3)

If a, b, c are pairwise distinct
a + b + c = 0 ⇔ (a, a3), (b, b3), (c, c3) are aligned
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(c, c3)
(b, b3)
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APSP Hardness

Introduced by Williams and Vassilevska Williams in 2010

APSP is in TIME(n3−ε) iff so is one of:
▶ finding a triangle with negative weight
▶ finding the diameter or radius of a weighted graph
▶ Does a given matrix represent a metric?
▶ finding a shortest cycle in a graph with non-negative weights
▶ (min, +) matrix multiplication
▶ computing the Wiener index of a weighted graph
▶ betweenness centrality of a vertex in a weighted graph

The hypothesis of weighted problems
Unweighted APSP can be solved in time Õ(nω)



APNT −→ Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
∀b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

One can show that APSP and APNT are equivalent

A

B C

+∞

Arbitrary partition A, B, C into t = n2/3 groups of size n/t = n1/3
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All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
∀b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B C

+∞

Partition A, B, C (size n) into t = n2/3 groups of size n/t = n1/3



APNT −→ Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
∀b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B C

+∞

For each triple of classes, call Negative Triangle



APNT −→ Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
∀b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B Ca

b c

+∞

Write down that the pair bc is satisfied by a and remove bc



APNT −→ Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
∀b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B Ca

b c+∞

Write down that the pair bc is satisfied by a and remove bc



APNT −→ Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
∀b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B Ca

b c+∞

Continue with the same triple of classes while possible



APNT −→ Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
∀b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B C

+∞

Report if all the pairs of B × C were satisfied



APNT −→ Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
∀b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B C

+∞

Number of calls to Negative Triangle: ⩽ n2 + t3 = O(n2)



APNT −→ Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite complete graph on (A, B, C), is there,
∀b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B C

+∞

Subinstance size: 3n/t = O(n 1
3 ), thus O(n2 · (n 1

3 )3−ε) = O(n3− ε
3 )



Things we did not talk about

▶ SETH lower bounds for parameterized problems
▶ fine-grained approximability, Gap-ETH (and its bypass)
▶ NSETH and (weak) evidence against reducing SETH,

3-SUM-H, APSP-H
▶ no strongly subquadratic algorithm under APSP-H
▶ Circuit variants of ETH and SETH

Thank you for your attention!
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