Fine-Grained Complexity in P

Édouard Bonnet

LIP, ENS Lyon

October 2nd, 2018, GT CoA, Paris

Reductions

Reductions

Two interpretations

Positive: we can solve Π in t(n) + f(r(n)) with f is the time for Π'

Negative: Π' cannot be solved in f(n)since we know/assume that Π is not solvable in t(n) + f(r(n)) Reductions and fine-grained complexity

Complexity with the classes TIME(f(n)) and reference problems

Two interpretations

Positive: we can solve Π in t(n) + f(r(n)) with f is the time for Π'

Negative: Π' cannot be solved in f(n)since we know/assume that Π is not solvable in t(n) + f(r(n))

Strong Exponential Time Hypothesis (SETH): $\forall \varepsilon > 0, \exists k \text{ s.t.} k$ -SAT is not in time $2^{(1-\varepsilon)n}$.

Strong Exponential Time Hypothesis (SETH): $\forall \varepsilon > 0$, $\exists k$ s.t. k-SAT is not in time $2^{(1-\varepsilon)n}$ by a classical (randomized) algorithm.

Strong Exponential Time Hypothesis (SETH): $\forall \varepsilon > 0$, $\exists k$ s.t. k-SAT is not in time $2^{(1-\varepsilon)n}$ by a classical (randomized) algorithm.

3-SUM Hypothesis: Finding x, y, z such that x + y + z = 0 in a list of *n* integers of $[-n^4, n^4]$ is not in time $O(n^{2-\varepsilon})$ for any $\varepsilon > 0$.

Strong Exponential Time Hypothesis (SETH): $\forall \varepsilon > 0$, $\exists k$ s.t. k-SAT is not in time $2^{(1-\varepsilon)n}$ by a classical (randomized) algorithm.

3-SUM Hypothesis: Finding x, y, z such that x + y + z = 0 in a list of *n* integers of $[-n^4, n^4]$ is not in time $O(n^{2-\varepsilon})$ for any $\varepsilon > 0$.

All-Pairs Shortest-Path (APSP) Hypothesis: $\exists c$, APSP with edge weights in $[-n^c, n^c]$ is not solvable in time $O(n^{3-\varepsilon})$ for $\varepsilon > 0$.

SETH: SAT is not solvable in 1.99^n .

- k-SAT is solvable in $2^{(1-\Theta(\frac{1}{k}))n}$
- SAT is solvable $2^{(1-\Theta(\frac{1}{\log m/n}))n}$

- **3-SUM Hypothesis:** 3-SUM is not solvable in $n^{1.99}$
 - ► Solvable in $n^2 \frac{(\log \log n)^{O(1)}}{\log^2 n}$ even with real inputs
 - Linear decision tree with depth $O(n \log^2 n)$

APSP Hypothesis: APSP is not solvable in $n^{2.99}$

- solvable in cubic time by Floyd-Warshall algorithm
- improved to $n^3/2^{O(\sqrt{\log n})}$

In 1999, Impagliazzo and Paturi introduce ETH^1 and mention a stronger version of it in their conclusion

$\mathsf{SETH} \Rightarrow \mathsf{ETH} \Rightarrow \mathsf{P} \neq \mathsf{NP}$

ETH and SETH are then mainly used for NP-hard problems

 $^{{}^{1}\}exists \delta > 0$, 3-SAT cannot be solved in $2^{\delta n}$

In 1999, Impagliazzo and Paturi introduce ETH¹ and mention a stronger version of it in their conclusion

$\mathsf{SETH} \Rightarrow \mathsf{ETH} \Rightarrow \mathsf{P} \neq \mathsf{NP}$

- ETH and SETH are then mainly used for NP-hard problems
- In 2005, SETH is used for the first time for a problem in P

ORTHOGONAL VECTORS,

 $^{{}^{1}\}exists \delta > 0$, 3-SAT cannot be solved in $2^{\delta n}$

SETH

In 1999, Impagliazzo and Paturi introduce ETH¹ and mention a stronger version of it in their conclusion

$\mathsf{SETH} \Rightarrow \mathsf{ETH} \Rightarrow \mathsf{P} \neq \mathsf{NP}$

- ETH and SETH are then mainly used for NP-hard problems
- ▶ In 2005, SETH is used for the first time for a problem in P
- > 2014-, dozens of papers show SETH-hardness of problems in P

ORTHOGONAL VECTORS, DIAMETER, FRÉCHET DISTANCE, EDIT DISTANCE, LONGEST COMMON SUBSEQUENCE, FURTHEST PAIR, dynamic problems, problems from Machine Learning, Model Checking, Language Theory etc.

 $^{{}^1\}exists \delta > {\rm 0}, \, {\rm 3-Sat}$ cannot be solved in ${\rm 2}^{\delta n}$

Psychological barrier?

If we treat k-SAT \rightarrow OV as an outlier, why 15 years between defining SETH and using it in P? Psychological barrier?

A: If you know too much (P, NP, NP-completeness), you might disregard a reduction from a hard problem to an easy one

B: If you know less (summing and composing functions)

Psychological barrier?

A: If you know too much (P, NP, NP-completeness), you might disregard a reduction from a hard problem to an easy one

B: If you know less (summing and composing functions)

B: "Both the time and the blow-up can be exponential, great."

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by \boldsymbol{A} or by \boldsymbol{B}

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

	R	В	C_1	C_2	<i>C</i> ₃	<i>C</i> ₄	C_5	C_6	<i>C</i> ₇	C_8
A_1	1	0	1	0	0	1	0	0	1	0
A_2	1	0	0	0	0	1	1	1	0	1
A_3	1	0	0	1	0	1	0	0	1	1
A_4	1	0	0	0	1	1	0	1	1	1
B_1	0	1	1	1	0	0	1	1	1	0
<i>B</i> ₂	0	1	0	1	0	1	0	1	0	0
<i>B</i> ₃	0	1	1	1	1	1	0	0	0	1
B_4	0	1	0	1	0	0	1	0	0	1

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

	R	В	C_1	C_2	<i>C</i> ₃	<i>C</i> ₄	C_5	C_6	<i>C</i> ₇	<i>C</i> ₈
A_1	1	0	1	0	0	1	0	0	1	0
A_2	1	0	0	0	0	1	1	1	0	1
<i>A</i> ₃	1	0	0	1	0	1	0	0	1	1
<i>A</i> ₄	1	0	0	0	1	1	0	1	1	1
B_1	0	1	1	1	0	0	1	1	1	0
<i>B</i> ₂	0	1	0	1	0	1	0	1	0	0
<i>B</i> ₃	0	1	1	1	1	1	0	0	0	1
<i>B</i> ₄	0	1	0	1	0	0	1	0	0	1

Consequence for OV under the SETH

From a SAT-instance on *n* variables and *m* clauses, we created $N := 2^{\frac{n}{2}+1}$ vectors in dimension d := m + 2

Consequence for OV under the SETH

From a SAT-instance on *n* variables and *m* clauses, we created $N := 2^{\frac{n}{2}+1}$ vectors in dimension d := m + 2

An algorithm solving OV in time $2^{o(d)}N^{2-\varepsilon}$ would solve SAT in $2^{o(m)}2^{n(1-\varepsilon/2)} \rightarrow$ breaking SETH

Sharp contrast with the simple algorithms in $O(N^2d)$ and $O(2^dN)$

DIAMETER

diam(G) = largest distance between a pair of vertices of G

$$u$$
 longest_{*u*,*v*} shortestPath(*u*,*v*)? v

- In weighted graphs, nothing known better than APSP
- In unweigthed graphs, solvable in $ilde{O}(n^{\omega})$
- ▶ In unweighted sparse $(m = \Theta(n))$ graphs, solvable in $O(n^2)$
- $\frac{3}{2}$ -approximable in $\tilde{O}(m^{1.5})$
- ▶ In sparse graphs, $\frac{3}{2}$ -approximable in $\tilde{O}(n^{1.5})$

DIAMETER

diam(G) = largest distance between a pair of vertices of G

$$u$$
 longest_{*u*,*v*} shortestPath(*u*,*v*)? v

- In weighted graphs, nothing known better than APSP
- In unweigthed graphs, solvable in $\tilde{O}(n^{\omega})$
- ▶ In unweighted sparse graphs, solvable in O(n²)
- $\frac{3}{2}$ -approximable in $\tilde{O}(m^{1.5})$
- ► In sparse graphs, $\frac{3}{2}$ -approximable in $\tilde{O}(n^{1.5})$

Linear reduction from ORTHOGONAL VECTORS: no n^{1.99} algorithm even to $(\frac{3}{2} - \varepsilon)$ -approximate Diameter on unweighted sparse instances, assuming the SETH.

So far, all the pairs but of $A \times B$ are at distance ≤ 2

A pair (a4,b2) is at distance $2 \Leftrightarrow \langle a_4, b_2 \rangle \neq 0$

diam $(G) = 3 \Leftrightarrow \exists (a_i, b_j)$ at distance $3 \Leftrightarrow$ orthogonal pair

If no orthogonal pair, diam(G) = 2

3-SUM Hardness

Introduced in 1995 by Gajentaan and Overmars to explain why some geometric problems require quadratic time

- are there three aligned points?
- are there three lines meeting at a point? (same by duality)
- is there a hole in a union of triangles?
- computing the area of a union of triangles
- is a rectangle covered by a set of infinite strips?
- Line separator of a non-intersecting axis-parallel segments?
- motion planning problems
- visibility problems

3-SUM Hardness

Introduced in 1995 by Gajentaan and Overmars to explain why some geometric problems require quadratic time

- are there three aligned points?
- are there three lines meeting at a point? (same by duality)
- is there a hole in a union of triangles?
- computing the area of a union of triangles
- is a rectangle covered by a set of infinite strips?
- Line separator of a non-intersecting axis-parallel segments?
- motion planning problems
- visibility problems

the quadratic algorithm is not easy

$3\text{-}\mathrm{SUM} \to 3$ Collinear Points

Each integer x is mapped to the point (x, x^3)

$3\text{-}\mathrm{SUM} \to 3$ Collinear Points

Each integer x is mapped to the point (x, x^3)

If a, b, c are pairwise distinct $a + b + c = 0 \Leftrightarrow (a, a^3), (b, b^3), (c, c^3)$ are aligned

GEOMBASE

Convenient 3-points-on-a-line 3-SUM-hard variant

GEOMBASE

Convenient 3-points-on-a-line 3-SUM-hard variant

$GEOMBASE \rightarrow SEGMENTS$ SEPARATION

Convenient 3-points-on-a-line $\operatorname{3-SUM}$ -hard variant

Points become tiny holes between horizontal segments

$GEOMBASE \rightarrow SEGMENTS$ SEPARATION

Convenient 3-points-on-a-line 3-SUM-hard variant

Points become tiny holes between horizontal segments

Segments Separation \rightarrow Covered Rectangle

Rotation + Duality! Points \leftrightarrow Lines & Vertical Segments \leftrightarrow Strips

Segments Separation \rightarrow Covered Rectangle

 $\label{eq:relation} \begin{array}{l} \mbox{Rotation} + \mbox{Duality! Points} \leftrightarrow \mbox{Lines \& Vertical Segments} \leftrightarrow \mbox{Strips} \\ \\ \mbox{Point not on any strip} \Leftrightarrow \mbox{Line separating the segments} \end{array}$

APSP Hardness

This hypothesis has emerged more recently, introduced by Ryan Williams and Virginia Vassilevska Williams in 2010

APSP is in time $n^{3-\varepsilon}$ iff so is one of:

- finding a triangle with negative weight
- finding the radius of a weighted graph
- does a given matrix represent a metric?
- finding a shortest cycle in a graph with non-negative weights
- ▶ (*min*, +) matrix multiplication
- computing the Wiener index of a weighted graph
- betweenness centrality of a vertex in a weighted graph

APSP Hardness

This hypothesis has emerged more recently, introduced by Ryan Williams and Virginia Vassilevska Williams in 2010

APSP is in time $n^{3-\varepsilon}$ iff so is one of:

- finding a triangle with negative weight
- finding the radius of a weighted graph
- does a given matrix represent a metric?
- finding a shortest cycle in a graph with non-negative weights
- ▶ (*min*, +) matrix multiplication
- computing the Wiener index of a weighted graph
- betweenness centrality of a vertex in a weighted graph

The hypothesis of weighted problems

Let us recall that unweighted APSP can be solved in n^ω

APSP Hardness

This hypothesis has emerged more recently, introduced by Ryan Williams and Virginia Vassilevska Williams in 2010

APSP is in time $n^{3-\varepsilon}$ iff so is one of:

- finding a triangle with negative weight
- finding the radius of a weighted graph
- does a given matrix represent a metric?
- finding a shortest cycle in a graph with non-negative weights
- ▶ (*min*, +) matrix multiplication
- computing the Wiener index of a weighted graph
- betweenness centrality of a vertex in a weighted graph

The hypothesis of weighted problems

Let us recall that unweighted APSP can be solved in n^ω

TREE EDIT DISTANCE in truly subcubic time is APSP-hard.

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that *abc* is a negative triangle?

One can show that APSP and APNT are equivalent

All-Pairs Negative Triangle (APNT):

All-Pairs Negative Triangle (APNT):

All-Pairs Negative Triangle (APNT):

For each triple of classes, call $\operatorname{Negative}\,\operatorname{Triangle}$

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that *abc* is a negative triangle?

Write down that the pair bc is satisfied by a and remove bc

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that *abc* is a negative triangle?

Write down that the pair bc is satisfied by a and remove bc

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that *abc* is a negative triangle?

Continue with the same triple of classes while possible

All-Pairs Negative Triangle (APNT):

Report if all the pairs of $B \times C$ were satisfied

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that *abc* is a negative triangle?

Number of calls to NEGATIVE TRIANGLE: $\leq n^2 + t^3 = O(n^2)$

All-Pairs Negative Triangle (APNT):

SETH, 3-SUMH, APSPH

Are they pairwise incomparable?

SETH, 3-SUMH, APSPH

Are they pairwise incomparable?

Can we only use SETH by designing fine-grained reductions

- ▶ from *k*-SAT to 3-SUM
- ▶ from *k*-SAT to APSP?

k-TAUT: Are all the assignments of a k-DNF formula satisfying?

NSETH: $\forall \varepsilon > 0$, $\exists k$, k-TAUT is not in NTIME $(2^{(1-\varepsilon)n})$.

k-TAUT: Are all the assignments of a *k*-DNF formula satisfying? NSETH: $\forall \varepsilon > 0, \exists k, k$ -TAUT is not in NTIME $(2^{(1-\varepsilon)n})$.

▶ ¬NSETH would imply non-trivial circuit lower bounds

k-TAUT: Are all the assignments of a *k*-DNF formula satisfying? NSETH: $\forall \varepsilon > 0, \exists k, k$ -TAUT is not in NTIME $(2^{(1-\varepsilon)n})$.

- ► ¬NSETH would imply non-trivial circuit lower bounds
- NSETH is false if randomization is allowed

3-SUM is in $\text{coNTIME}(\tilde{O}(n^{1.5}))$

3-SUM is in $\text{coNTIME}(\tilde{O}(n^{1.5}))$

Certificate for non-existence of a triple summing to 0:

• a prime p among the first $n^{1.5}$ primes $\mathbb{P}_{n^{1.5}}$,

• an integer
$$t = \tilde{O}(n^{1.5})$$
, and

• a set S of t triples all summing to 0 modulo p but not to 0

3-SUM is in $coNTIME(\tilde{O}(n^{1.5}))$

Certificate for non-existence of a triple summing to 0:

- a prime p among the first $n^{1.5}$ primes $\mathbb{P}_{n^{1.5}}$,
- an integer $t = \tilde{O}(n^{1.5})$, and
- a set S of t triples all summing to 0 modulo p but not to 0

Why does such a certificate exist?

 $|\{(a_i, a_j, a_k, p) \mid a_i + a_j + a_k = 0 \mod p\}| \leq n^3 \log(3n^c) = \tilde{O}(n^3)$ $\exists p \in \mathbb{P}_{n^{1.5}}, |\{(a_i, a_j, a_k) \mid x + y + z = 0 \mod p\}| = \tilde{O}(n^{1.5})$

3-SUM is in $\text{coNTIME}(\tilde{O}(n^{1.5}))$

Certificate for non-existence of a triple summing to 0:

• a prime p among the first $n^{1.5}$ primes $\mathbb{P}_{n^{1.5}}$,

• an integer
$$t = \tilde{O}(n^{1.5})$$
, and

• a set S of t triples all summing to 0 modulo p but not to 0

Given (p, t, S), we check that:

- all triples of S sum to a non-zero value multiple of p
- expand $(\Sigma_i x^{a_i \mod p})^3$ with FFT
- check that the coefficients of x^0, x^p, x^{2p} sum to t

Consequences for the unification 3-SUM is in coNTIME($\tilde{O}(n^{1.5})$)

APSP is in coNTIME($\tilde{O}(n^{2+\frac{6+\omega}{9}})$)

Consequences for the unification 3-SUM is in coNTIME($\tilde{O}(n^{1.5})$)

APSP is in coNTIME($\tilde{O}(n^{2+\frac{6+\omega}{9}})$)

A fine-grained **deterministic** reduction from k-SAT to either of these problems would break NSETH

No known implication, the dashed ones are ruled out under NSETH

Things I did not mention

Log shavings and friends

- Reductions from Circuit Sat to consolidate a lower bound
- > 2 hypotheses implying SETH, 3-SUMH, and APSPH!

Things I did not mention

Log shavings and friends

- Reductions from Circuit Sat to consolidate a lower bound
- ▶ 2 hypotheses implying SETH, 3-SUMH, and APSPH!
- FPT in P: typically algorithms in k^cn or 2^kn to circumvent a quadratic/cubic lower bound
- Distributed PCPs: hardness of approximation in P

Things I did not mention

Log shavings and friends

- Reductions from Circuit Sat to consolidate a lower bound
- ▶ 2 hypotheses implying SETH, 3-SUMH, and APSPH!
- FPT in P: typically algorithms in k^cn or 2^kn to circumvent a quadratic/cubic lower bound
- Distributed PCPs: hardness of approximation in P

Thanks for your attention!