Fine-Grained Complexity in P

Édouard Bonnet
LIP, ENS Lyon
October 2nd, 2018, GT CoA, Paris

Reductions

problem Π
instance $\boldsymbol{~}$ size n
${t(n)} }$
reduction instance I^{\prime} size $r(n)$

Reductions

Two interpretations
Positive: we can solve Π in $t(n)+f(r(n))$ with f is the time for Π^{\prime}
Negative: $\boldsymbol{\Pi}^{\prime}$ cannot be solved in $\mathbf{f}(\mathbf{n})$ since we know/assume that Π is not solvable in $t(n)+f(r(n))$

Reductions and fine-grained complexity

Complexity with the classes $\operatorname{TIME}(f(n))$ and reference problems
problem Π
instance I

size $n$$\xrightarrow[\text { time } t(n)]{\text { reduction }}$\begin{tabular}{c}
problem Π^{\prime}

instance I^{\prime}
size $r(n)$

\end{tabular}

Two interpretations
Positive: we can solve Π in $t(n)+f(r(n))$ with f is the time for Π^{\prime}
Negative: $\boldsymbol{\Pi}^{\prime}$ cannot be solved in $\mathbf{f}(\mathbf{n})$ since we know/assume that Π is not solvable in $t(n)+f(r(n))$

The three main hypotheses

Strong Exponential Time Hypothesis (SETH): $\forall \varepsilon>0, \exists k$ s.t. k-SAT is not in time $2^{(1-\varepsilon) n}$.

The three main hypotheses

Strong Exponential Time Hypothesis (SETH): $\forall \varepsilon>0, \exists k$ s.t. k-SAT is not in time $2^{(1-\varepsilon) n}$ by a classical (randomized) algorithm.

The three main hypotheses

Strong Exponential Time Hypothesis (SETH): $\forall \varepsilon>0, \exists k$ s.t. k-SAT is not in time $2^{(1-\varepsilon) n}$ by a classical (randomized) algorithm.

3-SUM Hypothesis: Finding x, y, z such that $x+y+z=0$ in a list of n integers of $\left[-n^{4}, n^{4}\right]$ is not in time $O\left(n^{2-\varepsilon}\right)$ for any $\varepsilon>0$.

The three main hypotheses

Strong Exponential Time Hypothesis (SETH): $\forall \varepsilon>0, \exists k$ s.t. k-SAT is not in time $2^{(1-\varepsilon) n}$ by a classical (randomized) algorithm.

3-SUM Hypothesis: Finding x, y, z such that $x+y+z=0$ in a list of n integers of $\left[-n^{4}, n^{4}\right]$ is not in time $O\left(n^{2-\varepsilon}\right)$ for any $\varepsilon>0$.

All-Pairs Shortest-Path (APSP) Hypothesis: $\exists c$, APSP with edge weights in $\left[-n^{c}, n^{c}\right]$ is not solvable in time $O\left(n^{3-\varepsilon}\right)$ for $\varepsilon>0$.

The three main hypotheses

SETH: SAT is not solvable in 1.99^{n}.

- k-SAT is solvable in $2^{\left(1-\Theta\left(\frac{1}{k}\right)\right) n}$
- SAT is solvable $2^{\left(1-\Theta\left(\frac{1}{\log m / n}\right)\right) n}$

3-SUM Hypothesis: 3-SUM is not solvable in $n^{1.99}$

- Solvable in $n^{2} \frac{(\log \log n)^{O(1)}}{\log ^{2} n}$ even with real inputs
- Linear decision tree with depth $O\left(n \log ^{2} n\right)$

APSP Hypothesis: APSP is not solvable in $n^{2.99}$

- solvable in cubic time by Floyd-Warshall algorithm
- improved to $n^{3} / 2^{O}(\sqrt{\log n})$

SETH

In 1999, Impagliazzo and Paturi introduce ETH ${ }^{1}$ and mention a stronger version of it in their conclusion

$$
\mathrm{SETH} \Rightarrow \mathrm{ETH} \Rightarrow \mathrm{P} \neq \mathrm{NP}
$$

- ETH and SETH are then mainly used for NP-hard problems
${ }^{1} \exists \delta>0,3$-SAT cannot be solved in $2^{\delta n}$

SETH

In 1999, Impagliazzo and Paturi introduce ETH ${ }^{1}$ and mention a stronger version of it in their conclusion

$$
\mathrm{SETH} \Rightarrow \mathrm{ETH} \Rightarrow \mathrm{P} \neq \mathrm{NP}
$$

- ETH and SETH are then mainly used for NP-hard problems
- In 2005, SETH is used for the first time for a problem in P

Orthogonal Vectors,
${ }^{1} \exists \delta>0,3$-SAT cannot be solved in $2^{\delta n}$

SETH

In 1999, Impagliazzo and Paturi introduce ETH ${ }^{1}$ and mention a stronger version of it in their conclusion

$$
\mathrm{SETH} \Rightarrow \mathrm{ETH} \Rightarrow \mathrm{P} \neq \mathrm{NP}
$$

- ETH and SETH are then mainly used for NP-hard problems
- In 2005, SETH is used for the first time for a problem in P
- 2014-, dozens of papers show SETH-hardness of problems in P

Orthogonal Vectors, Diameter, Fréchet Distance, Edit Distance, Longest Common Subsequence, Furthest Pair, dynamic problems, problems from Machine Learning, Model Checking, Language Theory etc.
${ }^{1} \exists \delta>0,3$-SAT cannot be solved in $2^{\delta n}$

Psychological barrier?

If we treat k-SAT $\rightarrow \mathrm{OV}$ as an outlier, why 15 years between defining SETH and using it in P?

Psychological barrier?

A: If you know too much (P, NP, NP-completeness), you might disregard a reduction from a hard problem to an easy one

B: If you know less (summing and composing functions)

$$
\begin{array}{ccc}
\begin{array}{c}
\text { problem SAT } \\
\text { instance } \phi \\
\text { size } n
\end{array} & \text { reduction } & \begin{array}{c}
\text { problem OV } \\
\text { instance } \mathcal{V}
\end{array} \\
\cline { 2 - 4 } & \text { time } \leqslant 1.99^{n} \\
\text { size } r(n)=2^{n / 2}
\end{array}
$$

Psychological barrier?

A: If you know too much (P, NP, NP-completeness), you might disregard a reduction from a hard problem to an easy one

B: If you know less (summing and composing functions)

B: "Both the time and the blow-up can be exponential, great."

Sat \rightarrow Orthogonal Vectors

arbitrary equipartition of $X: x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_{n}$
Find an assignment

- A of the red variables and
- B of the blue variables
such that all the clauses are satisfied by A or by B

Sat \rightarrow Orthogonal Vectors

arbitrary equipartition of X : $x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_{n}$
Find an assignment

- A of the red variables and
- B of the blue variables
such that all the clauses are satisfied by A or by B

$$
\begin{array}{lllllllllll}
& R & B & C_{1} & C_{2} & C_{3} & C_{4} & C_{5} & C_{6} & C_{7} & C_{8} \\
A_{1} & & & & & & & & & & \\
A_{2} & & & & & & & & & & \\
A_{3} & & & & & & & & & & \\
A_{4} & & & & & & & & & & \\
B_{1} & & & & & & & & & & \\
B_{2} & & & & & & & & & & \\
B_{3} & & & & & & & & & & \\
B_{4} & & & & & & & & & & \\
& & & & & & &
\end{array}
$$

Sat \rightarrow Orthogonal Vectors

arbitrary equipartition of X : $x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_{n}$
Find an assignment

- A of the red variables and
- B of the blue variables
such that all the clauses are satisfied by A or by B

$$
\begin{array}{lllllllllll}
& R & B & C_{1} & C_{2} & C_{3} & C_{4} & C_{5} & C_{6} & C_{7} & C_{8} \\
A_{1} & 1 & 0 & & & & & & & & \\
A_{2} & & & & & & & & & & \\
A_{3} & & & & & & & & & & \\
A_{4} & & & & & A_{1} \text { assigns red variables } & & \\
B_{1} & & & & & & & \\
B_{2} & & & & & & & & \\
B_{3} & & & & & & & & & \\
B_{4} & & & & & & & & &
\end{array}
$$

Sat \rightarrow Orthogonal Vectors

arbitrary equipartition of X : $x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_{n}$
Find an assignment

- A of the red variables and
- B of the blue variables
such that all the clauses are satisfied by A or by B

	R	B	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}
A_{1}	1	0	1							
A_{2}										
A_{3}										
A_{4}				A_{1} does not satisfy	C_{1}					
B_{1}										
B_{2}										
B_{3}										
B_{4}										

Sat \rightarrow Orthogonal Vectors

arbitrary equipartition of X : $x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_{n}$
Find an assignment

- A of the red variables and
- B of the blue variables
such that all the clauses are satisfied by A or by B

$$
\begin{array}{lcccccccccc}
& R & B & C_{1} & C_{2} & C_{3} & C_{4} & C_{5} & C_{6} & C_{7} & C_{8} \\
A_{1} & 1 & 0 & 1 & 0 & & & & & & \\
A_{2} & & & & & & & & & & \\
A_{3} & & & & & & & & & & \\
A_{4} & & & & & A_{1} \text { satisfies } & C_{2} & & & \\
B_{1} & & & & & & & & & \\
B_{2} & & & & & & & & & & \\
B_{3} & & & & & & & & & & \\
B_{4} & & & & & & & & & &
\end{array}
$$

Sat \rightarrow Orthogonal Vectors

arbitrary equipartition of X : $x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_{n}$
Find an assignment

- A of the red variables and
- B of the blue variables
such that all the clauses are satisfied by A or by B

	R	B	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}
A_{1}	1	0	1	0	0	1	0	0	1	0
A_{2}										
A_{3}										
A_{4}				first vector $(1,0,1,0,0,1,1,0,1,0)$						
B_{1}										
B_{2}										
B_{3}										
B_{4}										

Sat \rightarrow Orthogonal Vectors

arbitrary equipartition of X : $x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}}+2, \ldots, x_{n}$
Find an assignment

- A of the red variables and
- B of the blue variables
such that all the clauses are satisfied by A or by B

	R	B	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}
A_{1}	1	0	1	0	0	1	0	0	1	0
A_{2}	1	0	0	0	0	1	1	1	0	1
A_{3}	1	0	0	1	0	1	0	0	1	1
A_{4}	1	0	0	0	1	1	0	1	1	1
B_{1}	0	1	1	1	0	0	1	1	1	0
B_{2}	0	1	0	1	0	1	0	1	0	0
B_{3}	0	1	1	1	1	1	0	0	0	1
B_{4}	0	1	0	1	0	0	1	0	0	1

Sat \rightarrow Orthogonal Vectors

arbitrary equipartition of X : $x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_{n}$
Find an assignment

- A of the red variables and
- B of the blue variables
such that all the clauses are satisfied by A or by B

	R	B	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}
A_{1}	1	$\mathbf{0}$	1	$\mathbf{0}$	$\mathbf{0}$	1	$\mathbf{0}$	$\mathbf{0}$	1	$\mathbf{0}$
A_{2}	1	0	0	0	0	1	1	1	0	1
A_{3}	1	0	0	1	0	1	0	0	1	1
A_{4}	1	0	0	0	1	1	0	1	1	1
B_{1}	0	1	1	1	0	0	1	1	1	0
B_{2}	0	1	0	1	0	1	0	1	0	0
B_{3}	0	1	1	1	1	1	0	0	0	1
B_{4}	$\mathbf{0}$	1	$\mathbf{0}$	1	$\mathbf{0}$	$\mathbf{0}$	1	$\mathbf{0}$	$\mathbf{0}$	1

Consequence for OV under the SETH

From a SAT-instance on n variables and m clauses, we created $N:=2^{\frac{n}{2}+1}$ vectors in dimension $d:=m+2$

Consequence for OV under the SETH

From a SAT-instance on n variables and m clauses, we created $N:=2^{\frac{n}{2}+1}$ vectors in dimension $d:=m+2$

An algorithm solving OV in time $2^{o(d)} N^{2-\varepsilon}$ would solve SAT in $2^{o(m)} 2^{n(1-\varepsilon / 2)} \rightarrow$ breaking SETH

Sharp contrast with the simple algorithms in $O\left(N^{2} d\right)$ and $O\left(2^{d} N\right)$

DIAMETER

$\operatorname{diam}(G)=$ largest distance between a pair of vertices of G

longest $_{u, v}$ shortestPath (u, v) ?

- In weighted graphs, nothing known better than APSP
- In unweigthed graphs, solvable in $\tilde{O}\left(n^{\omega}\right)$
- In unweighted sparse ($m=\Theta(n)$) graphs, solvable in $O\left(n^{2}\right)$
- $\frac{3}{2}$-approximable in $\tilde{O}\left(m^{1.5}\right)$
- In sparse graphs, $\frac{3}{2}$-approximable in $\tilde{O}\left(n^{1.5}\right)$

Diameter

$\operatorname{diam}(G)=$ largest distance between a pair of vertices of G

longest $_{u, v}$ shortestPath (u, v) ?

- In weighted graphs, nothing known better than APSP
- In unweigthed graphs, solvable in $\tilde{O}\left(n^{\omega}\right)$
- In unweighted sparse graphs, solvable in $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- $\frac{3}{2}$-approximable in $\tilde{O}\left(m^{1.5}\right)$
- In sparse graphs, $\frac{3}{2}$-approximable in $\tilde{\mathbf{O}}\left(\mathrm{n}^{1.5}\right)$

Linear reduction from Orthogonal Vectors:
no $\mathbf{n}^{1.99}$ algorithm even to ($\frac{3}{2}-\varepsilon$)-approximate Diameter on unweighted sparse instances, assuming the SETH.

Orthogonal Vectors \rightarrow Diameter

So far, all the pairs but of $A \times B$ are at distance $\leqslant 2$

Orthogonal Vectors \rightarrow Diameter

we put an edge between vector v and index i iff $v[i]=1$

Orthogonal Vectors \rightarrow Diameter

A pair $(\mathrm{a} 4, \mathrm{~b} 2)$ is at distance $2 \Leftrightarrow\left\langle a_{4}, b_{2}\right\rangle \neq 0$

Orthogonal Vectors \rightarrow Diameter

$\operatorname{diam}(G)=3 \Leftrightarrow \exists\left(a_{i}, b_{j}\right)$ at distance $3 \Leftrightarrow$ orthogonal pair

Orthogonal Vectors \rightarrow Diameter

If no orthogonal pair, $\operatorname{diam}(G)=2$

3-SUM Hardness

Introduced in 1995 by Gajentaan and Overmars to explain why some geometric problems require quadratic time

- are there three aligned points?
- are there three lines meeting at a point? (same by duality)
- is there a hole in a union of triangles?
- computing the area of a union of triangles
- is a rectangle covered by a set of infinite strips?
- Line separator of a non-intersecting axis-parallel segments?
- motion planning problems
- visibility problems

3-SUM Hardness

Introduced in 1995 by Gajentaan and Overmars to explain why some geometric problems require quadratic time

- are there three aligned points?
- are there three lines meeting at a point? (same by duality)
- is there a hole in a union of triangles?
- computing the area of a union of triangles
- is a rectangle covered by a set of infinite strips?
- Line separator of a non-intersecting axis-parallel segments?
- motion planning problems
- visibility problems
the quadratic algorithm is not easy

3-SUM $\rightarrow 3$ Collinear Points

Each integer x is mapped to the point $\left(x, x^{3}\right)$

3-SUM $\rightarrow 3$ Collinear Points

Each integer x is mapped to the point $\left(x, x^{3}\right)$

If a, b, c are pairwise distinct $a+b+c=0 \Leftrightarrow\left(a, a^{3}\right),\left(b, b^{3}\right),\left(c, c^{3}\right)$ are aligned

GeomBase

Convenient 3-points-on-a-line 3-SUM-hard variant

GeomBase

Convenient 3-points-on-a-line 3-SUM-hard variant

GeomBase \rightarrow Segments Separation

Convenient 3-points-on-a-line 3-SUM-hard variant

Points become tiny holes between horizontal segments

GeomBase \rightarrow Segments Separation

Convenient 3-points-on-a-line 3-SUM-hard variant

Points become tiny holes between horizontal segments

Segments Separation \rightarrow Covered Rectangle

Rotation + Duality! Points \leftrightarrow Lines \& Vertical Segments \leftrightarrow Strips

Segments Separation \rightarrow Covered Rectangle

Rotation + Duality! Points \leftrightarrow Lines \& Vertical Segments \leftrightarrow Strips
Point not on any strip \Leftrightarrow Line separating the segments

APSP Hardness

This hypothesis has emerged more recently, introduced by Ryan Williams and Virginia Vassilevska Williams in 2010
APSP is in time $n^{3-\varepsilon}$ iff so is one of:

- finding a triangle with negative weight
- finding the radius of a weighted graph
- does a given matrix represent a metric?
- finding a shortest cycle in a graph with non-negative weights
- (min,+) matrix multiplication
- computing the Wiener index of a weighted graph
- betweenness centrality of a vertex in a weighted graph

APSP Hardness

This hypothesis has emerged more recently, introduced by Ryan Williams and Virginia Vassilevska Williams in 2010

APSP is in time $n^{3-\varepsilon}$ iff so is one of:

- finding a triangle with negative weight
- finding the radius of a weighted graph
- does a given matrix represent a metric?
- finding a shortest cycle in a graph with non-negative weights
- (min,+) matrix multiplication
- computing the Wiener index of a weighted graph
- betweenness centrality of a vertex in a weighted graph

The hypothesis of weighted problems
Let us recall that unweighted APSP can be solved in n^{ω}

APSP Hardness

This hypothesis has emerged more recently, introduced by Ryan Williams and Virginia Vassilevska Williams in 2010
APSP is in time $n^{3-\varepsilon}$ iff so is one of:

- finding a triangle with negative weight
- finding the radius of a weighted graph
- does a given matrix represent a metric?
- finding a shortest cycle in a graph with non-negative weights
- (min,+) matrix multiplication
- computing the Wiener index of a weighted graph
- betweenness centrality of a vertex in a weighted graph

The hypothesis of weighted problems
Let us recall that unweighted APSP can be solved in n^{ω}

Tree Edit Distance in truly subcubic time is APSP-hard.

APNT \rightarrow Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that $a b c$ is a negative triangle?

One can show that APSP and APNT are equivalent

APNT \rightarrow Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that $a b c$ is a negative triangle?

APNT \rightarrow Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that $a b c$ is a negative triangle?

Arbitrary partitions into $t=n^{2 / 3}$ groups of size $n / t=n^{1 / 3}$

APNT \rightarrow Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that $a b c$ is a negative triangle?

For each triple of classes, call Negative Triangle

APNT \rightarrow Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that $a b c$ is a negative triangle?

Write down that the pair $b c$ is satisfied by a and remove $b c$

APNT \rightarrow Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that $a b c$ is a negative triangle?

Write down that the pair $b c$ is satisfied by a and remove $b c$

APNT \rightarrow Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that $a b c$ is a negative triangle?

Continue with the same triple of classes while possible

APNT \rightarrow Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that $a b c$ is a negative triangle?

Report if all the pairs of $B \times C$ were satisfied

APNT \rightarrow Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that $a b c$ is a negative triangle?

Number of calls to Negative Triangle: $\leqslant n^{2}+t^{3}=O\left(n^{2}\right)$

APNT \rightarrow Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):

Given a tripartite graph on (A, B, C), is there, for every pair $b \in B, c \in C$, a vertex $a \in A$ such that $a b c$ is a negative triangle?

Size of the subinstances: $3 n / t=O\left(n^{1 / 3}\right)$

SETH, 3-SUMH, APSPH

Are they pairwise incomparable?

SETH, 3-SUMH, APSPH

Are they pairwise incomparable?

Can we only use SETH by designing fine-grained reductions

- from k-Sat to 3-SUM
- from k-Sat to APSP?

Non-deterministic Strong Exponential Time Hypothesis

Non-deterministic Strong Exponential Time Hypothesis

k-TAUT: Are all the assignments of a k-DNF formula satisfying?
NSETH: $\forall \varepsilon>0, \exists k, k$-TAUT is not in $\operatorname{NTIME}\left(2^{(1-\varepsilon) n}\right)$.

Non-deterministic Strong Exponential Time Hypothesis

k-TaUt: Are all the assignments of a k-DNF formula satisfying?
NSETH: $\forall \varepsilon>0, \exists k, k$-TAUT is not in $\operatorname{NTIME}\left(2^{(1-\varepsilon) n}\right)$.

- \neg NSETH would imply non-trivial circuit lower bounds

Non-deterministic Strong Exponential Time Hypothesis

k-TaUt: Are all the assignments of a k-DNF formula satisfying?
NSETH: $\forall \varepsilon>0, \exists k, k$-TAUT is not in $\operatorname{NTIME}\left(2^{(1-\varepsilon) n}\right)$.

- \neg NSETH would imply non-trivial circuit lower bounds
- NSETH is false if randomization is allowed

3-SUM in truly subquadratic co-nondeterministic time

3-SUM is in coNTIME $\left(\tilde{O}\left(n^{1.5}\right)\right)$

3-SUM in truly subquadratic co-nondeterministic time

3-SUM is in coNTIME($\left.\tilde{\mathbf{O}}^{\left(\mathbf{n}^{1.5}\right.}\right)$)

Certificate for non-existence of a triple summing to 0 :

- a prime p among the first $n^{1.5}$ primes $\mathbb{P}_{n^{1.5}}$,
- an integer $t=\tilde{O}\left(n^{1.5}\right)$, and
- a set S of t triples all summing to 0 modulo p but not to 0

3-SUM in truly subquadratic co-nondeterministic time

3-SUM is in coNTIME $\left(\tilde{O}\left(n^{1.5}\right)\right)$

Certificate for non-existence of a triple summing to 0 :

- a prime p among the first $n^{1.5}$ primes $\mathbb{P}_{n^{1.5}}$,
- an integer $t=\tilde{O}\left(n^{1.5}\right)$, and
- a set S of t triples all summing to 0 modulo p but not to 0

Why does such a certificate exist?
$\left|\left\{\left(a_{i}, a_{j}, a_{k}, p\right) \mid a_{i}+a_{j}+a_{k}=0 \bmod p\right\}\right| \leqslant n^{3} \log \left(3 n^{c}\right)=\tilde{O}\left(n^{3}\right)$
$\exists p \in \mathbb{P}_{n^{1.5}},\left|\left\{\left(a_{i}, a_{j}, a_{k}\right) \mid x+y+z=0 \bmod p\right\}\right|=\tilde{O}\left(n^{1.5}\right)$

3-SUM in truly subquadratic co-nondeterministic time

3-SUM is in coNTIME($\left.\left(\mathbf{O}^{1.5}\right)\right)$

Certificate for non-existence of a triple summing to 0 :

- a prime p among the first $n^{1.5}$ primes $\mathbb{P}_{n^{1.5}}$,
- an integer $t=\tilde{O}\left(n^{1.5}\right)$, and
- a set S of t triples all summing to 0 modulo p but not to 0

Given (p, t, S), we check that:

- all triples of S sum to a non-zero value multiple of p
- expand $\left(\Sigma_{i} x^{a_{i}} \bmod p\right)^{3}$ with FFT
- check that the coefficients of $x^{0}, x^{p}, x^{2 p}$ sum to t

Consequences for the unification

 3 -SUM is in $\operatorname{coNTIME}\left(\tilde{O}\left(n^{1.5}\right)\right)$APSP is in coNTIME $\left(\tilde{O}\left(n^{2+\frac{6+\omega}{9}}\right)\right)$

Consequences for the unification

3 -SUM is in $\operatorname{coNTIME}\left(\tilde{O}\left(n^{1.5}\right)\right)$
APSP is in coNTIME($\left.\tilde{O}\left(n^{2+\frac{6+\omega}{9}}\right)\right)$
A fine-grained deterministic reduction from k-Sat to either of these problems would break NSETH

No known implication, the dashed ones are ruled out under NSETH

Things I did not mention

Log shavings and friends

- Reductions from Circuit Sat to consolidate a lower bound
- 2 hypotheses implying SETH, 3-SUMH, and APSPH!

Things I did not mention

Log shavings and friends

- Reductions from Circuit Sat to consolidate a lower bound
- 2 hypotheses implying SETH, 3-SUMH, and APSPH!
- FPT in P: typically algorithms in $k^{c} n$ or $2^{k} n$ to circumvent a quadratic/cubic lower bound
- Distributed PCPs: hardness of approximation in P

Things I did not mention

Log shavings and friends

- Reductions from Circuit Sat to consolidate a lower bound
- 2 hypotheses implying SETH, 3-SUMH, and APSPH!
- FPT in P: typically algorithms in $k^{c} n$ or $2^{k} n$ to circumvent a quadratic/cubic lower bound
- Distributed PCPs: hardness of approximation in P

Thanks for your attention!

