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Reductions

and fine-grained complexity

Complexity with the classes TIME(f (n)) and reference problems

problem Π
instance I

size n

problem Π′

instance I ′
size r(n)

reduction
time t(n)

Two interpretations

Positive: we can solve Π in t(n) + f (r(n)) with f is the time for Π′

Negative: Π′ cannot be solved in f(n)
since we know/assume that Π is not solvable in t(n) + f (r(n))
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The three main hypotheses

Strong Exponential Time Hypothesis (SETH): ∀ε > 0, ∃k s.t.
k-Sat is not in time 2(1−ε)n.

3-SUM Hypothesis: Finding x , y , z such that x + y + z = 0 in a
list of n integers of [−n4, n4] is not in time O(n2−ε) for any ε > 0.

All-Pairs Shortest-Path (APSP) Hypothesis: ∃c, APSP with
edge weights in [−nc , nc ] is not solvable in time O(n3−ε) for ε > 0.
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The three main hypotheses
SETH: Sat is not solvable in 1.99n.

I k-Sat is solvable in 2(1−Θ( 1
k ))n

I Sat is solvable 2(1−Θ( 1
log m/n ))n

3-SUM Hypothesis: 3-SUM is not solvable in n1.99

I Solvable in n2 (log log n)O(1)

log2 n even with real inputs
I Linear decision tree with depth O(n log2n)

APSP Hypothesis: APSP is not solvable in n2.99

I solvable in cubic time by Floyd-Warshall algorithm
I improved to n3/2O(

√
log n)



SETH

In 1999, Impagliazzo and Paturi introduce ETH1 and mention a
stronger version of it in their conclusion

SETH ⇒ ETH ⇒ P 6= NP

I ETH and SETH are then mainly used for NP-hard problems

I In 2005, SETH is used for the first time for a problem in P
I 2014-, dozens of papers show SETH-hardness of problems in P

Orthogonal Vectors, Diameter, Fréchet Distance, Edit Distance,
Longest Common Subsequence, Furthest Pair, dynamic problems,
problems from Machine Learning, Model Checking, Language Theory etc.

1∃δ > 0, 3-Sat cannot be solved in 2δn
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Psychological barrier?
If we treat k-Sat → OV as an outlier,
why 15 years between defining SETH and using it in P?

A: If you know too much (P, NP, NP-completeness), you might
disregard a reduction from a hard problem to an easy one

B: If you know less (summing and composing functions)

problem Sat
instance φ

size n

problem OV
instance V

size r(n) = 2n/2

reduction
time 6 1.99n

B: ”Both the time and the blow-up can be exponential, great.”
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Sat → Orthogonal Vectors
arbitrary equipartition of X : x1, x2, . . . , x n

2
, x n

2 +1, x n
2 +2, . . . , xn

Find an assignment
I A of the red variables and
I B of the blue variables

such that all the clauses are satisfied by A or by B

C1 C2 C3 C4 C5 C6 C7 C8R B
A1
A2
A3
A4
B1
B2
B3
B4

1 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 1 1 0 1
1 0 0 1 0 1 0 0 1 1
1 0 0 0 1 1 0 1 1 1
0 1 1 1 0 0 1 1 1 0
0 1 0 1 0 1 0 1 0 0
0 1 1 1 1 1 0 0 0 1
0 1 0 1 0 0 1 0 0 1
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Consequence for OV under the SETH

From a Sat-instance on n variables and m clauses, we created
N := 2 n

2 +1 vectors in dimension d := m + 2

An algorithm solving OV in time 2o(d)N2−ε

would solve Sat in 2o(m)2n(1−ε/2) → breaking SETH

Sharp contrast with the simple algorithms in O(N2d) and O(2dN)
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Diameter
diam(G) = largest distance between a pair of vertices of G

u vlongestu,v shortestPath(u, v)?

I In weighted graphs, nothing known better than APSP
I In unweigthed graphs, solvable in Õ(nω)
I In unweighted sparse (m = Θ(n)) graphs, solvable in O(n2)
I 3

2 -approximable in Õ(m1.5)
I In sparse graphs, 3

2 -approximable in Õ(n1.5)

Linear reduction from Orthogonal Vectors:
no n1.99 algorithm even to ( 3

2 − ε)-approximate Diameter
on unweighted sparse instances, assuming the SETH.
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Linear reduction from Orthogonal Vectors:
no n1.99 algorithm even to ( 3

2 − ε)-approximate Diameter
on unweighted sparse instances, assuming the SETH.



Orthogonal Vectors → Diameter

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

A
vectors

B
vectors

1

2

3

4

I
indices

a b

a2[3] = 1

b4[2] = 1

So far, all the pairs but of A× B are at distance 6 2
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we put an edge between vector v and index i iff v [i ] = 1
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Orthogonal Vectors → Diameter

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

A
vectors

B
vectors

1

2

3

4

I
indices

a b

a2[3] = 1

b4[2] = 1

If no orthogonal pair, diam(G) = 2



3-SUM Hardness
Introduced in 1995 by Gajentaan and Overmars to explain why
some geometric problems require quadratic time

I are there three aligned points?
I are there three lines meeting at a point? (same by duality)
I is there a hole in a union of triangles?
I computing the area of a union of triangles
I is a rectangle covered by a set of infinite strips?
I Line separator of a non-intersecting axis-parallel segments?
I motion planning problems
I visibility problems

the quadratic algorithm is not easy
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3-SUM → 3 Collinear Points
Each integer x is mapped to the point (x , x3)

(a, a3)

(c, c3)
(b, b3)

If a, b, c are pairwise distinct
a + b + c = 0⇔ (a, a3), (b, b3), (c, c3) are aligned
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GeomBase

Segments Separation → Covered
Rectangle

Convenient 3-points-on-a-line 3-SUM-hard variant

A

−C/2

B

Points become tiny holes between horizontal segments

Rotation + Duality! Points ↔ Lines & Vertical Segments ↔ Strips

Point not on any strip ⇔ Line separating the segments



GeomBase

Segments Separation → Covered
Rectangle

Convenient 3-points-on-a-line 3-SUM-hard variant

A

−C/2

B

Points become tiny holes between horizontal segments

Rotation + Duality! Points ↔ Lines & Vertical Segments ↔ Strips

Point not on any strip ⇔ Line separating the segments



GeomBase → Segments Separation

→ Covered
Rectangle

Convenient 3-points-on-a-line 3-SUM-hard variant

A

−C/2

B

Points become tiny holes between horizontal segments

Rotation + Duality! Points ↔ Lines & Vertical Segments ↔ Strips

Point not on any strip ⇔ Line separating the segments



GeomBase → Segments Separation

→ Covered
Rectangle

Convenient 3-points-on-a-line 3-SUM-hard variant

A

−C/2

B

Points become tiny holes between horizontal segments

Rotation + Duality! Points ↔ Lines & Vertical Segments ↔ Strips

Point not on any strip ⇔ Line separating the segments



Segments Separation → Covered Rectangle

A

−C/2

B

Rotation + Duality! Points ↔ Lines & Vertical Segments ↔ Strips

Point not on any strip ⇔ Line separating the segments



Segments Separation → Covered Rectangle

A

−C/2

B

Rotation + Duality! Points ↔ Lines & Vertical Segments ↔ Strips

Point not on any strip ⇔ Line separating the segments



APSP Hardness
This hypothesis has emerged more recently, introduced by Ryan
Williams and Virginia Vassilevska Williams in 2010

APSP is in time n3−ε iff so is one of:
I finding a triangle with negative weight
I finding the radius of a weighted graph
I does a given matrix represent a metric?
I finding a shortest cycle in a graph with non-negative weights
I (min,+) matrix multiplication
I computing the Wiener index of a weighted graph
I betweenness centrality of a vertex in a weighted graph

The hypothesis of weighted problems
Let us recall that unweighted APSP can be solved in nω

Tree Edit Distance in truly subcubic time is APSP-hard.
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APNT → Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite graph on (A,B,C), is there, for every pair
b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

One can show that APSP and APNT are equivalent

A

B C

+∞

Arbitrary partitions into t = n2/3 groups of size n/t = n1/3
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All-Pairs Negative Triangle (APNT):
Given a tripartite graph on (A,B,C), is there, for every pair
b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B C

+∞

For each triple of classes, call Negative Triangle
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B Ca

b c

+∞

Write down that the pair bc is satisfied by a and remove bc
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APNT → Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite graph on (A,B,C), is there, for every pair
b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B Ca

b c+∞

Continue with the same triple of classes while possible



APNT → Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite graph on (A,B,C), is there, for every pair
b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B C

+∞

Report if all the pairs of B × C were satisfied



APNT → Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite graph on (A,B,C), is there, for every pair
b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B C

+∞

Number of calls to Negative Triangle: 6 n2 + t3 = O(n2)



APNT → Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite graph on (A,B,C), is there, for every pair
b ∈ B, c ∈ C , a vertex a ∈ A such that abc is a negative triangle?

A

B C

+∞

Size of the subinstances: 3n/t = O(n1/3)



SETH, 3-SUMH, APSPH

Are they pairwise incomparable?

Can we only use SETH by designing fine-grained reductions
I from k-Sat to 3-SUM
I from k-Sat to APSP?
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Non-deterministic Strong Exponential Time Hypothesis

k-Taut: Are all the assignments of a k-DNF formula satisfying?

NSETH: ∀ε > 0, ∃k, k-Taut is not in NTIME(2(1−ε)n).

I ¬NSETH would imply non-trivial circuit lower bounds
I NSETH is false if randomization is allowed
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3-SUM in truly subquadratic co-nondeterministic time

3-SUM is in coNTIME(Õ(n1.5))

Certificate for non-existence of a triple summing to 0:
I a prime p among the first n1.5 primes Pn1.5 ,
I an integer t = Õ(n1.5), and
I a set S of t triples all summing to 0 modulo p but not to 0

Why does such a certificate exist?

|{(ai , aj , ak , p) | ai + aj + ak = 0 mod p}| 6 n3 log(3nc) = Õ(n3)

∃p, |{(ai , aj , ak) | ai + aj + ak = 0 mod p}| = Õ(n1.5)
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I a set S of t triples all summing to 0 modulo p but not to 0

Why does such a certificate exist?

|{(ai , aj , ak , p) | ai + aj + ak = 0 mod p}| 6 n3 log(3nc) = Õ(n3)
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3-SUM in truly subquadratic co-nondeterministic time

3-SUM is in coNTIME(Õ(n1.5))

Certificate for non-existence of a triple summing to 0:
I a prime p among the first n1.5 primes Pn1.5 ,
I an integer t = Õ(n1.5), and
I a set S of t triples all summing to 0 modulo p but not to 0

Why does such a certificate exist?

|{(ai , aj , ak , p) | ai + aj + ak = 0 mod p}| 6 n3 log(3nc) = Õ(n3)

∃p ∈ Pn1.5 , |{(ai , aj , ak) | x + y + z = 0 mod p}| = Õ(n1.5)



3-SUM in truly subquadratic co-nondeterministic time

3-SUM is in coNTIME(Õ(n1.5))

Certificate for non-existence of a triple summing to 0:
I a prime p among the first n1.5 primes Pn1.5 ,
I an integer t = Õ(n1.5), and
I a set S of t triples all summing to 0 modulo p but not to 0

Given (p, t,S), we check that:
I all triples of S sum to a non-zero value multiple of p
I expand (Σixai mod p)3 with FFT
I check that the coefficients of x0, xp, x2p sum to t



Consequences for the unification
3-SUM is in coNTIME(Õ(n1.5))

APSP is in coNTIME(Õ(n2+ 6+ω
9 ))

A fine-grained deterministic reduction from k-Sat
to either of these problems would break NSETH

SETH

3-SUMH

APSP

No known implication, the dashed ones are ruled out under NSETH



Consequences for the unification
3-SUM is in coNTIME(Õ(n1.5))
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Things I did not mention

Log shavings and friends

I Reductions from Circuit Sat to consolidate a lower bound
I 2 hypotheses implying SETH, 3-SUMH, and APSPH!

I FPT in P: typically algorithms in kcn or 2kn to circumvent a
quadratic/cubic lower bound

I Distributed PCPs: hardness of approximation in P

Thanks for your attention!
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