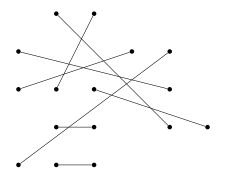
Flip Distance to a Non-crossing Perfect Matching

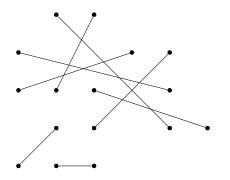
Édouard Bonnet, Till(mann) Miltzow

Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest

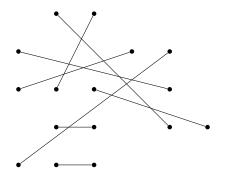
March 30th, 2016, EuroCG, Lugano



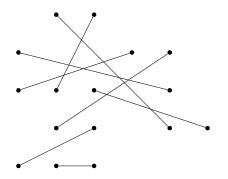
Matching of n edges in the plane



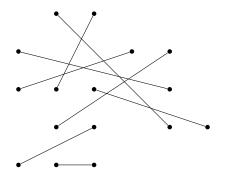
Matching of n edges in the plane Uncross with a flip; goal: reach a non-crossing configuration



Matching of n edges in the plane Uncross with a flip; goal: reach a non-crossing configuration

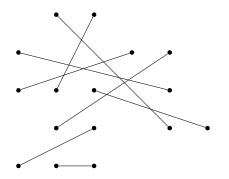


Matching of n edges in the plane Uncross with a flip; goal: reach a non-crossing configuration



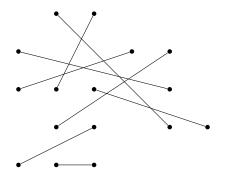
Matching of n edges in the plane

Total length decreases \Rightarrow terminates in exponentially many flips

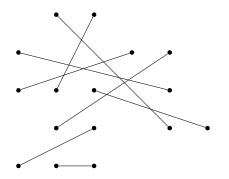


Matching of n edges in the plane

How many flips do I need to do from the worst initial configuration



Matching of n edges in the plane How many flips do I need to do from the worst initial configuration for a fastest sequence?



Matching of n edges in the plane

How many flips do I need to do from the worst initial configuration

for a fastest sequence? for a slowest sequence?

Overview

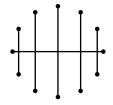
Min version: $\max_{M \in n-\text{matching }} \min_{s \in \text{flip-seq}(M)} |s|$ Max version: $\max_{M \in n-\text{matching }} \max_{s \in \text{flip-seq}(M)} |s|$

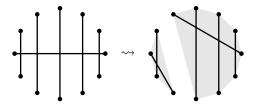
Version	Lower bound	Upper bound
Min	n-1	$n^2/2$
Max	$\binom{n}{2}$	n ^s

Overview

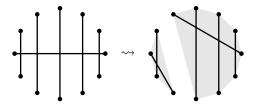
Min version: $\max_{M \in n-\text{matching }} \min_{s \in \text{flip-seq}(M)} |s|$ Max version: $\max_{M \in n-\text{matching }} \max_{s \in \text{flip-seq}(M)} |s|$

Version	Lower bound	Upper bound
Min	n-1	<i>n</i> ² /2
Max	$\binom{n}{2}$	n^3 [van Leeuwen and Schoone '80]



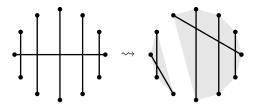


$$s(n) = \min_{a \in [1,n]} s(n-a) + s(a), \ s(1) = 0$$

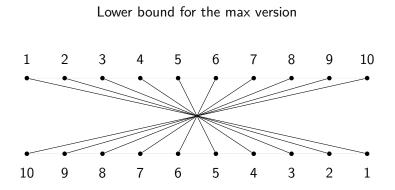


$$s(n) = \min_{a \in [1,n]} s(n-a) + s(a), \ s(1) = 0$$

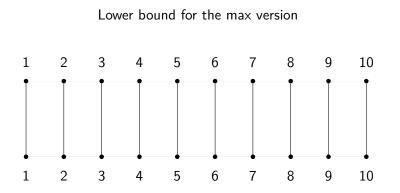
 $s(n) = n - 1$



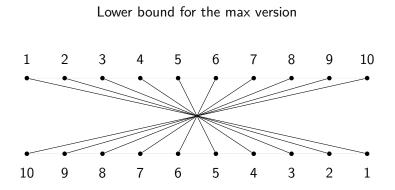
$$egin{aligned} &s(n) = \min_{a \in [1,n]} s(n-a) + s(a), \; s(1) = 0 \ &s(n) = n-1 \ & ext{Also: all the solutions have the same length.} \end{aligned}$$



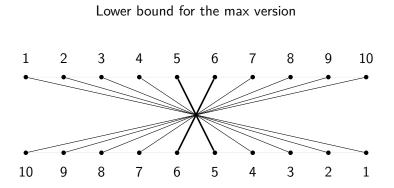
Think bubble sort



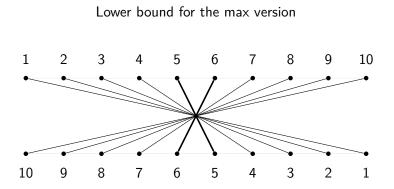
Think bubble sort



Think bubble sort



Think bubble sort Only do *consecutive* flip



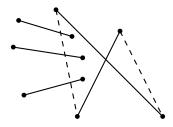
Think bubble sort Only do *consecutive* flip Number of flips = number of inversions = $\binom{n}{2}$

Ideas that cannot work

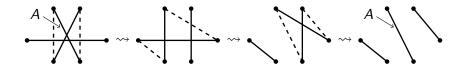
- Tracking the number of crossings
- Argument based on the fact that an edge cannot reappear¹

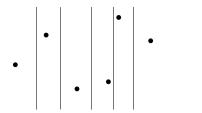
¹Because it's not true

The number of crossings increase after a flip



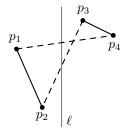
An edge can easily disappear and reappear





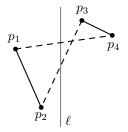
Sort your point by increasing *x*-coordinates and add vertical separators between two consecutive points.

Upper bound for the min version (2)

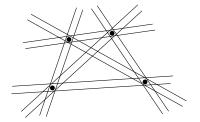


The measure that decreases efficiently is the number of intersections segment-separator.

Upper bound for the min version (2)

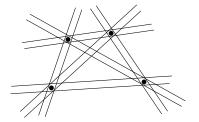


The measure that decreases efficiently is the number of intersections segment-separator. It goes down by 2 at each flip and is initially bounded by n^2 . Upper bound for the max version



Those are the $2\binom{2n}{2}$ separators that we consider.

Upper bound for the max version



Those are the $2\binom{2n}{2}$ separators that we consider. Again, the measure is the number of intersections segment-separator and is bounded by $4n^3$ initially. Upper bound for the max version (2)

Upper bound for the max version (2)

 ℓ_1 and ℓ_3 intersect the same number of edges. The number of intersections segment- ℓ_2 drops by 2. Thank you for your attention!

Version	Lower bound	Upper bound
Min	$\Omega(n)$	$O(n^2)$
Max	$\Omega(n^2)$	$O(n^3)$

Open question: close the gap for both versions