Flip Distance to a Non-crossing Perfect Matching

Édouard Bonnet, Till(mann) Miltzow
Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest

March 30th, 2016, EuroCG, Lugano

Matching of n edges in the plane

Matching of n edges in the plane
Uncross with a flip; goal: reach a non-crossing configuration

Matching of n edges in the plane
Uncross with a flip; goal: reach a non-crossing configuration

Matching of n edges in the plane
Uncross with a flip; goal: reach a non-crossing configuration

Matching of n edges in the plane
Total length decreases \Rightarrow terminates in exponentially many flips

Matching of n edges in the plane
How many flips do I need to do from the worst initial configuration

Matching of n edges in the plane
How many flips do I need to do from the worst initial configuration for a fastest sequence?

Matching of n edges in the plane
How many flips do I need to do from the worst initial configuration for a fastest sequence? for a slowest sequence?

Overview

Min version: $\max _{M \in n-\text { matching }} \min _{s \in \text { flip-seq }}(M)|s|$ Max version: $\max _{M \in n-\text { matching }} \max _{s \in \text { flip-seq }}(M)|s|$

Version	Lower bound	Upper bound
Min	$n-1$	$n^{2} / 2$
Max	$\binom{n}{2}$	n^{3}

Overview

Min version: $\max _{M \in n-\text { matching }} \min _{s \in \text { flip-seq }(M)}|s|$ Max version: $\max _{M \in n-\text { matching }} \max _{s \in f l i p-s e q}(M)|s|$

Version	Lower bound	Upper bound
Min	$n-1$	$n^{2} / 2$
Max	$\binom{n}{2}$	n^{3} [van Leeuwen and Schoone '80]

Lower bound for the min version

Lower bound for the min version

$$
s(n)=\min _{a \in[1, n]} s(n-a)+s(a), s(1)=0
$$

Lower bound for the min version

$$
\begin{aligned}
& s(n)=\min _{a \in[1, n]} s(n-a)+s(a), s(1)=0 \\
& s(n)=n-1
\end{aligned}
$$

Lower bound for the min version

$s(n)=\min _{a \in[1, n]} s(n-a)+s(a), s(1)=0$ $s(n)=n-1$
Also: all the solutions have the same length.

Lower bound for the max version

Think bubble sort

Lower bound for the max version

Think bubble sort

Lower bound for the max version

Think bubble sort

Lower bound for the max version

Think bubble sort
Only do consecutive flip

Lower bound for the max version

Think bubble sort
Only do consecutive flip
Number of flips $=$ number of inversions $=\binom{n}{2}$

Ideas that cannot work

- Tracking the number of crossings
- Argument based on the fact that an edge cannot reappear ${ }^{1}$

The number of crossings increase after a flip

An edge can easily disappear and reappear

Upper bound for the min version

Sort your point by increasing x-coordinates and add vertical separators between two consecutive points.

Upper bound for the min version (2)

The measure that decreases efficiently is the number of intersections segment-separator.

Upper bound for the min version (2)

The measure that decreases efficiently is the number of intersections segment-separator.
It goes down by 2 at each flip and is initially bounded by n^{2}.

Upper bound for the max version

Those are the $2\binom{2 n}{2}$ separators that we consider.

Upper bound for the max version

Those are the $2\binom{2 n}{2}$ separators that we consider. Again, the measure is the number of intersections segment-separator and is bounded by $4 n^{3}$ initially.

Upper bound for the max version (2)

Upper bound for the max version (2)

ℓ_{1} and ℓ_{3} intersect the same number of edges.
The number of intersections segment- ℓ_{2} drops by 2 .

Thank you for your attention!

Version	Lower bound	Upper bound
Min	$\Omega(n)$	$O\left(n^{2}\right)$
Max	$\Omega\left(n^{2}\right)$	$O\left(n^{3}\right)$

Open question: close the gap for both versions

