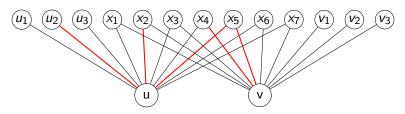
Twin-width I: tractable FO model checking

<u>Édouard Bonnet</u>, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP

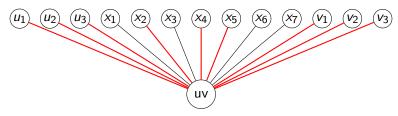
FOCS 2020

Trigraph and contractions

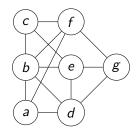


Trigraph: non-edges, edges, and red edges (error)

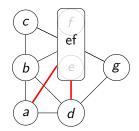
Trigraph and contractions



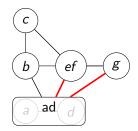
edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing



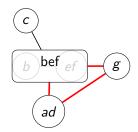
 $\label{eq:maximum red degree} \begin{aligned} & \mathsf{Maximum red degree} = \mathbf{0} \\ & \mathbf{overall \ maximum \ red \ degree} = \mathbf{0} \end{aligned}$

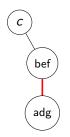


Maximum red degree = 2 overall maximum red degree = 2



Maximum red degree = 2 overall maximum red degree = 2

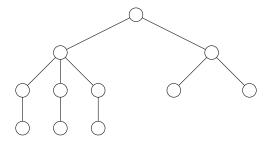




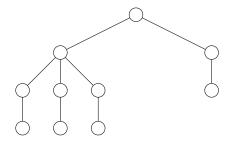
Maximum red degree = 1 overall maximum red degree = 2

Maximum red degree = 1 overall maximum red degree = 2

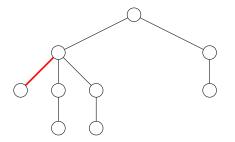
Sequence of 2-contractions or 2-sequence, twin-width at most 2



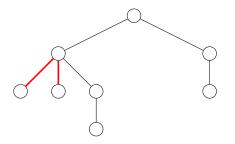
If possible, contract two twin leaves



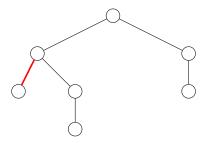
If not, contract a deepest leaf with its parent

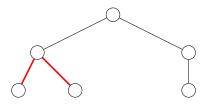


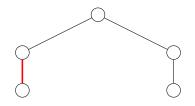
If not, contract a deepest leaf with its parent

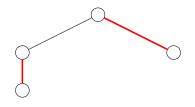


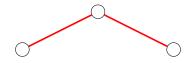
If possible, contract two twin leaves



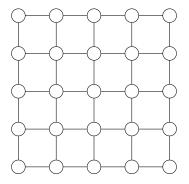


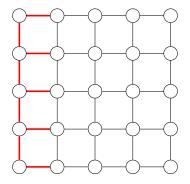


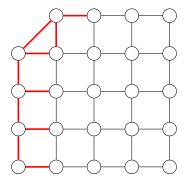


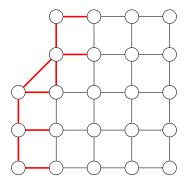


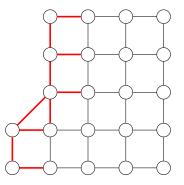
Generalization to bounded treewidth and even bounded rank-width

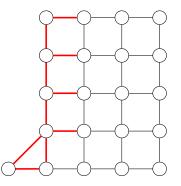


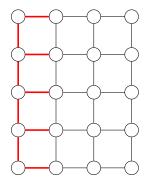








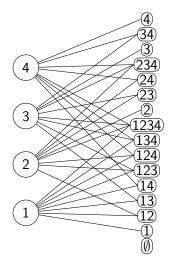




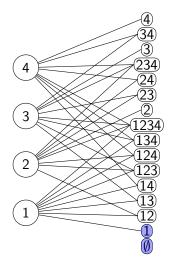
4-sequence for planar grids, 3d-sequence for d-dimensional grids

No O(1)-contraction sequence:

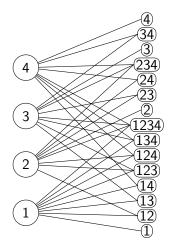
No O(1)-contraction sequence:



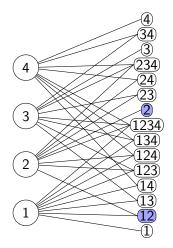
No O(1)-contraction sequence:



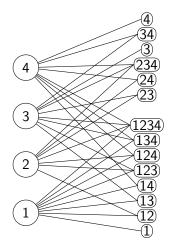
No O(1)-contraction sequence:



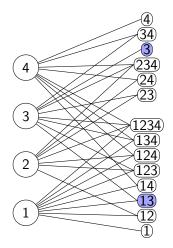
No O(1)-contraction sequence:



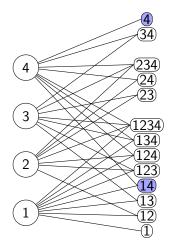
No O(1)-contraction sequence:



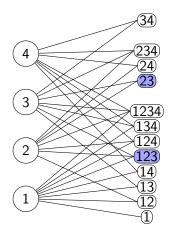
No O(1)-contraction sequence:



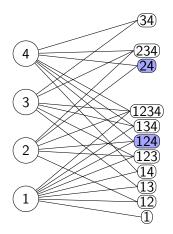
No O(1)-contraction sequence:



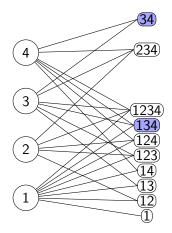
No O(1)-contraction sequence:



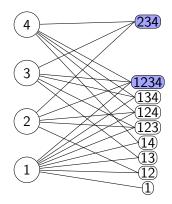
No O(1)-contraction sequence:



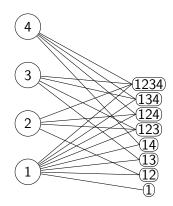
No O(1)-contraction sequence:



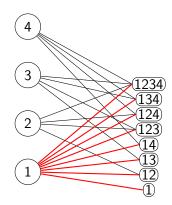
No O(1)-contraction sequence:



No O(1)-contraction sequence: twin-width is *not* an iterated identification of near twins.

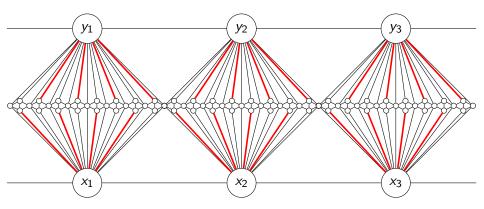


No O(1)-contraction sequence: twin-width is *not* an iterated identification of near twins.



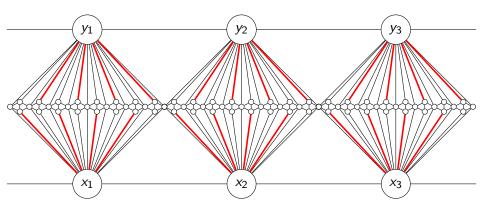
Graphs with bounded twin-width – planar graphs?

Graphs with bounded twin-width – planar graphs?



For every d, a planar trigraph without planar d-contraction

Graphs with bounded twin-width – planar graphs?



For every d, a planar trigraph without planar d-contraction

More powerfool tool needed

Mixed minor

Mixed zone: not horizontal nor vertical

ſ	1	1	1	1	1	1	1	0
								1
ľ	0	0	0	0	0	0	0	1
	0	1	0	0	1	0	1	0
ľ	1	0	0	1	1	0	1	0 0 1
	0	1	1	1	1	1	0	0
	1	0	1	1	1	0	0	1
		_		-				

3-mixed minor

Mixed minor

Mixed zone: not horizontal nor vertical

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1		•	4	L	•	-	
	0	0	T	1	0	1	0
0	0 1	0 1	1 1	1 1	0 1	1 0	0 0
1 0 1	0 1 0	-	1 1 1		0 1 0	1 0 0	0 0 1

A matrix is said *t*-mixed free if it does not have a *t*-mixed minor

Grid minor theorem for twin-width

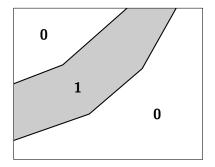
Theorem (B, Kim, Thomassé, Watrigant 20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

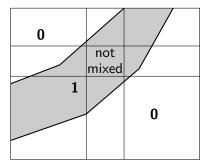
Now to bound the twin-width of a class C: 1) Find a *good* vertex-ordering procedure 2) Argue that, in this order, a *t*-mixed minor would conflict with C

Bounded twin-width - unit interval graphs



order by left endpoints

Bounded twin-width - unit interval graphs

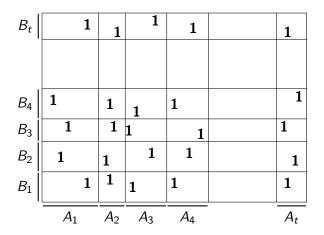


No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Bounded twin-width – K_t -minor free graphs

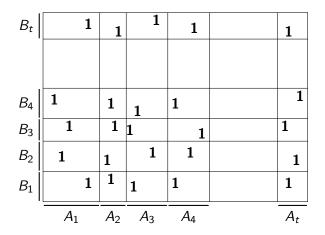
Given a hamiltonian path, we would just use this order

Bounded twin-width – K_t -minor free graphs



Contracting the 2t subpaths yields a $K_{t,t}$ -minor, hence a K_t -minor

Bounded twin-width – K_t -minor free graphs



Instead we use a specially crafted lex-DFS discovery order

Theorem

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ **Question:** $G \models \varphi$?

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ Input: A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi$? \Leftrightarrow *k*-Dominating Set

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ **Question:** $G \models \varphi$?

Example:

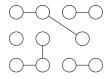
$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi? \Leftrightarrow k$ -Independent Set

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

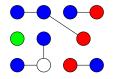
FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete



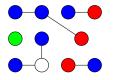
FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete



FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

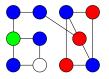
FO transduction: color by O(1) unary relations, interpret, delete



 $\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$ $\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

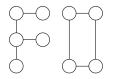
FO transduction: color by O(1) unary relations, interpret, delete



 $\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$ $\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$

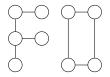
FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete



FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

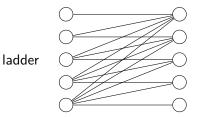
FO transduction: color by O(1) unary relations, interpret, delete



Theorem (B, Kim, Thomassé, Watrigant '20) Bounded twin-width is preserved by transduction.

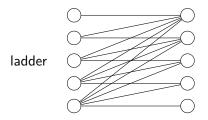
Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders **NIP class:** no transduction of the class contains all graphs



Monadically Stable and NIP

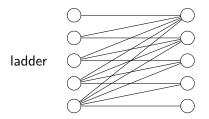
Stable class: no transduction of the class contains all ladders **NIP class:** no transduction of the class contains all graphs



Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

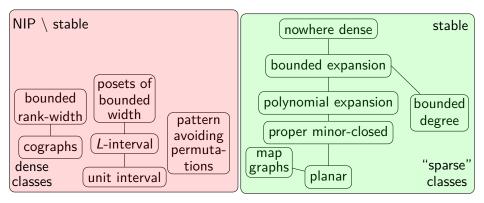
Monadically Stable and NIP

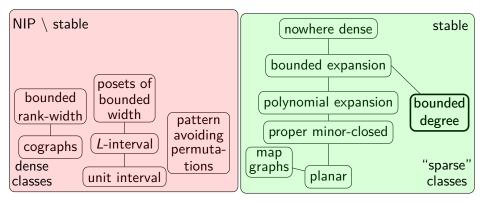
Stable class: no transduction of the class contains all ladders **NIP class:** no transduction of the class contains all graphs



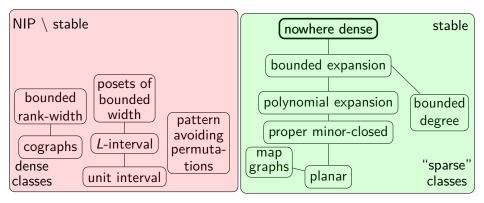
Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Bounded twin-width classes \rightarrow NIP but not stable in general

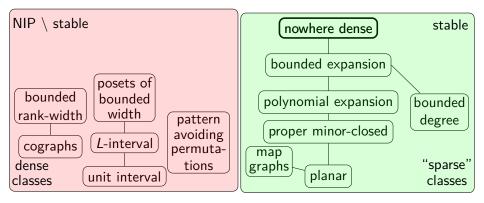


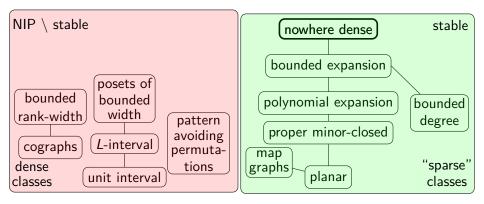


FO MODEL CHECKING solvable in $f(|\varphi|)n$ on bounded-degree graphs [Seese '96]

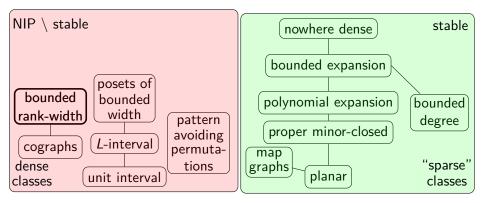


FO MODEL CHECKING solvable in $f(|\varphi|)n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

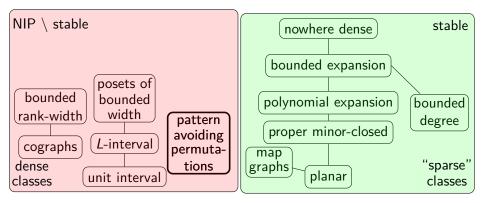




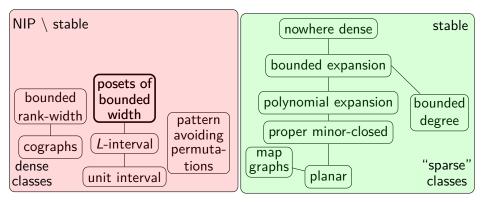
New program: transductions of nowhere dense classes Not sparse anymore but still stable



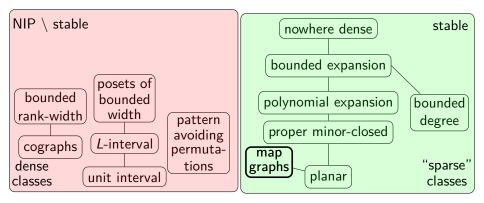
MSO₁ MODEL CHECKING solvable in $f(|\varphi|, w)n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]



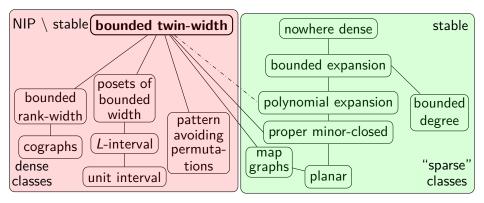
Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$ [Guillemot, Marx '14]



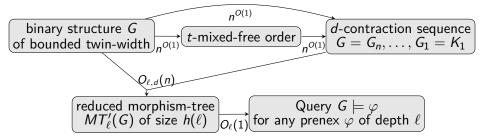
FO MODEL CHECKING solvable in $f(|\varphi|, w)n^2$ on posets of width w [GHLOORS '15]

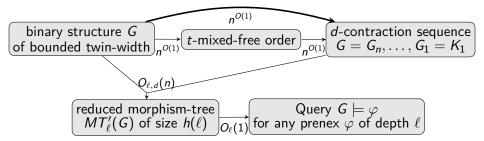


FO MODEL CHECKING solvable in $f(|\varphi|)n^{O(1)}$ on map graphs [Eickmeyer, Kawarabayashi '17]

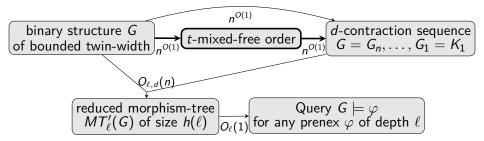


FO MODEL CHECKING solvable in $f(|\varphi|, d)n$ on graphs with a *d*-sequence [B, Kim, Thomassé, Watrigant '20]

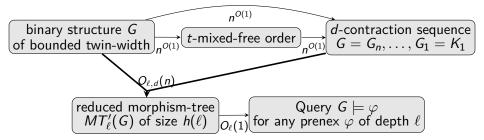




Direct examples: **trees**, bounded rank-width, **grids**, *d*-dimensional grids, K_t -free unit ball graphs

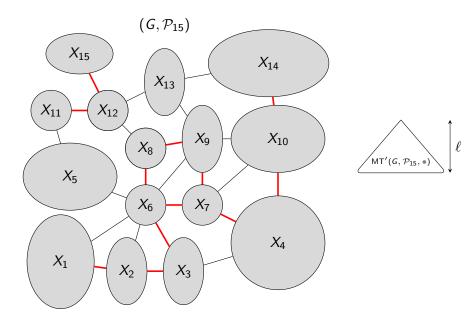


Detour via mixed minor for: pattern-avoiding permutations, bounded width posets, K_t -minor free graphs

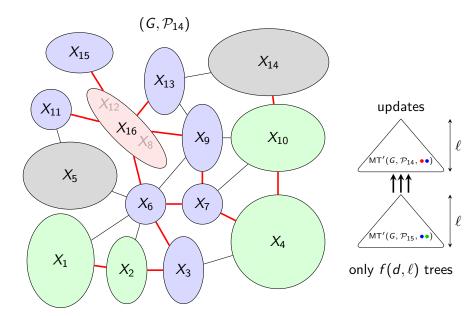


Let us see a snapshot of the FO model checking

DP for FO model checking with d-sequence



DP for FO model checking with d-sequence



Open questions

Algorithm to compute/approximate twin-width in general Fully classify classes with tractable FO model checking

On arxiv Twin-width I: tractable FO model checking [BKTW '20] Twin-width II: small classes [BGKTW '20] Twin-width III: Max Independent Set and Coloring [BGKTW '20]