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Constraint Satisfaction Problem (CSP)

» Problem: a set of relations {R;}1<i<¢ over a domain D.

» Instance: a set of constraints of the form R;(xa,, ..., Xa;)
over variables xq,...,x, € D.

» Goal: find an assignment satisfying all the constraints.
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Constraint Satisfaction Problem (CSP)

» Problem: a set of relations {R;}1<i<¢ over a domain D.

» Instance: a set of constraints of the form R;(xa,, ..., Xa;)
over variables xi,...,x, € D.

» Goal: find an assignment satisfying all the constraints.

3-SAT:

D =1{0,1}, Ry = {0,1}3\ {(0,0,0)},...,Rg = {0,1}3\ {(1,1,1)}.
Instance:

X3V xoV=xg, X1 V—ox3Voxg, X1 Vxo VX3, x3VXxeVXxs, o x3VXxeVxa
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CSP: a very short bio

» 1974: Birth in Montanari's "Networks of constraints:
Fundamental properties and applications to picture processing”.

> 1978: First dichotomy result by Schaefer.
For D = {0,1}, each CSP is either in P or NP-complete.

» 1998: Dichotomy conjecture by Feder and Vardi.
> 2002: proof of the conjecture for D = {0,1,2} by Bulatov.
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CSP: a very short bio

» 1974: Birth in Montanari's "Networks of constraints:
Fundamental properties and applications to picture processing”.

> 1978: First dichotomy result by Schaefer.
For D = {0,1}, each CSP is either in P or NP-complete.

1998: Dichotomy conjecture by Feder and Vardi.
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... many more dichotomy or classification results . ..

Unified framework propitious to classification which can
express many but not all problems in NP.
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Boolean CSPs

R
e

Qi

» The classical complexity is settled.

» Each new kind of classification (approximability, parameterized
complexity, counting...) starts with Boolean CSPs.

» Boolean CSPs are already quite expressive.
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» MinCSPs: minimizing the number of unsatisfied constraints.
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Optimization variant of Boolean CSPs

The four main settings:
» MaxCSPs: maximizing the number of satisfied constraints.

» MinCSPs: minimizing the number of unsatisfied constraints.
» MinOnes: minimizing the number of variables set to 1.

» MaxOnes: maximizing the number of variables set to 1.
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Approximability of Boolean CSPs

» Each MaxCSP is either in P or APX-complete [Creignou '95].

» Less concise classification for MinCSPs, MinOnes, MaxOnes
[Khanna et al. '00].
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Approximability of Boolean CSPs

» Each MaxCSP is either in P or APX-complete [Creignou '95].

» Less concise classification for MinCSPs, MinOnes, MaxOnes
[Khanna et al. '00].

Theorem 2.13 (MIN CSP classification) For any traint set F, the problem (WEIGHTED)
MIN CSP(F) is in PO or is APX-complete or MIN UNCUT-complete or MIN 2CNF DELETION-
complete or NEAREST CODEWORD-complete or MIN HORN DELETION-complete or or even deciding
if the optimum is zero is NP -hard. Furthermore,

(1) If F is O-valid or 1-valid or 2-monotone, then (WEIGHTED) MIN CSP(F) is in PO.
(2) Elbse if F is [HS-B then (WEIGHTED) MIN CSP(F) is APX-complete.

(3) Else if F is width-2 affine then (WEIGHTED) MIN CSP(F) is MIN UNCUT-complete.
(4) Else if F is 2CNF then (WEIGHTED) MIN CSP(F) is MIN 2CNF DELETION-complete.
(5) Ebe if F is affine then (WEIGHTED) MIN CSP(F) is NEAREST CODEWORD-complete.

(6) Else if F is weakly positive or weakly negative then (WEIGHTED) MIN CSP(F) is MIN HORN
D ELETION-complete.

(7) EBise deciding if the optimum value of an instance of (WEIGHTED) MIN CSP(F) is zero is
NP -complete.
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Parameterized Complexity of Boolean CSPs

v

Each MaxCSP is FPT (parameter = #satisfied constraints).
Dichotomy FPT/W/[1]-hard of ExactOnes [Marx '05].

Classification of MaxOnes and ExactOnes w.r.t.
parameterized complexity and kernels [Kratsch et al. '10].

v
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Each MinOnes problem is FPT. Dichotomy poly-kernel or not
[Kratsch and Wahlstrém '10].



Context

Parameterized Complexity of Boolean CSPs

v

Each MaxCSP is FPT (parameter = #satisfied constraints).
Dichotomy FPT/W/[1]-hard of ExactOnes [Marx '05].

Classification of MaxOnes and ExactOnes w.r.t.
parameterized complexity and kernels [Kratsch et al. '10].
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Each MinOnes problem is FPT. Dichotomy poly-kernel or not
[Kratsch and Wahlstrém '10].

What about the parameterized complexity of MinCSPs?
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Probably no strong link approximation/FPT

» MinCSP(l2.saT) is FPT [Razgon and O’Sullivan '08] but not
constant-approximable under UGC [Chawla et al. '06].

» MinCSP(x, —x,(a — b) A (¢ — d)) is W[1]-hard [Marx and
Razgon '09] but constant-approximable [Khanna et al. '00].
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Probably no strong link approximation/FPT

» MinCSP(l2.saT) is FPT [Razgon and O’Sullivan '08] but not
constant-approximable under UGC [Chawla et al. '06].

» MinCSP(x, —x,(a — b) A (¢ — d)) is W[1]-hard [Marx and
Razgon '09] but constant-approximable [Khanna et al. '00].

FPT constant-approximation already appears as more robust.
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MinCSPs parameterized approximability

Our goal: For each finite set of relation I, tell if MinCSP(I') has
an FPT constant-approximation (FPA) or not.

We establish:
» If [is O-valid, or 1-valid, or bijunctive, or IHS-B, MinCSP(I")
has an FPA.
» Otherwise, If T is affine, MinCSP(I") is ODD SET-completel.
» Otherwise, MinCSP(I') has no FPA unless FPT=WIP].

lunder A-reductions



Boolean MinCSPs

Set of constraints

0-valid: all satisfied by setting every variable to false.
1-valid: all satisfied by setting every variable to true.
bijunctive: every constraint is a conjunction of 2-clauses.
IHS-B: IHS-B™ or IHS-B~.

IHS-B™: —x, x = ¥, x1 Vxo V...V x, with k < B.
IHS-B™: x, x =y, =x1 V =xo V...V =x, with k < B.
affine: x1 ® x & ... ® xx = ¢ with ¢ € {0,1}.
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Helped by the co-clone lattice

v

Primitive positive: pp-definition over [ = JA whose atomic
formulas are in ' (small lie).

v

Co-clone: (I') = set of the relations pp-definable over T
Base of C: I such that C = (I).

FPA-ness is preserved from I to any finite basis of (I').

v
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Co-clone lattice

Helped by the co-clone lattice

» Primitive positive: pp-definition over [ = dA whose atomic
formulas are in ' (small lie).

» Co-clone: (I') = set of the relations pp-definable over T.
» Base of C: I such that C = (I').

» FPA-ness is preserved from I to any finite basis of (I').

The lattice of Boolean co-clones has good properties:
» countably many co-clones.

» finitely many non-trivial maximal (minimal) co-clones.
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Tractability results

» 0-valid and 1-valid CSPs are in P.

» Bijunctive: Treat a conjunction as separate constraints +
MinCSP(Ip.saT) is FPT.
> IHS_B (2) Ele if F is IHS-B then (WEIGHTED) MIN CSP(F) is APX -complete.

There is a B + 1-approximation.
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Orange results

Cycle of A-reductions involving ODD SET and the two problems
MinCSP(EVEN*, =x, x) and MinCSP(EVEN*, x @ y).

Theorem
ODD SET has no FPA unless k-DENSEST SUBGRAPH has an FPT
approximation scheme.

Theorem
ODD SET has no FPA under LPC+ETH.

ETH: 3-SAT has no subexponential algorithm.
LPC: 3-SAT € PCP(log¢ + O(1), O(1)).
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Hardness results

Theorem (Marx '10)
MONOTONE CIRCUIT SAT has no FPA unless FPT=W[P].

A-reduction to Horn-SAT and dual-Horn-SAT.
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Hardness results

Theorem (Marx '10)
MONOTONE CIRCUIT SAT has no FPA unless FPT=W|P].

A-reduction to Horn-SAT and dual-Horn-SAT.

An FPA for MinCSP(NAE3) would imply the polynomiality of
CSP(NAE3) by fixing k to 0.
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