Fixed-parameter Approximability of Boolean MinCSPs

Édouard Bonnet, László Egri, and Dániel Marx

Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary (MTA SZTAKI)

August 24, 2016, ESA, Aarhus

Constraint Satisfaction Problem (CSP)

- Problem: a set of relations $\left\{R_{i}\right\}_{1 \leqslant i \leqslant \ell}$ over a domain D.
- Instance: a set of constraints of the form $R_{i}\left(x_{a_{1}}, \ldots, x_{a_{j}}\right)$ over variables $x_{1}, \ldots, x_{n} \in D$.
- Goal: find an assignment satisfying all the constraints.

Constraint Satisfaction Problem (CSP)

- Problem: a set of relations $\left\{R_{i}\right\}_{1 \leqslant i \leqslant \ell}$ over a domain D.
- Instance: a set of constraints of the form $R_{i}\left(x_{a_{1}}, \ldots, x_{a_{j}}\right)$ over variables $x_{1}, \ldots, x_{n} \in D$.
- Goal: find an assignment satisfying all the constraints.

3-SAT:
$D=\{0,1\}, R_{1}=\{0,1\}^{3} \backslash\{(0,0,0)\}, \ldots, R_{8}=\{0,1\}^{3} \backslash\{(1,1,1)\}$.
Instance:
$R_{4}\left(x_{3}, x_{2}, x_{4}\right), R_{8}\left(x_{1}, x_{3}, x_{5}\right), R_{1}\left(x_{1}, x_{2}, x_{3}\right), R_{1}\left(x_{3}, x_{4}, x_{5}\right), R_{5}\left(x_{3}, x_{2}, x_{4}\right)$

Constraint Satisfaction Problem (CSP)

- Problem: a set of relations $\left\{R_{i}\right\}_{1 \leqslant i \leqslant \ell}$ over a domain D.
- Instance: a set of constraints of the form $R_{i}\left(x_{a_{1}}, \ldots, x_{a_{j}}\right)$ over variables $x_{1}, \ldots, x_{n} \in D$.
- Goal: find an assignment satisfying all the constraints.

3-SAT:
$D=\{0,1\}, R_{1}=\{0,1\}^{3} \backslash\{(0,0,0)\}, \ldots, R_{8}=\{0,1\}^{3} \backslash\{(1,1,1)\}$.
Instance:
$x_{3} \vee \neg x_{2} \vee \neg x_{4}, \neg x_{1} \vee \neg x_{3} \vee \neg x_{5}, x_{1} \vee x_{2} \vee x_{3}, x_{3} \vee x_{4} \vee x_{5}, \neg x_{3} \vee x_{2} \vee x_{4}$

CSP: a very short bio

- 1974: Birth in Montanari's "Networks of constraints:

Fundamental properties and applications to picture processing".

- 1978: First dichotomy result by Schaefer.

For $D=\{0,1\}$, each CSP is either in P or NP-complete.

- 1998: Dichotomy conjecture by Feder and Vardi.
- 2002: proof of the conjecture for $D=\{0,1,2\}$ by Bulatov.

CSP: a very short bio

- 1974: Birth in Montanari's "Networks of constraints:

Fundamental properties and applications to picture processing".

- 1978: First dichotomy result by Schaefer.

For $D=\{0,1\}$, each CSP is either in P or NP-complete.

- 1998: Dichotomy conjecture by Feder and Vardi.
- 2002: proof of the conjecture for $D=\{0,1,2\}$ by Bulatov.
- 2003: proof for conservative constraints by Bulatov.
- ... many more dichotomy or classification results ...

CSP: a very short bio

- 1974: Birth in Montanari's "Networks of constraints:

Fundamental properties and applications to picture processing".

- 1978: First dichotomy result by Schaefer.

For $D=\{0,1\}$, each CSP is either in P or NP-complete.

- 1998: Dichotomy conjecture by Feder and Vardi.
- 2002: proof of the conjecture for $D=\{0,1,2\}$ by Bulatov.
- 2003: proof for conservative constraints by Bulatov.
- ... many more dichotomy or classification results ...

Unified framework propitious to classification which can express many but not all problems in NP.

Boolean CSPs

- The classical complexity is settled.
- Each new kind of classification (approximability, parameterized complexity, counting...) starts with Boolean CSPs.
- Boolean CSPs are already quite expressive.

Optimization variant of Boolean CSPs

The four main settings:

- MaxCSPs: maximizing the number of satisfied constraints.
- MinCSPs: minimizing the number of unsatisfied constraints.

Optimization variant of Boolean CSPs

The four main settings:

- MaxCSPs: maximizing the number of satisfied constraints.
- MinCSPs: minimizing the number of unsatisfied constraints.
- MinOnes: minimizing the number of variables set to 1 .
- MaxOnes: maximizing the number of variables set to 1 .

Approximability of Boolean CSPs

- Each MaxCSP is either in P or APX-complete [Creignou '95].
- Less concise classification for MinCSPs, MinOnes, MaxOnes [Khanna et al. '00].

Approximability of Boolean CSPs

- Each MaxCSP is either in P or APX-complete [Creignou '95].
- Less concise classification for MinCSPs, MinOnes, MaxOnes [Khanna et al. '00].

Theorem 2.13 (Min CSP classification) For any constraint set \mathcal{F}, the problem (Weighted) Min $\operatorname{CSP}(\mathcal{F})$ is in PO or is APX-complete or Min UnCut-complete or Min 2CNF Deletioncomplete or Nearest Codeword-complete or Min Horn Deletion-complete or or even deciding if the optimum is zero is NP-hard. Furthermore,
(1) If \mathcal{F} is 0 -valid or 1 -valid or $\mathbb{2}$-monotone, then (Weighted) $\operatorname{Min} \operatorname{CSP}(\mathcal{F})$ is in PO.
(2) Else if \mathcal{F} is IHS-B then (Weighted) Min $\operatorname{CSP}(\mathcal{F})$ is APX -complete.
(3) Else if \mathcal{F} is width-2 affine then (Weighted) Min $\operatorname{CSP}(\mathcal{F})$ is Min UnCut-complete.
(4) Else if \mathcal{F} is $2 C N F$ then (Weighted) Min $\operatorname{CSP}(\mathcal{F})$ is Min 2CNF Deletion-complete.
(5) Else if \mathcal{F} is affine then (Weighted) $\operatorname{Min} \operatorname{CSP}(\mathcal{F})$ is $\operatorname{Nearest}$ Codeword-complete.
(6) Else if \mathcal{F} is weakly positive or weakly negative then (Weighted) Min $\operatorname{CSP}(\mathcal{F})$ is Min Horn Deletion-complete.
(7) Else deciding if the optimum value of an instance of (Weighted) Min $\operatorname{CSP}(\mathcal{F})$ is zeto is NP-complete.

Parameterized Complexity of Boolean CSPs

- Each MaxCSP is FPT (parameter = \#satisfied constraints).
- Dichotomy FPT/W[1]-hard of ExactOnes [Marx '05].
- Classification of MaxOnes and ExactOnes w.r.t. parameterized complexity and kernels [Kratsch et al. '10].
- Each MinOnes problem is FPT. Dichotomy poly-kernel or not [Kratsch and Wahlström '10].

Parameterized Complexity of Boolean CSPs

- Each MaxCSP is FPT (parameter = \#satisfied constraints).
- Dichotomy FPT/W[1]-hard of ExactOnes [Marx '05].
- Classification of MaxOnes and ExactOnes w.r.t. parameterized complexity and kernels [Kratsch et al. '10].
- Each MinOnes problem is FPT. Dichotomy poly-kernel or not [Kratsch and Wahlström '10].

What about the parameterized complexity of MinCSPs?

Probably no strong link approximation/FPT

- MinCSP($\left.\Gamma_{2-S A T}\right)$ is FPT [Razgon and O'Sullivan '08] but not constant-approximable under UGC [Chawla et al. '06].
- $\operatorname{MinCSP}(x, \neg x,(a \rightarrow b) \wedge(c \rightarrow d))$ is W[1]-hard [Marx and Razgon '09] but constant-approximable [Khanna et al. '00].

Probably no strong link approximation/FPT

- MinCSP($\left.\Gamma_{2-S A T}\right)$ is FPT [Razgon and O'Sullivan '08] but not constant-approximable under UGC [Chawla et al. '06].
- $\operatorname{MinCSP}(x, \neg x,(a \rightarrow b) \wedge(c \rightarrow d))$ is W[1]-hard [Marx and Razgon '09] but constant-approximable [Khanna et al. '00].

FPT constant-approximation already appears as more robust.

MinCSPs parameterized approximability

Our goal: For each finite set of relation Γ, tell if $\operatorname{MinCSP}(\Gamma)$ has an FPT constant-approximation (FPA) or not.

We establish:

- If Γ is 0 -valid, or 1 -valid, or bijunctive, or IHS-B, $\operatorname{MinCSP}(\Gamma)$ has an FPA.
- Otherwise, If Γ is affine, $\operatorname{MinCSP}(\Gamma)$ is Odd Set-complete ${ }^{1}$.
- Otherwise, $\operatorname{MinCSP}(\Gamma)$ has no FPA unless $F P T=W[P]$.

Set of constraints

- 0-valid: all satisfied by setting every variable to false.
- 1-valid: all satisfied by setting every variable to true.
- bijunctive: every constraint is a conjunction of 2-clauses.
- IHS-B: IHS-B ${ }^{+}$or IHS-B ${ }^{-}$.
- IHS-B ${ }^{+}: \neg x, x \rightarrow y, x_{1} \vee x_{2} \vee \ldots \vee x_{k}$ with $k \leqslant B$.
- IHS-B ${ }^{+}: x, x \rightarrow y, \neg x_{1} \vee \neg x_{2} \vee \ldots \vee \neg x_{k}$ with $k \leqslant B$.
- affine: $x_{1} \oplus x_{2} \oplus \ldots \oplus x_{k}=c$ with $c \in\{0,1\}$.

Helped by the co-clone lattice

- Primitive positive: pp-definition over $\Gamma=\exists \wedge$ whose atomic formulas are in Γ (small lie).
- Co-clone: $\langle\Gamma\rangle=$ set of the relations pp-definable over Γ.
- Base of $\mathbf{C}: \Gamma$ such that $C=\langle\Gamma\rangle$.
- FPA-ness is preserved from 「 to any finite basis of $\langle\Gamma\rangle$.

Helped by the co-clone lattice

- Primitive positive: pp-definition over $\Gamma=\exists \wedge$ whose atomic formulas are in Γ (small lie).
- Co-clone: $\langle\Gamma\rangle=$ set of the relations pp-definable over Γ.
- Base of $\mathbf{C}: \Gamma$ such that $C=\langle\Gamma\rangle$.
- FPA-ness is preserved from Γ to any finite basis of $\langle\Gamma\rangle$.

The lattice of Boolean co-clones has good properties:

- countably many co-clones.
- finitely many non-trivial maximal (minimal) co-clones.

Our results on the lattice of co-clones

Tractability results

- 0 -valid and 1 -valid CSPs are in P.
- Bijunctive: Treat a conjunction as separate constraints + $\operatorname{MinCSP}\left(\Gamma_{2-S A T}\right)$ is FPT.
- IHS-B: (2) Else if \mathcal{F} is IHS-B then (Weighted) Min $\operatorname{CSP}(\mathcal{F})$ is APX-complete. There is a $B+1$-approximation.

Our results on the lattice of co-clones

Orange results

Cycle of A-reductions involving Odd SET and the two problems $\operatorname{MinCSP}\left(\mathrm{EVEN}^{4}, \neg x, x\right)$ and $\operatorname{MinCSP}\left(\mathrm{EVEN}^{4}, x \oplus y\right)$.

Theorem
Odd Set has no FPA unless k-Densest Subgraph has an FPT approximation scheme.

Theorem
Odd SEt has no FPA under LPC+ETH.
ETH: 3-SAT has no subexponential algorithm.
LPC: $3-\mathrm{SAT} \in \mathrm{PCP}(\log \phi+O(1), O(1))$.

Our results on the lattice of co-clones

Hardness results

Theorem (Marx '10)
Monotone Circuit Sat has no FPA unless FPT=W[P].
A-reduction to Horn-SAT and dual-Horn-SAT.

Hardness results

Theorem (Marx '10)
Monotone Circuit Sat has no FPA unless FPT=W[P].

A-reduction to Horn-SAT and dual-Horn-SAT.

An FPA for $\operatorname{MinCSP}\left(\mathrm{NAE}^{3}\right)$ would imply the polynomiality of $\operatorname{CSP}\left(\mathrm{NAE}^{3}\right)$ by fixing k to 0 .

Thank you for your attention!

