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Cograph generalization attempt

Iteratively identify near twins

and keep the error degree small
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Cograph generalization
Iteratively identify near twins and keep the error degree small
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Contraction and trigraph

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uv

Trigraph: non-edges, edges, and red edges (error)



Contraction and trigraph

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing



Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2
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Graphs with bounded twin-width – trees

If possible, contract two twin leaves
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Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex
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Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex



Graphs with bounded twin-width – trees

Generalization to bounded treewidth and even bounded rank-width



Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids
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More powerfool tool needed
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The origin: Permutation Pattern
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Theorem (Guillemot, Marx ’14)
Permutation Pattern can be solved in time 2|σ|2 |τ |.
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Permutation Pattern can be solved in time 2|σ|2 |τ |.



Guillemot and Marx’s win-win algorithm

Theorem (Marcus, Tardos ’04)
∀t, ∃ct ∀ n × n 0,1-matrix with > ctn entries 1 has a t-grid minor.
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A) > c|σ|n entries 1 → YES from the |σ|-grid minor.
B) < c|σ|n entries 1 → merge of two “similar” rectangles

If B) always happens → DP on this merge sequence
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Our generalization to the dense case – mixed minor

Mixed zone: not horizontal nor vertical

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor
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Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Adjσ(G)

σ

σ

Cutting after the t/2-th division of the t-mixed minor
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Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Adjσ(G)

σ

σ

t/2-mixed minor on disjoint sets



Bounded twin-width – unit interval graphs

1

0

0

Warm-up with unit interval graphs: order by left endpoints



Bounded twin-width – unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Bounded twin-width – posets of bounded antichain

T1 T2 T3 Tk
. . .

Put the k chains in order one after the other



Bounded twin-width – posets of bounded antichain
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A 3k-mixed minor implies a 3-mixed minor between two chains
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Bounded twin-width – Kt-minor free graphs
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Given a hamiltonian path, we would just use this order



Bounded twin-width – Kt-minor free graphs
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1 1 1 1
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Contracting the 2t subpaths yields a Kt,t-minor, hence a Kt-minor



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Instead we use a specially crafted lex-DFS discovery order



Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?
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Example of k-Independent Set

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?
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v

Best partial solution inhabiting •?

with u, or v , or both



Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both



Other (almost) single-exponential parameterized
algorithms

Theorem
Given a d-sequence G = Gn, . . . ,G1 = K1,
I k-Independent Set,
I k-Clique,
I (r , k)-Scattered Set,
I k-Dominating Set, and
I (r , k)-Dominating Set

can be solved in time 2Od (k)n,
whereas Subgraph Isomorphism and Induced Subgraph
Isomorphism can be solved in time 2Od (k log k)n.

A more general FPT algorithm?
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First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔
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First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi )

G |= ϕ? ⇔ k-Independent Set



FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B, Kim, Thomassé, Watrigant ’20)
Bounded twin-width is preserved by transduction.
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∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B, Kim, Thomassé, Watrigant ’20)
Bounded twin-width is preserved by transduction.
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Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → NIP but not stable
Interval graphs → not NIP (triple negation!)

Bounded twin-width classes → NIP but not stable in general
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FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs
[Seese ’96]



Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere densenowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|)n1+ε on any nowhere dense class
[Grohe, Kreutzer, Siebertz ’14]
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End of the story for the subgraph-closed classes
tractable FO Model Checking ⇔ nowhere dense ⇔ stable
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New program: transductions of nowhere dense classes
Not sparse anymore but still stable
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MSO1 Model Checking solvable in f (|ϕ|,w)n on graphs of rank-width w
[Courcelle, Makowsky, Rotics ’00]
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Is σ a subpermutation of τ? solvable in f (|σ|)|τ |
[Guillemot, Marx ’14]
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FO Model Checking solvable in f (|ϕ|,w)n2 on posets of width w
[GHLOORS ’15]
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FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence
[B, Kim, Thomassé, Watrigant ’20]



Workflow of the FO model checking algorithm

binary structure G
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Query G |= ϕ
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O`,d(n)

O`(1)

Direct examples: trees, bounded rank-width, grids, d-dimensional grids,
unit interval, Kt-free unit ball graphs
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Detour via mixed minor for: pattern-avoiding permutations,
bounded width posets, Kt-minor free graphs



Workflow of the FO model checking algorithm

binary structure G
of bounded twin-width

binary structure G
of bounded twin-width t-mixed-free order

t-mixed-free order

d-contraction sequence
G = Gn, . . . ,G1 = K1

d-contraction sequence
G = Gn, . . . ,G1 = K1nO(1) nO(1)

nO(1)

reduced morphism-tree
MT ′`(G) of size h(`)

reduced morphism-tree
MT ′`(G) of size h(`)

Query G |= ϕ
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Let us see a snapshot of the FO model checking

unit interval graphs, Kt-free unit ball graphs



DP for FO model checking with d-sequence
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Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Unifies and extends the same result for:
σ-free permutations [Marcus, Tardos ’04]
Kt-minor free graphs [Norine, Seymour, Thomas, Wollan ’06]



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs
have unbounded twin-width



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture)
A hereditary class has bounded twin-width if and only if it is small.



Sparse twin-width

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
If C is a hereditary class of bounded twin-width, tfae.
I (i) C is Kt,t-free.
I (ii) C is d-grid free.
I (iii) Every n-vertex graph G ∈ C has at most gn edges.
I (iv) The subgraph closure of C has bounded twin-width.
I (v) C has bounded expansion.

Still fairly complicated: bounded sparse twin-width classes
comprise classes with bounded stack/queue number, flat classes,
some particular expanders.
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χ-boundedness

C χ-bounded: ∃f , ∀G ∈ C, χ(G) 6 f (ω(G))

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Every twin-width class is χ-bounded.
More precisely, every graph G of twin-width at most d admits a
proper (d + 2)ω(G)−1-coloring.

Polynomially χ-bounded? i.e., χ(G) = O(ω(G)d )
At least strong Erdős-Hajnal property satisfied
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d + 2-coloring in the triangle-free case

Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z ] NGi+1 [u, v ]

z has only red incident edges → d + 2-nd color available to v
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d + 2-coloring in the triangle-free case

Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z ] NGi+1 [u, v ]

z incident to at least one black edge → non-edge between u and v



Future directions

Obvious questions:
Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion

Other directions we are exploring:
Better approximation algorithms on bounded twin-width classes
Twin-width of Cayley graphs of finitely generated groups
...

On arxiv
Twin-width I: tractable FO model checking [BKTW ’20]
Twin-width II: small classes [BGKTW ’20]
Twin-width III: Max Independent Set and Coloring [BGKTW ’20]
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