
Twin-width

Édouard Bonnet, Colin Geniet, Eun Jung Kim,
Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP

Frontiers of Parameterized Complexity seminar,
October 1st 2020

Cograph generalization attempt

Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

This complicated graph passes the test

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

∅
1

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

This complicated graph passes the test

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

This complicated graph passes the test

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅

12

2

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

This complicated graph passes the test

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2

23
24

234
3

34
4

This complicated graph passes the test

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅

13

3

1
12
13
14

123
124
134

1234

2

23
24

234
3

34
4

This complicated graph passes the test

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅

14

4

1
12
13
14

123
124
134

1234

2

23
24

234

3

34
4

This complicated graph passes the test

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅

123

23

1
12
13
14

123
124
134

1234

2

23
24

234

3

34

4

This complicated graph passes the test

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅

124

24

1
12
13
14

123
124
134

1234

2
23

24
234

3

34

4

This complicated graph passes the test

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅

134

34

1
12
13
14

123
124
134

1234

2
23
24

234

3

34

4

This complicated graph passes the test

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅

1234

234

1
12
13
14

123
124
134

1234

2
23
24

234

3
34
4

This complicated graph passes the test

Cograph generalization attempt
Iteratively identify near twins

and keep the error degree small

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2
23
24

234
3

34
4

This complicated graph passes the test

Cograph generalization
Iteratively identify near twins and keep the error degree small

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2
23
24

234
3

34
4

It would not with that further restriction

Contraction and trigraph

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uv

Trigraph: non-edges, edges, and red edges (error)

Contraction and trigraph

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing

Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2

a

b

c

d

e

f

g

Maximum red degree = 0
overall maximum red degree = 0

Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

Maximum red degree = 2
overall maximum red degree = 2

Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2

a

b

c

d

e

f

g

b

c

gef

a dad

Maximum red degree = 2
overall maximum red degree = 2

Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2

a

b

c

d

e

f

g

c

g

ad

b efbef

Maximum red degree = 2
overall maximum red degree = 2

Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2

a

b

c

d

e

f

g

c

adg

bef

Maximum red degree = 1
overall maximum red degree = 2

Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2

a

b

c

d

e

f

g

adg

bcef

Maximum red degree = 1
overall maximum red degree = 2

Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2

a

b

c

d

e

f

g

abcdefg

Maximum red degree = 0
overall maximum red degree = 2

Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2

a

b

c

d

e

f

g

abcdefg

Maximum red degree = 0
overall maximum red degree = 2

Graphs with bounded twin-width – trees

If possible, contract two twin leaves

Graphs with bounded twin-width – trees

If not, contract a deepest leaf with its parent

Graphs with bounded twin-width – trees

If not, contract a deepest leaf with its parent

Graphs with bounded twin-width – trees

If possible, contract two twin leaves

Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width – trees

Generalization to bounded treewidth and even bounded rank-width

Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids

Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids

Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids

Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids

Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids

Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids

Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids

Graphs with bounded twin-width – planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction

More powerfool tool needed

Graphs with bounded twin-width – planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction

More powerfool tool needed

Graphs with bounded twin-width – planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction

More powerfool tool needed

The origin: Permutation Pattern

σ

τ

?

Theorem (Guillemot, Marx ’14)
Permutation Pattern can be solved in time 2|σ|2 |τ |.

The origin: Permutation Pattern

σ

τ

?

Theorem (Guillemot, Marx ’14)
Permutation Pattern can be solved in time 2|σ|2 |τ |.

The origin: Permutation Pattern

σ

τ

?

Theorem (Guillemot, Marx ’14)
Permutation Pattern can be solved in time 2|σ|2 |τ |.

Guillemot and Marx’s win-win algorithm

Theorem (Marcus, Tardos ’04)
∀t, ∃ct ∀ n × n 0,1-matrix with > ctn entries 1 has a t-grid minor.

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

A) > c|σ|n entries 1 → YES from the |σ|-grid minor.
B) < c|σ|n entries 1 → merge of two “similar” rectangles

If B) always happens → DP on this merge sequence

Guillemot and Marx’s win-win algorithm

Theorem (Marcus, Tardos ’04)
∀t, ∃ct ∀ n × n 0,1-matrix with > ctn entries 1 has a t-grid minor.

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

A) > c|σ|n entries 1 → YES from the |σ|-grid minor.
B) < c|σ|n entries 1 → merge of two “similar” rectangles

If B) always happens → DP on this merge sequence

Guillemot and Marx’s win-win algorithm

Theorem (Marcus, Tardos ’04)
∀t, ∃ct ∀ n × n 0,1-matrix with > ctn entries 1 has a t-grid minor.

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

A) > c|σ|n entries 1 → YES from the |σ|-grid minor.
B) < c|σ|n entries 1 → merge of two “similar” rectangles

If B) always happens → DP on this merge sequence

Our generalization to the dense case – mixed minor

Mixed zone: not horizontal nor vertical

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor

Our generalization to the dense case – mixed minor

Mixed zone: not horizontal nor vertical

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Adjσ(G)

σ

σ

Cutting after the t/2-th division of the t-mixed minor

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Adjσ(G)

σ

σ

Cutting after the t/2-th division of the t-mixed minor

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Adjσ(G)

σ

σ

Cutting after the t/2-th division of the t-mixed minor

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Adjσ(G)

σ

σ

t/2-mixed minor on disjoint sets

Bounded twin-width – unit interval graphs

1

0

0

Warm-up with unit interval graphs: order by left endpoints

Bounded twin-width – unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Bounded twin-width – posets of bounded antichain

T1 T2 T3 Tk
. . .

Put the k chains in order one after the other

Bounded twin-width – posets of bounded antichain

Tj Ti

C1

C2

C3

R1

R2

R3

C1 C2 C3

Tj

R1

R2

R3

Ti
-1

A 3k-mixed minor implies a 3-mixed minor between two chains

Bounded twin-width – posets of bounded antichain

Tj Ti

C1

C2

C3

R1

R2

R3

C1 C2 C3

Tj

R1

R2

R3

Ti
-1

-1

Transitivity implies that a zone is constant

Bounded twin-width – posets of bounded antichain

Tj Ti

C1

C2

C3

R1

R2

R3

C1 C2 C3

Tj

R1

R2

R3

Ti 1

1

And symmetrically

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Given a hamiltonian path, we would just use this order

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Contracting the 2t subpaths yields a Kt,t-minor, hence a Kt-minor

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Instead we use a specially crafted lex-DFS discovery order

Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Example of k-Independent Set

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?

Example of k-Independent Set

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?

Example of k-Independent Set

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?

Example of k-Independent Set

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both

Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both

Other (almost) single-exponential parameterized
algorithms

Theorem
Given a d-sequence G = Gn, . . . ,G1 = K1,
I k-Independent Set,
I k-Clique,
I (r , k)-Scattered Set,
I k-Dominating Set, and
I (r , k)-Dominating Set

can be solved in time 2Od (k)n,
whereas Subgraph Isomorphism and Induced Subgraph
Isomorphism can be solved in time 2Od (k log k)n.

A more general FPT algorithm?

Other (almost) single-exponential parameterized
algorithms

Theorem
Given a d-sequence G = Gn, . . . ,G1 = K1,
I k-Independent Set,
I k-Clique,
I (r , k)-Scattered Set,
I k-Dominating Set, and
I (r , k)-Dominating Set

can be solved in time 2Od (k)n,
whereas Subgraph Isomorphism and Induced Subgraph
Isomorphism can be solved in time 2Od (k log k)n.

A more general FPT algorithm?

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔ k-Dominating Set

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔ k-Independent Set

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B, Kim, Thomassé, Watrigant ’20)
Bounded twin-width is preserved by transduction.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B, Kim, Thomassé, Watrigant ’20)
Bounded twin-width is preserved by transduction.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B, Kim, Thomassé, Watrigant ’20)
Bounded twin-width is preserved by transduction.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B, Kim, Thomassé, Watrigant ’20)
Bounded twin-width is preserved by transduction.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B, Kim, Thomassé, Watrigant ’20)
Bounded twin-width is preserved by transduction.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B, Kim, Thomassé, Watrigant ’20)
Bounded twin-width is preserved by transduction.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

Theorem (B, Kim, Thomassé, Watrigant ’20)
Bounded twin-width is preserved by transduction.

Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → NIP but not stable
Interval graphs → not NIP (triple negation!)

Bounded twin-width classes → NIP but not stable in general

Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → NIP but not stable
Interval graphs → not NIP (triple negation!)

Bounded twin-width classes → NIP but not stable in general

Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → NIP but not stable
Interval graphs → not NIP (triple negation!)

Bounded twin-width classes → NIP but not stable in general

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs
[Seese ’96]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere densenowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|)n1+ε on any nowhere dense class
[Grohe, Kreutzer, Siebertz ’14]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere densenowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

End of the story for the subgraph-closed classes
tractable FO Model Checking ⇔ nowhere dense ⇔ stable

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere densenowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

New program: transductions of nowhere dense classes
Not sparse anymore but still stable

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

MSO1 Model Checking solvable in f (|ϕ|,w)n on graphs of rank-width w
[Courcelle, Makowsky, Rotics ’00]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions

map
graphs

dense
classes

NIP \ stable

Is σ a subpermutation of τ? solvable in f (|σ|)|τ |
[Guillemot, Marx ’14]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|,w)n2 on posets of width w
[GHLOORS ’15]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions

map
graphsdense

classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|)nO(1) on map graphs
[Eickmeyer, Kawarabayashi ’17]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stablebounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence
[B, Kim, Thomassé, Watrigant ’20]

Workflow of the FO model checking algorithm

binary structure G
of bounded twin-width

binary structure G
of bounded twin-width t-mixed-free order

t-mixed-free order

d-contraction sequence
G = Gn, . . . ,G1 = K1

d-contraction sequence
G = Gn, . . . ,G1 = K1nO(1) nO(1)

nO(1)

reduced morphism-tree
MT ′`(G) of size h(`)

reduced morphism-tree
MT ′`(G) of size h(`)

Query G |= ϕ
for any prenex ϕ of depth `

Query G |= ϕ
for any prenex ϕ of depth `

O`,d(n)

O`(1)

Direct examples: trees, bounded rank-width, grids, d-dimensional grids,
unit interval, Kt-free unit ball graphs

Workflow of the FO model checking algorithm

binary structure G
of bounded twin-width

binary structure G
of bounded twin-width t-mixed-free order

t-mixed-free order

d-contraction sequence
G = Gn, . . . ,G1 = K1

d-contraction sequence
G = Gn, . . . ,G1 = K1nO(1) nO(1)

nO(1)

reduced morphism-tree
MT ′`(G) of size h(`)

reduced morphism-tree
MT ′`(G) of size h(`)

Query G |= ϕ
for any prenex ϕ of depth `

Query G |= ϕ
for any prenex ϕ of depth `

O`,d(n)

O`(1)

Direct examples: trees, bounded rank-width, grids, d-dimensional grids,
unit interval graphs, Kt-free unit ball graphs

Workflow of the FO model checking algorithm

binary structure G
of bounded twin-width

binary structure G
of bounded twin-width

t-mixed-free order

t-mixed-free order d-contraction sequence
G = Gn, . . . ,G1 = K1

d-contraction sequence
G = Gn, . . . ,G1 = K1nO(1) nO(1)

nO(1)

reduced morphism-tree
MT ′`(G) of size h(`)

reduced morphism-tree
MT ′`(G) of size h(`)

Query G |= ϕ
for any prenex ϕ of depth `

Query G |= ϕ
for any prenex ϕ of depth `

O`,d(n)

O`(1)

Detour via mixed minor for: pattern-avoiding permutations,
bounded width posets, Kt-minor free graphs

Workflow of the FO model checking algorithm

binary structure G
of bounded twin-width

binary structure G
of bounded twin-width t-mixed-free order

t-mixed-free order

d-contraction sequence
G = Gn, . . . ,G1 = K1

d-contraction sequence
G = Gn, . . . ,G1 = K1nO(1) nO(1)

nO(1)

reduced morphism-tree
MT ′`(G) of size h(`)

reduced morphism-tree
MT ′`(G) of size h(`)

Query G |= ϕ
for any prenex ϕ of depth `

Query G |= ϕ
for any prenex ϕ of depth `

O`,d(n)

O`(1)

Let us see a snapshot of the FO model checking

unit interval graphs, Kt-free unit ball graphs

DP for FO model checking with d-sequence

X3

X6 X7

X9

X11

X13

X15

X8

X12

X1 X2

X4

X10

X5

X14

X8

X12

(G ,P15)

X3

X6 X7

X9

X11

X13

X15

X1 X2

X4

X10

X5

X14

X8

X12

X16

(G ,P14)

`
MT′(G,P15, •)

`
MT′(G,P15, ••)

only f (d , `) trees

updates

DP for FO model checking with d-sequence

X3

X6 X7

X9

X11

X13

X15

X8

X12

X1 X2

X4

X10

X5

X14

X8

X12

(G ,P15)

X3

X6 X7

X9

X11

X13

X15

X1 X2

X4

X10

X5

X14

X8

X12

X16

(G ,P14)

`
MT′(G,P14, ••)

`
MT′(G,P15, ••)

only f (d , `) trees

updates

Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Unifies and extends the same result for:
σ-free permutations [Marcus, Tardos ’04]
Kt-minor free graphs [Norine, Seymour, Thomas, Wollan ’06]

Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs
have unbounded twin-width

Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture)
A hereditary class has bounded twin-width if and only if it is small.

Sparse twin-width

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
If C is a hereditary class of bounded twin-width, tfae.
I (i) C is Kt,t-free.
I (ii) C is d-grid free.
I (iii) Every n-vertex graph G ∈ C has at most gn edges.
I (iv) The subgraph closure of C has bounded twin-width.
I (v) C has bounded expansion.

Still fairly complicated: bounded sparse twin-width classes
comprise classes with bounded stack/queue number, flat classes,
some particular expanders.

Sparse twin-width

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
If C is a hereditary class of bounded twin-width, tfae.
I (i) C is Kt,t-free.
I (ii) C is d-grid free.
I (iii) Every n-vertex graph G ∈ C has at most gn edges.
I (iv) The subgraph closure of C has bounded twin-width.
I (v) C has bounded expansion.

Still fairly complicated: bounded sparse twin-width classes
comprise classes with bounded stack/queue number, flat classes,
some particular expanders.

χ-boundedness

C χ-bounded: ∃f , ∀G ∈ C, χ(G) 6 f (ω(G))

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Every twin-width class is χ-bounded.
More precisely, every graph G of twin-width at most d admits a
proper (d + 2)ω(G)−1-coloring.

Polynomially χ-bounded? i.e., χ(G) = O(ω(G)d)
At least strong Erdős-Hajnal property satisfied

χ-boundedness

C χ-bounded: ∃f , ∀G ∈ C, χ(G) 6 f (ω(G))

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Every twin-width class is χ-bounded.
More precisely, every graph G of twin-width at most d admits a
proper (d + 2)ω(G)−1-coloring.

Polynomially χ-bounded? i.e., χ(G) = O(ω(G)d)
At least strong Erdős-Hajnal property satisfied

d + 2-coloring in the triangle-free case

Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z] NGi+1 [u, v]

z has only red incident edges → d + 2-nd color available to v

d + 2-coloring in the triangle-free case

Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z] NGi+1 [u, v]

z has only red incident edges → d + 2-nd color available to v

d + 2-coloring in the triangle-free case

Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z] NGi+1 [u, v]

z incident to at least one black edge → non-edge between u and v

Future directions

Obvious questions:
Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion

Other directions we are exploring:
Better approximation algorithms on bounded twin-width classes
Twin-width of Cayley graphs of finitely generated groups
...

On arxiv
Twin-width I: tractable FO model checking [BKTW ’20]
Twin-width II: small classes [BGKTW ’20]
Twin-width III: Max Independent Set and Coloring [BGKTW ’20]

Future directions

Obvious questions:
Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion

Other directions we are exploring:
Better approximation algorithms on bounded twin-width classes
Twin-width of Cayley graphs of finitely generated groups
...

On arxiv
Twin-width I: tractable FO model checking [BKTW ’20]
Twin-width II: small classes [BGKTW ’20]
Twin-width III: Max Independent Set and Coloring [BGKTW ’20]

Future directions

Obvious questions:
Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion

Other directions we are exploring:
Better approximation algorithms on bounded twin-width classes
Twin-width of Cayley graphs of finitely generated groups
...

On arxiv
Twin-width I: tractable FO model checking [BKTW ’20]
Twin-width II: small classes [BGKTW ’20]
Twin-width III: Max Independent Set and Coloring [BGKTW ’20]

