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1970

Can you find an efficient algorithm for Clique?

Phew! For a moment, I thought
he would bring Bandersnatch up.
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1972

I have a bad news.
It turns out that Clique is NP-hard.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA



Introduction Min Independent Dominating Set Max Minimal Vertex Cover Max Induced Path/Forest/Tree

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

1992

Under P 6= NP, there is no polytime nε-approximation
for Clique for some ε > 0.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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1992

Under ETH, a clique of size k
cannot be found in f (k)nc .
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1996

Under NP 6= co-RP, there is no polytime n1−ε-approximation
for Clique for any ε > 0.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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1999

Under ETH, there is no exact algorithm
for Clique running in time 2o(n).
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2005

Under P 6= NP, there is no polytime n1−ε-approximation
for Clique for any ε > 0.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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2006

Under ETH, a clique of size k
cannot be found in f (k)no(k).
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What can we do then?

Can we n 1
100 -approximate Clique in time nlog n?
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What can we do then?

Can we log∗ n-approximate Clique in time nα(n)?
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What can we do then?

Can we
√

n-approximate Clique in time 2
√

n?
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2013

Under randomized ETH, there is no r -approximation

for Clique in 2n1−ε/r1+ε for any ε > 0.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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What we aim

approximation ratio

time exponent

ρ(n)

n

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Π is polytime ρ(n)-approximable.
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What we aim

approximation ratio

time exponent

ρ(n)

n

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Π is exactly solvable in time λn.
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What we aim

approximation ratio

time exponent

ρ(n)

n

r

n/ρ−1(r)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Can we show that Π is ρ(r)-approximable in time λn/r ?
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What we aim

approximation ratio

time exponent

ρ(n)

n

r

n/ρ−1(r)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Or, at least, ρ(r)-approximable in time 2n log r/r ?
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What we aim

approximation ratio

time exponent

ρ(n)

n

r

n/ρ−1(r)
⇒ ¬ ETH

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

And then show almost matching lower bounds under ETH?
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About neglecting polylog factors

For a graph with 10000 vertices and a clique of size 5000:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

algorithm 1.1996n (XN ’13) ratio
√

n in 1.1996
√

n ratio n(log log n)2
(log n)3 (F ’05)

limit 100 vertices 10000 vertices 1000000 vertices
output don’t ask a clique of size > 50

a clique of size > 50
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Subset problems

I Solutions are subsets of vertices (edges, elements, sets).

I Monotonicity:
I Minimization: S feasible ⇒ ∀T ⊇ S, T feasible.
I Maximization: S feasible ⇒ ∀T ⊆ S, T feasible.

I Weak monotonicity:
I Minimization: S feasible ⇒ ∃v /∈ S, S ∪ {v} feasible.
I Maximization: S feasible ⇒ ∃v ∈ S, S \ {v} feasible.
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Minimization subset problems

I, n

I If a solution is found, it is an optimal solution.
I If not, any feasible solution is an r -approximation.
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Minimization subset problems

I, n

6 n/r

I If a solution is found, it is an optimal solution.
I If not, any feasible solution is an r -approximation.
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Weakly monotone maximization subset problems

I, n

I If a solution is found, it is an r -approximation.
I If not, there is no feasible solution.
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The r -approximation takes time
O∗(

( n
n/r

)
) = O∗(( en

n/r )n/r ) = O∗((er)n/r ) = O∗(2n log(er)/r ).

AAAAAAAAAAAAAA
Can we improve this time to O∗(2n/r )?
I Splitting
I Merging
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Splitting: monotone maximization subset problems

I, n

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Split the instance into r parts of size n/r.
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Splitting: monotone maximization subset problems

I, n

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

For each of the r2n/r subsets of each part, check the feasibility.
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Splitting: monotone maximization subset problems

I, n

S

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Fix an optimal solution. The output is at least as good as S.
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Merging: Set Cover

I I = {S1,S2, . . . ,Sm}  I ′ = {S ′1 = S1 ∪ . . . ∪ Sr ,
S ′2 = Sr+1 ∪ . . . ∪ S2r , . . . ,S ′m/r = Sm−r+1 ∪ . . . ∪ Sm}.

I Solve optimally I ′ in time 2m/r → solution S ′a1 , . . . ,S
′
ak .

I Take all the sets of I composing the S ′ai .
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Min Asymmetric Traveling Salesman Problem
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Min ATSP in polytime

I O(log n)-approximation [FGM ’82].
I O( log n

log log n )-approximation [AGMOS ’10].

Our goal:

Theorem
∀r 6 n, Min ATSP is log r -approximable in time O∗(2n/r ).
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aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

A circuit cover of minimum length can be found in polytime.
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aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Pick any vertex in each cycle and recurse.
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This can only decrease the total length (triangle inequality).
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ratio = recursion depth: log n for polytime; log r for time 2n/r .
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(Randomized) Exponential Time Hypothesis (ETH):

Assumption: no (randomized) 2o(n)-time algorithm solving 3-SAT.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Theorem (Sparsification Lemma, IPZ ’01)
A 2o(n)-time algorithm for 3-SAT with m 6 Cn disproves ETH.
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Inapproximability in super-polynomial time

Theorem (CLN ’13)
Under randomized ETH, ∀ε > 0, for all sufficiently big r < n1/2−ε,
Max Independent Set is not r -approximable in time 2n1−ε/r1+ε .

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

SAT formula φ with N variables graph G with r1+εN1+ε vertices
I φ satisfiable ⇒ α(G) ≈ rN1+ε.
I φ unsatisfiable ⇒ α(G) ≈ r εN1+ε.
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Inapproximability in super-polynomial time

Goal: Assuming ETH, Π is not r -approximable in time 2o(n/f (r))

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

SAT formula φ with N variables  I instance of Π s.t.
I |I| ≈ f (r)N
I φ satisfiable ⇒ val(Π) ≈ a
I φ unsatisfiable ⇒ val(Π) ≈ ra
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Min Independent Dominating Set
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Inapproximability in polytime [I ’91, H ’93]

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

C1 C2 C3 C4 C5

Satifiable CNF formula with N variables and CN clauses
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Inapproximability in polytime [I ’91, H ’93]

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

C1 C2 C3 C4 C5

Unsatifiable CNF formula with N variables and CN clauses
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Inapproximability in polytime [I ’91, H ’93]

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

C1 C2 C3 C4 C5

MIDS of size greater than rN
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Inapproximability in polytime [I ’91, H ’93]

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

C1 C2 C3 C4 C5

Set r = N9998 ≈ n 9998
10000 > n0.999

As n = 2N + CrN2 ≈ N10000
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(In)approximability in subexponential time

Our goal:

Theorem
Under ETH, ∀ε > 0, ∀r 6 n,
MIDS is not r -approximable in time O∗(2n1−ε/r1+ε

).

almost matching the r -approximation in time O∗(2n log(er)/r ).
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Inapproximability in subexponential time

Our goal:

Theorem
Under ETH, ∀ε > 0, ∀r 6 n,
MIDS is not r -approximable in time O∗(2n1−ε/r1+ε

).

a

In the previous reduction, n ≈ rN2.
We need to build a graph with n ≈ rN vertices.
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a

Put only r vertices per independent set Ci and use the
inapproximability of SAT to boost the gap.

I The number of vertices is now n = 2N + rCN = O(rN).
I YES: MIDS of size N / NO: MIDS of size > N + rαCN.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
There is an almost linear reduction from 3-SAT to 3-SAT
introducing a constant gap [MR ’08].
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a

Put only r vertices per independent set Ci and use the
inapproximability of SAT to boost the gap.
I The number of vertices is now n = 2N + rCN = O(rN).
I YES: MIDS of size N / NO: MIDS of size > N + rαCN.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

There is an almost linear reduction from 3-SAT to 3-SAT
introducing a constant gap [MR ’08].
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Max Minimal Vertex Cover
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Approximability in polytime [BDP ’13]

I MMVC admits a n1/2-approximation,
I but no n1/2−ε-approximation for any ε > 0, unless P=NP.

Our goal:

Theorem
For any r 6 n, MMVC is r -approximable in time O∗(3n/r2

) .

Theorem
Under ETH, ∀ε > 0, ∀r 6 n1/2−ε,
MMVC is not r -approximable in time O∗(2n1−ε/r2+ε

).
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3-approximation bluff

S

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Let M be a maximal matching, S := V (M), and I := V \ S.
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3-approximation bluff

S

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Each vertex of this half S ′ of S has at least one private edge.
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3-approximation bluff

S

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Each vertex of I has at least one private edge.
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3-approximation bluff

S

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

S ′ > n/3 or I > n/3.
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3-approximation bluff

S

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Completing S ′ and I into a vertex covers gives a 3-approximation.
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How things actually work

u

v

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

To cover uv , we should include u or v .



Introduction Min Independent Dominating Set Max Minimal Vertex Cover Max Induced Path/Forest/Tree

How things actually work

u

vv

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

And then, we may lose many vertices.
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How things actually work

u

vv

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Removing vertices from vertex cover S, leads to a solution.
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How things actually work

u

vv

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

The solution is at least of size N(S).
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Compute any maximal matching M.
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

If |M| > n/r, then any (minimal) vertex cover contains > n/r.
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Otherwise split M into r parts (A1,A2, . . . ,Ar ) of size 6 n/r2.
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

For each of the 6 3n/r2 independent sets of each G [Ai ],
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

add all the non dominated vertices of I,



Introduction Min Independent Dominating Set Max Minimal Vertex Cover Max Induced Path/Forest/Tree

M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

and compute a minimal vertex cover from the complement.
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

An optimal solution R = N(R) = N(R ∩ I) ∪
⋃

i N(R ∩ Ai ).
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

∃i , |N(R ∩ I) ∪ N(R ∩ Ai )| > |N(R)|
r .
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M

I

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

R ∩ Ai will be tried, and completed with a superset of R ∩ I.
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MIS (≈ rN vertices)  MMVC (≈ r 2N vertices)

 

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
φ satisfiable ⇒ |IS| ≈ rN; φ unsatisfiable ⇒ |IS| ≈ N.
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MIS (≈ rN vertices)  MMVC (≈ r 2N vertices)
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φ satisfiable ⇒ |MVC| ≈ r2N; φ unsatisfiable ⇒ |MVC| ≈ rN.
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Max Induced Path/Forest/Tree
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Theorem
Under ETH, ∀ε > 0, ∀r 6 n1/2−ε,
Max Induced Forest has no r-approximation in time 2n1−ε/(2r)1+ε .
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A max induced forest has size in [α(G), 2α(G)].

I An independent set is a special forest.
I A forest has an independent set of size at least the half.
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Add a universal vertex v to the gap instances of MIS: G  G ′.

I G ′ has an induced tree of size α(G) + 1.
I If T is an induced tree of G ′, α(G) > |T |/2.
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PCP-free inapproximability

Our goal:

Theorem
Under ETH, ∀ε > 0 and ∀r 6 n1−ε,
Max Induced Path has no r-approximation in time 2o(n/r).
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Walking through partial satisfying assignments

Contradicting edges are not represented
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Open questions

I Is there an r -approximation in O∗(2n/r ) for MIDS? for Max
Induced Matching?

I Set Cover is log r -approximable in time O∗(2n/r ) [CKW ’09]
but not in time O∗(2(n/r)α) for some α [M’ 11]. Can we
tighten this lower bound?

I For Set Cover, we know a polytime
√

m-approximation [N ’07]
but only an r -approximation in time O∗(2m/r ) [CKW ’09]. Can
we match the upper and lower bounds?

aaaaaaaaaaaaaaaaaaaaaaaaaaa

Thank you for your attention!



Introduction Min Independent Dominating Set Max Minimal Vertex Cover Max Induced Path/Forest/Tree

Open questions

I Is there an r -approximation in O∗(2n/r ) for MIDS? for Max
Induced Matching?

I Set Cover is log r -approximable in time O∗(2n/r ) [CKW ’09]
but not in time O∗(2(n/r)α) for some α [M’ 11]. Can we
tighten this lower bound?

I For Set Cover, we know a polytime
√

m-approximation [N ’07]
but only an r -approximation in time O∗(2m/r ) [CKW ’09]. Can
we match the upper and lower bounds?

aaaaaaaaaaaaaaaaaaaaaaaaaaa

Thank you for your attention!



Introduction Min Independent Dominating Set Max Minimal Vertex Cover Max Induced Path/Forest/Tree

Open questions

I Is there an r -approximation in O∗(2n/r ) for MIDS? for Max
Induced Matching?

I Set Cover is log r -approximable in time O∗(2n/r ) [CKW ’09]
but not in time O∗(2(n/r)α) for some α [M’ 11]. Can we
tighten this lower bound?

I For Set Cover, we know a polytime
√

m-approximation [N ’07]
but only an r -approximation in time O∗(2m/r ) [CKW ’09]. Can
we match the upper and lower bounds?

aaaaaaaaaaaaaaaaaaaaaaaaaaa

Thank you for your attention!



Introduction Min Independent Dominating Set Max Minimal Vertex Cover Max Induced Path/Forest/Tree

Open questions

I Is there an r -approximation in O∗(2n/r ) for MIDS? for Max
Induced Matching?

I Set Cover is log r -approximable in time O∗(2n/r ) [CKW ’09]
but not in time O∗(2(n/r)α) for some α [M’ 11]. Can we
tighten this lower bound?

I For Set Cover, we know a polytime
√

m-approximation [N ’07]
but only an r -approximation in time O∗(2m/r ) [CKW ’09]. Can
we match the upper and lower bounds?

aaaaaaaaaaaaaaaaaaaaaaaaaaa

Thank you for your attention!


	Introduction
	Min Independent Dominating Set
	Max Minimal Vertex Cover
	Max Induced Path/Forest/Tree

