Generalized feedback vertex set problems on bounded-treewidth graphs: chordality is the key to single-exponential parameterized algorithms

Édouard Bonnet, Nick Brettell, O-joung Kwon, Dániel Marx

Middlesex University, London

September 6, 2017, IPEC, Vienna

Single-exponential algorithm parameterized by treewidth \boldsymbol{w} for connectivity problems

Before 2011, the $2^{O(w\log w)}n^{O(1)}$ -time algorithm for ${\rm FEEDBACK}$ ${\rm VERTEX}$ SET was believed to be optimal, but...

- Cut&Count [Cygan et al. '11] \rightarrow randomized $3^w n^{O(1)}$
- Rank and **representative sets** [Bodlaender et al. '15] \rightarrow deterministic $2^{O(w)}n^{O(1)}$
- Extension to matroids [Fomin et al. '14]

Single-exponential algorithm parameterized by treewidth \boldsymbol{w} for connectivity problems

Before 2011, the $2^{O(w\log w)}n^{O(1)}$ -time algorithm for ${\rm FEEDBACK}$ ${\rm VERTEX}$ SET was believed to be optimal, but...

- Cut&Count [Cygan et al. '11] \rightarrow randomized $3^w n^{O(1)}$
- Rank and representative sets [Bodlaender et al. '15] \rightarrow deterministic $2^{O(w)}n^{O(1)}$
- Extension to matroids [Fomin et al. '14]

w-boundaried graphs

- A w-boundaried graph is a pair (G, S) of a graph G and a subset $S \subseteq V(G)$ of size at most w.
- $S := \partial(G)$ is the boundary of G, each vertex in S is called a boundary vertex.

 $\begin{array}{ll} (1) & \mbox{Introduce a vertex } v \mbox{ with} \\ & \mbox{boundary } \{v\}. \end{array}$

 \odot

(1) Introduce a vertex v with boundary $\{v\}$.

\odot

(2) Add a vertex v to (G, S) such that v has only neighbors on S and $S \cup \{v\}$ is a new boundary.

(3) Replace a boundary vertex with a non-boundary vertex

(1) Introduce a vertex v with boundary $\{v\}$.

 \odot

(2) Add a vertex v to (G, S) such that v has only neighbors on S and $S \cup \{v\}$ is a new boundary.

(3) Replace a boundary vertex with a non-boundary vertex

(1) Introduce a vertex v with boundary $\{v\}$.

 \odot

(2) Add a vertex v to (G, S) such that (4) v has only neighbors on S and $S \cup \{v\}$ is a new boundary.

Take the disjoint union of two graphs (G_1, S) , (G_2, S) where $G_1[S] = G_2[S]$ and identify each vertex of S.

Treewidth

- G has treewidth $\leq w$ iff G can be built with those four operations by (w + 1)-boundaried graphs in a tree-like way.
- Trees have treewidth ≤ 1 .
- Cycles have treewidth ≤ 2 .

This is just (a slight reformulation of) tree-decomposition. As usual, we will do dynamic programming on this tree.

Treewidth

- G has treewidth $\leq w$ iff G can be built with those four operations by (w + 1)-boundaried graphs in a tree-like way.
- Trees have treewidth ≤ 1 .
- Cycles have treewidth ≤ 2 .

This is just (a slight reformulation of) tree-decomposition. As usual, we will do dynamic programming on this tree.

Feedback Vertex Set

Find a minimum vertex set S such that G-S is a forest

- Partial solution of G_t at a node t:
 - X to delete in $\partial(G_t)$
 - Y to delete in $G_t \partial(G_t)$
 - and the forest $G_t (X \cup Y)$.

• The important information is whether or not two remaining vertices on the boundary are connected to each other or not.

table c: for every $X \subseteq \partial(G_t)$, integer $1 \leq \ell \leq n$ and partition \mathcal{P} of $\partial(G_t) \setminus X$,

• $c[t, X, \ell, \mathcal{P}] = 1$ if there is a set Y of size ℓ in $G_t - \partial(G_t)$ where $G_t - (X \cup Y)$ is a forest respecting the partition \mathcal{P} , and 0 otherwise.

table c: for every $X \subseteq \partial(G_t)$, integer $1 \leq \ell \leq n$ and partition \mathcal{P} of $\partial(G_t) \setminus X$,

- $c[t, X, \ell, \mathcal{P}] = 1$ if there is a set Y of size ℓ in $G_t \partial(G_t)$ where $G_t (X \cup Y)$ is a forest respecting the partition \mathcal{P} , and 0 otherwise.
- The number of partitions on w elements? = $2^{O(w \log w)}$.
- This gives an algorithm running in time $2^{O(w \log w)} n^{O(1)}$.

Acyclicity of hypergraphs

- Inc(V, E): incidence bipartite graph of hypergraph (V, E).
- Example : $V = \{v_1, v_2, v_3, v_4\}$, $E = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_1, v_2, v_4\}\}$.

• A hypergraph (V, E) is acyclic if Inc(V, E) has no cycles.

Representative sets

For \mathcal{A} and \mathcal{B} two families of partitions over U, a subset $\mathcal{A}' \subseteq \mathcal{A}$ is a **representative set** with respect to \mathcal{B} if

• For every $\mathcal{P} \in \mathcal{A}$ and $\mathcal{Q} \in \mathcal{B}$ with $(U, \mathcal{P} \cup \mathcal{Q})$ is acyclic, there exists $\mathcal{P}' \in \mathcal{A}'$ where $(U, \mathcal{P}' \cup \mathcal{Q})$ is acyclic.

Corollary of Bodlaender, Cygan, Kratsch, and Nederlof '15

Given families \mathcal{A} , \mathcal{B} of partitions of a set U, one can output a representative set of \mathcal{A} of size at most $|U| \cdot 2^{|U|-1}$ in time $\mathcal{A}^{O(1)} 2^{O(|U|)}$.

Shrink the number of partitions in the table c from $2^{O(w\log w)}$ down to $2^{O(w)}.$

Representative sets

For \mathcal{A} and \mathcal{B} two families of partitions over U, a subset $\mathcal{A}' \subseteq \mathcal{A}$ is a **representative set** with respect to \mathcal{B} if

• For every $\mathcal{P} \in \mathcal{A}$ and $\mathcal{Q} \in \mathcal{B}$ with $(U, \mathcal{P} \cup \mathcal{Q})$ is acyclic, there exists $\mathcal{P}' \in \mathcal{A}'$ where $(U, \mathcal{P}' \cup \mathcal{Q})$ is acyclic.

Corollary of Bodlaender, Cygan, Kratsch, and Nederlof '15

Given families \mathcal{A} , \mathcal{B} of partitions of a set U, one can output a representative set of \mathcal{A} of size at most $|U| \cdot 2^{|U|-1}$ in time $\mathcal{A}^{O(1)} 2^{O(|U|)}$.

Shrink the number of partitions in the table c from $2^{O(w \log w)}$ down to $2^{O(w)}$.

• A **block** *B* is a maximal induced subgraph with no cut vertex.

• Forests are graphs whose blocks have ≤ 2 vertices.

Generalized Feedback Vertex Set

Find a vertex set S of size at most k such that each block of G - S has $\leq d$ vertices and belongs to a fixed class \mathcal{P} .

FEEDBACK VERTEX SET can be obtained by setting d to 2.

• A **block** *B* is a maximal induced subgraph with no cut vertex.

• Forests are graphs whose blocks have ≤ 2 vertices.

Generalized Feedback Vertex Set

Find a vertex set S of size at most k such that each block of G - S has $\leq d$ vertices and belongs to a fixed class \mathcal{P} .

FEEDBACK VERTEX SET can be obtained by setting d to 2.

B., Brettell, Kwon, Marx '16

- (1) GFVS can be solved in time $2^{O(k \log d)} poly(n)$.
- (2) Under ETH, GFVS cannot be solved in time $2^{o(k \log d)} poly(n)$.
- (3) GFVS is W[1]-hard parameterized by only k or d.

B., Brettell, Kwon, Marx '16

- (1) GFVS can be solved in time $2^{O(k \log d)} poly(n)$.
- (2) Under ETH, GFVS cannot be solved in time $2^{o(k \log d)} poly(n)$.
- (3) GFVS is W[1]-hard parameterized by only k or d.
 - Open question : can GFVS be solved in time $2^{O(k+d)} poly(n)$?
 - YES-instances have treewidth ≤ k + d. Can we solve GFVS in time 2^{O(w)}n^{O(1)}?

Chordality of ${\mathcal P}$ is key

A chordal graph is a graph having no induced cycle of length at least 4.

Assume \mathcal{P} is **block-hereditary** (i.e., closed by biconnected induced subgraph) and recognizable in polynomial time.

Our main result

- If $\mathcal P$ consists only of chordal graphs, then the problem can be solved in time $2^{O(wd^2)}n^{O(1)}.$
- If \mathcal{P} contains a graph with an induced cycle of length $\ell \ge 4$, then the problem is not solvable in time $2^{o(w \log w)} n^{O(1)}$ even for fixed $d = \ell$, unless the ETH fails.

Partial solutions

- If two vertices $v, w \in \partial(G_t) \setminus X$ are contained in the same block of $G_t (X \cup Y)$, then they will be in the same block of G S.
- For each block of $G_t[\partial(G_t) \setminus X]$, we guess the final shape of it $(2^{O(d^2)})$ guesses).
- What about the vertices of $\partial(G_t) \setminus X$ which are not yet in the same block but will eventually be?

Problem?

• An example showing $2^{\Theta(w \log w)}$ possible 4-labeled graphs.

Local separator in chordal graphs

- In chordal graphs, there is a 1-to-1 mapping between components of G-S and components of G[N(S)].
- Map U of G[N(S)] to the component of G S containing U.

First step

- For each non-trivial block of $\partial(G_t) \setminus X$, guess its final shape, and keep which neighborhoods appear in $G_t \partial(G_t)$.
- Two partials solutions with the same information on blocks yields the same outcome.

Second step (works as for FVS)

• need to determine chordality.

Second step (works as for FVS)

- need to determine chordality.
- related to the partitions of connected components in $\partial(G_t) \setminus X$.
- Representative sets to avoid the blow-up to $2^{O(w \log w)}$.

Lower bound when $\ensuremath{\mathcal{P}}$ contains a long induced cycle

Permutation $k \times k$ Independent Set

Given a graph $G = (\{1, \ldots, k\} \times \{1, \ldots, k\}, E)$, find an independent set of size k containing exactly one vertex per row and per column.

• Exponential Time Hypothesis (ETH) implies that *n*-variable 3-SAT cannot be solved in time $2^{o(n)}$ (Impagliazzo, Paturi, and Zane '01)

Lokshtanov, Marx, Saurabh '11

Unless ETH fails, PERMUTATION $k \times k$ INDEPENDENT SET cannot be solved in time $2^{o(k \log k)}$.

Reduction from Permutation $k \times k$ Independent Set.

Conclusion

- Can GFVS be solved in $2^{O(w \log w)} n^{O(1)}$?
- For \mathcal{P} containing only chordal graphs can the dependency on d be improved?

Conclusion

- Can GFVS be solved in $2^{O(w \log w)} n^{O(1)}$?
- For \mathcal{P} containing only chordal graphs can the dependency on d be improved?

Thank you for your attention!

separator