Generalized feedback vertex set problems on bounded-treewidth graphs: chordality is the key to single-exponential parameterized algorithms

Édouard Bonnet, Nick Brettell, O-joung Kwon, Dániel Marx

Middlesex University, London

September 6, 2017, IPEC, Vienna

Middlesex
University
London

Single-exponential algorithm parameterized by treewidth w for connectivity problems

Before 2011, the $2^{O(w \log w)} n^{O(1)}$-time algorithm for Feedback Vertex Set was believed to be optimal, but...

- Cut\&Count [Cygan et al. '11] \rightarrow randomized $3^{w} n^{O(1)}$
- Rank and renresentative sets [Bodlaender et al. '15] \rightarrow deterministic $2^{O(w)} n^{O(1)}$
- Extension to matroids [Fomin et al. '14]

Single-exponential algorithm parameterized by treewidth w for connectivity problems

Before 2011, the $2^{O(w \log w)} n^{O(1)}$-time algorithm for Feedback Vertex SEt was believed to be optimal, but...

- Cut\&Count [Cygan et al. '11]
\rightarrow randomized $3^{w} n^{O(1)}$
- Rank and representative sets [Bodlaender et al. '15]
\rightarrow deterministic $2^{O(w)} n^{O(1)}$
- Extension to matroids [Fomin et al. '14]

w-boundaried graphs

- A w-boundaried graph is a pair (G, S) of a graph G and a subset $S \subseteq V(G)$ of size at most w.
- $S:=\partial(G)$ is the boundary of G, each vertex in S is called a boundary vertex.

Characterisation of treewidth via w-boundaried graphs

(1) Introduce a vertex v with boundary $\{v\}$.

Characterisation of treewidth via w-boundaried graphs

(1) Introduce a vertex v with boundary $\{v\}$.
(2) Add a vertex v to (G, S) such that v has only neighbors on S and $S \cup\{v\}$ is a new boundary.

Characterisation of treewidth via w-boundaried graphs

(3) Replace a boundary vertex with a non-boundary vertex
(1) Introduce a vertex v with boundary $\{v\}$.

(2) Add a vertex v to (G, S) such that v has only neighbors on S and $S \cup\{v\}$ is a new boundary.

Characterisation of treewidth via w-boundaried graphs

(3) Replace a boundary vertex with a non-boundary vertex
(1) Introduce a vertex v with boundary $\{v\}$.

(2) Add a vertex v to (G, S) such that (4) Take the disjoint union of two graphs v has only neighbors on S and $S \cup\{v\}$ is a new boundary. $\left(G_{1}, S\right),\left(G_{2}, S\right)$ where $G_{1}[S]=G_{2}[S]$ and identify each vertex of S.

Treewidth

- G has treewidth $\leqslant w$ iff G can be built with those four operations by $(w+1)$-boundaried graphs in a tree-like way.
- Trees have treewidth $\leqslant 1$.
- Cycles have treewidth $\leqslant 2$.

Treewidth

- G has treewidth $\leqslant w$ iff G can be built with those four operations by $(w+1)$-boundaried graphs in a tree-like way.
- Trees have treewidth $\leqslant 1$.
- Cycles have treewidth $\leqslant 2$.

This is just (a slight reformulation of) tree-decomposition.
As usual, we will do dynamic programming on this tree.

Feedback Vertex Set

Find a minimum vertex set S such that $G-S$ is a forest

- Partial solution of G_{t} at a node t :
- X to delete in $\partial\left(G_{t}\right)$
- Y to delete in $G_{t}-\partial\left(G_{t}\right)$
- and the forest $G_{t}-(X \cup Y)$.

- The important information is whether or not two remaining vertices on the boundary are connected to each other or not.

table c : for every $X \subseteq \partial\left(G_{t}\right)$, integer $1 \leqslant \ell \leqslant n$ and partition \mathcal{P} of $\partial\left(G_{t}\right) \backslash X$,
- $c[t, X, \ell, \mathcal{P}]=1$ if there is a set Y of size ℓ in $G_{t}-\partial\left(G_{t}\right)$ where $G_{t}-(X \cup Y)$ is a forest respecting the partition \mathcal{P}, and 0 otherwise.

table c : for every $X \subseteq \partial\left(G_{t}\right)$, integer $1 \leqslant \ell \leqslant n$ and partition \mathcal{P} of $\partial\left(G_{t}\right) \backslash X$,
- $c[t, X, \ell, \mathcal{P}]=1$ if there is a set Y of size ℓ in $G_{t}-\partial\left(G_{t}\right)$ where $G_{t}-(X \cup Y)$ is a forest respecting the partition \mathcal{P}, and 0 otherwise.
- The number of partitions on w elements? $=2^{O(w \log w)}$.
- This gives an algorithm running in time $2^{O(w \log w)} n^{O(1)}$.

Acyclicity of hypergraphs

- $\operatorname{Inc}(V, E)$: incidence bipartite graph of hypergraph (V, E).
- Example: $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}, v_{4}\right\}\right\}$.

- A hypergraph (V, E) is acyclic if $\operatorname{Inc}(V, E)$ has no cycles.

Representative sets

For \mathcal{A} and \mathcal{B} two families of partitions over U, a subset $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ is a representative set with respect to \mathcal{B} if

- For every $\mathcal{P} \in \mathcal{A}$ and $\mathcal{Q} \in \mathcal{B}$ with $(U, \mathcal{P} \cup \mathcal{Q})$ is acyclic, there exists $\mathcal{P}^{\prime} \in \mathcal{A}^{\prime}$ where $\left(U, \mathcal{P}^{\prime} \cup \mathcal{Q}\right)$ is acyclic.

Corollary of Bodlaender, Cygan, Kratsch, and Nederlof '15

Given families \mathcal{A}, \mathcal{B} of partitions of a set U, one can output a representative set of \mathcal{A} of size at most $|U| \cdot 2^{|U|-1}$ in time $\mathcal{A}^{O(1)} 2^{O(|U|)}$.

Shrink the number of partitions in the table c from 2
down to $2^{O(w)}$

Representative sets

For \mathcal{A} and \mathcal{B} two families of partitions over U, a subset $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ is a representative set with respect to \mathcal{B} if

- For every $\mathcal{P} \in \mathcal{A}$ and $\mathcal{Q} \in \mathcal{B}$ with $(U, \mathcal{P} \cup \mathcal{Q})$ is acyclic, there exists $\mathcal{P}^{\prime} \in \mathcal{A}^{\prime}$ where $\left(U, \mathcal{P}^{\prime} \cup \mathcal{Q}\right)$ is acyclic.

Corollary of Bodlaender, Cygan, Kratsch, and Nederlof '15

Given families \mathcal{A}, \mathcal{B} of partitions of a set U, one can output a representative set of \mathcal{A} of size at most $|U| \cdot 2^{|U|-1}$ in time $\mathcal{A}^{O(1)} 2^{O(|U|)}$.

Shrink the number of partitions in the table c from $2^{O(w \log w)}$ down to $2^{O(w)}$.

- A block B is a maximal induced subgraph with no cut vertex.

- Forests are graphs whose blocks have $\leqslant 2$ vertices.

Generalized Feedback Vertex Set

Find a vertex set S of size at most k such that each block of $G-S$ has $\leqslant d$ vertices and belongs to a fixed class \mathcal{P}.

Feedback Vertex Set can be obtained by setting d to 2 .

- A block B is a maximal induced subgraph with no cut vertex.

- Forests are graphs whose blocks have $\leqslant 2$ vertices.

Generalized Feedback Vertex Set

Find a vertex set S of size at most k such that each block of $G-S$ has $\leqslant d$ vertices and belongs to a fixed class \mathcal{P}.

Feedback Vertex Set can be obtained by setting d to 2 .

B., Brettell, Kwon, Marx '16

(1) GFVS can be solved in time $2^{O(k \log d)} \operatorname{poly}(n)$.
(2) Under ETH, GFVS cannot be solved in time $2^{o(k \log d)} \operatorname{poly}(n)$.
(3) GFVS is W[1]-hard parameterized by only k or d.

B., Brettell, Kwon, Marx '16

(1) GFVS can be solved in time $2^{O(k \log d)}$ poly (n).
(2) Under ETH, GFVS cannot be solved in time $2^{o(k \log d)} \operatorname{poly}(n)$.
(3) GFVS is W[1]-hard parameterized by only k or d.

- Open question: can GFVS be solved in time $2^{O(k+d)} \operatorname{poly}(n)$?
- YES-instances have treewidth $\leqslant k+d$. Can we solve GFVS in time $2^{O(w)} n^{O(1)}$?

Chordality of \mathcal{P} is key

A chordal graph is a graph having no induced cycle of length at least 4 .
Assume \mathcal{P} is block-hereditary (i.e., closed by biconnected induced subgraph) and recognizable in polynomial time.

Our main result

- If \mathcal{P} consists only of chordal graphs, then the problem can be solved in time $2^{O\left(w d^{2}\right)} n^{O(1)}$.
- If \mathcal{P} contains a graph with an induced cycle of length $\ell \geqslant 4$, then the problem is not solvable in time $2^{o(w \log w)} n^{O(1)}$ even for fixed $d=\ell$, unless the ETH fails.

Partial solutions

- If two vertices $v, w \in \partial\left(G_{t}\right) \backslash X$ are contained in the same block of $G_{t}-(X \cup Y)$, then they will be in the same block of $G-S$.
- For each block of $G_{t}\left[\partial\left(G_{t}\right) \backslash X\right]$, we guess the final shape of it $\left(2^{O\left(d^{2}\right)}\right.$ guesses).
- What about the vertices of $\partial\left(G_{t}\right) \backslash X$ which are not yet in the same block but will eventually be?

Problem?

- An example showing $2^{\Theta(w \log w)}$ possible 4 -labeled graphs.

Local separator in chordal graphs

- In chordal graphs, there is a 1-to-1 mapping between components of $G-S$ and components of $G[N(S)]$.
- Map U of $G[N(S)]$ to the component of $G-S$ containing U.

First step

- For each non-trivial block of $\partial\left(G_{t}\right) \backslash X$, guess its final shape, and keep which neighborhoods appear in $G_{t}-\partial\left(G_{t}\right)$.
- Two partials solutions with the same information on blocks yields the same outcome.

Second step (works as for FVS)

- need to determine chordality.

Second step (works as for FVS)

- need to determine chordality.
- related to the partitions of connected components in $\partial\left(G_{t}\right) \backslash X$.
- Representative sets to avoid the blow-up to $2^{O(w \log w)}$.

Lower bound when \mathcal{P} contains a long induced cycle

Permutation $k \times k$ Independent Set

Given a graph $G=(\{1, \ldots, k\} \times\{1, \ldots, k\}, E)$, find an independent set of size k containing exactly one vertex per row and per column.

- Exponential Time Hypothesis (ETH) implies that n-variable 3-SAT cannot be solved in time $2^{o(n)}$ (Impagliazzo, Paturi, and Zane '01)

```
Lokshtanov, Marx, Saurabh '11
Unless ETH fails, Permutation k\timesk Independent Set cannot be solved in time \(2^{o(k \log k)}\).
```

Reduction from Permutation $k \times k$ Independent Set.

Conclusion

- Can GFVS be solved in $2^{O(w \log w)} n^{O(1)}$?
- For \mathcal{P} containing only chordal graphs can the dependency on d be improved?

Conclusion

- Can GFVS be solved in $2^{O(w \log w)} n^{O(1)}$?
- For \mathcal{P} containing only chordal graphs can the dependency on d be improved?

Thank you for your attention!

