The Complexity of Grundy Coloring and its Variants

Édouard Bonnet, Florent Foucaud, Eunjung Kim, and Florian Sikora.

September 25, 2014

Warm Up

Connected Grundy Coloring

Weak Grundy Coloring

Grundy Colorings

- Order the vertices v₁, v₂... v_n to maximize the number of colors used by the greedy coloring.
- That is, v_i is colored with c(v_i) the first color that is not in its neighborhood.

Grundy Colorings

- Order the vertices v₁, v₂... v_n to maximize the number of colors used by the greedy coloring.
- That is, v_i is colored with c(v_i) the first color that is not in its neighborhood.
- Connected version: $\forall i, G[v_1 \cup \ldots \cup v_i]$ is connected.

Grundy Colorings

- Order the vertices v₁, v₂... v_n to maximize the number of colors used by the greedy coloring.
- That is, v_i is colored with c(v_i) the first color that is not in its neighborhood.
- Connected version: $\forall i, G[v_1 \cup \ldots \cup v_i]$ is connected.
- ► Weak version: v_i can be colored with any color in {1,..., c(v_i)}.

4

How many vertices (at most) did we need to achieve color k?

$$t_1 = 1$$
 and $t_k = \sum_{1 \leq i \leq k-1} t_i$.
So, $t_k = 2^{k-1}$.

Theorem (Zaker '05)

The Grundy number can be computed in $O(f(k)n^{2^{k-1}})$.

XP algorithm: $O(f(k)n^{g(k)})$

$$t_1 = 1$$
 and $t_k = \sum_{1 \leq i \leq k-1} t_i$.
So, $t_k = 2^{k-1}$.

Theorem (Zaker '05)

The Grundy number can be computed in $O(f(k)n^{2^{k-1}})$.

XP algorithm: $O(f(k)n^{g(k)})$

Can we do the same for the connected Grundy number?

Theorem (BCDGMSS '14)

CONNECTED GRUNDY COLORING is NP-complete.

Theorem

CONNECTED GRUNDY COLORING is NP-complete even for k = 7.

▶ Reduction from 3SAT-3OCC.

The Complexity of Grundy Coloring and its Variants

▶ Reduction from 3SAT-3OCC.

We move along a "path" P₁ of *literal* vertices: coloring such a vertex by 3 ≡ setting the literal to true.

- ▶ Reduction from 3SAT-3OCC.
- We move along a "path" P₁ of *literal* vertices: coloring such a vertex by 3 ≡ setting the literal to true.
- We then move along a "path" P₂ of *clause* vertices c_js: coloring such a vertex by 4 ≡ satisfying the clause.

- ▶ Reduction from 3SAT-3OCC.
- We move along a "path" P₁ of *literal* vertices: coloring such a vertex by 3 ≡ setting the literal to true.
- We then move along a "path" P₂ of *clause* vertices c_js: coloring such a vertex by 4 ≡ satisfying the clause.
- ► To achieve color 7, three special neighbors of the c_js should be colored by 1, 2 and 3 respectively.

 $\begin{array}{c} P_1 \text{ and } P_2 \text{ for the instance} \\ \{x_1 \lor \neg x_2 \lor x_3\}, \{x_1 \lor x_2 \lor \neg x_4\}, \{\neg x_1 \lor x_3 \lor x_4\}, \{x_2 \lor \neg x_3 \lor x_4\}. \end{array}$

(ac

The doubly-circled vertices are linked to all the *clause* vertices c_i s.

The Complexity of Grundy Coloring and its Variants

Color Coding

Add colors at random to the instance such that the colors enhance an optimal solution with probability p(k).

Color Coding

- Add colors at random to the instance such that the colors enhance an optimal solution with probability p(k).
- If we try $\frac{100}{p(k)}$ times, we always fail with probability $(1 \frac{1}{e})^{100}$ (that's not happening).

Color Coding

- Add colors at random to the instance such that the colors enhance an optimal solution with probability p(k).
- ▶ If we try $\frac{100}{p(k)}$ times, we always fail with probability $(1 \frac{1}{e})^{100}$ (that's not happening).
- ► Solving the instance is *easier* with this extra information.

How many times do you repeat the random coloring?

- How many times do you repeat the random coloring?
- ▶ How do find a path of length *k* in colored instances?

Theorem WEAK GRUNDY COLORING *is in* FPT.

FPT algorithm: $O(f(k)n^c)$.

The Complexity of Grundy Coloring and its Variants

 $\dots O(k^{2^k})$ unsuccessful guesses later \dots

$\dots O(k^{2^k})$ unsuccessful guesses later \dots

Open Problems

- ▶ Is GRUNDY COLORING solvable in $O(f(k)n^c)$?
- What is the complexity of CONNECTED GRUNDY COLORING for k = 4, k = 5 and k = 6?
- ► What is the complexity of WEAK CONNECTED GRUNDY COLORING for *k* constant?