The Complexity of Grundy Coloring and its Variants

Édouard Bonnet, Florent Foucaud, Eunjung Kim, and Florian Sikora.

September 25, 2014

Warm Up

Connected Grundy Coloring

Weak Grundy Coloring

Grundy Colorings

- Order the vertices $v_{1}, v_{2} \ldots v_{n}$ to maximize the number of colors used by the greedy coloring.
- That is, v_{i} is colored with $c\left(v_{i}\right)$ the first color that is not in its neighborhood.

Grundy Colorings

- Order the vertices $v_{1}, v_{2} \ldots v_{n}$ to maximize the number of colors used by the greedy coloring.
- That is, v_{i} is colored with $c\left(v_{i}\right)$ the first color that is not in its neighborhood.
- Connected version: $\forall i, G\left[v_{1} \cup \ldots \cup v_{i}\right]$ is connected.

Grundy Colorings

- Order the vertices $v_{1}, v_{2} \ldots v_{n}$ to maximize the number of colors used by the greedy coloring.
- That is, v_{i} is colored with $c\left(v_{i}\right)$ the first color that is not in its neighborhood.
- Connected version: $\forall i, G\left[v_{1} \cup \ldots \cup v_{i}\right]$ is connected.
- Weak version: v_{i} can be colored with any color in $\left\{1, \ldots, c\left(v_{i}\right)\right\}$.

Can you achieve color 6 ?

Can you achieve color 6 ?

Can you achieve color 6?

Can you achieve color 6 ?

Grundy number $=3$

Connected Grundy number $=2$

Connected Grundy number $=2$

Connected Grundy number $=2$

Connected Grundy number $=2$

Connected Grundy number $=2$

Connected Grundy number $=2$

Connected Grundy number $=2$

Connected Grundy number $=2$

How many vertices (at most) did we need to achieve color k ?

How many vertices (at most) did we need to achieve color k ?

(4)

How many vertices (at most) did we need to achieve color k ?

How many vertices (at most) did we need to achieve color k ?

How many vertices (at most) did we need to achieve color k ?

$t_{1}=1$ and $t_{k}=\Sigma_{1 \leqslant i \leqslant k-1} t_{i}$.
So, $t_{k}=2^{k-1}$.

Theorem (Zaker '05)
The Grundy number can be computed in $O\left(f(k) 2^{2^{k-1}}\right)$.
XP algorithm: $O\left(f(k) n^{g(k)}\right)$
$t_{1}=1$ and $t_{k}=\Sigma_{1 \leqslant i \leqslant k-1} t_{i}$.
So, $t_{k}=2^{k-1}$.

Theorem (Zaker '05)
The Grundy number can be computed in $O\left(f(k) 2^{2^{k-1}}\right)$.
XP algorithm: $O\left(f(k) n^{g(k)}\right)$
Can we do the same for the connected Grundy number?

Connected Grundy number $=3$, unbounded witness

Connected Grundy number $=3$, unbounded witness

Theorem (BCDGMSS '14)
 Connected Grundy Coloring is NP-complete.
 Theorem
 Connected Grundy Coloring is NP-complete even for $k=7$.

- Reduction from 3SAT-3OCC.
- Reduction from 3SAT-3OCC.
- We move along a "path" P_{1} of literal vertices: coloring such a vertex by $3 \equiv$ setting the literal to true.
- Reduction from 3SAT-3OCC.
- We move along a "path" P_{1} of literal vertices: coloring such a vertex by $3 \equiv$ setting the literal to true.
- We then move along a "path" P_{2} of clause vertices $c_{j} s$: coloring such a vertex by $4 \equiv$ satisfying the clause.
- Reduction from 3SAT-3OCC.
- We move along a "path" P_{1} of literal vertices: coloring such a vertex by $3 \equiv$ setting the literal to true.
- We then move along a "path" P_{2} of clause vertices $c_{j} s$: coloring such a vertex by $4 \equiv$ satisfying the clause.
- To achieve color 7, three special neighbors of the c_{j} s should be colored by 1, 2 and 3 respectively.

P_{1} and P_{2} for the instance

$$
\left\{x_{1} \vee \neg x_{2} \vee x_{3}\right\},\left\{x_{1} \vee x_{2} \vee \neg x_{4}\right\},\left\{\neg x_{1} \vee x_{3} \vee x_{4}\right\},\left\{x_{2} \vee \neg x_{3} \vee x_{4}\right\} .
$$

A connected Grundy coloring setting all the c_{j} s to 4 .

A connected Grundy coloring setting all the c_{j} s to 4 .

A connected Grundy coloring setting all the c_{j} s to 4 .

A connected Grundy coloring setting all the c_{j} s to 4 .

A connected Grundy coloring setting all the c_{j} s to 4 .

The doubly-circled vertices are linked to all the clause vertices $c_{j} s$.

A connected Grundy coloring achieving color 7.

A connected Grundy coloring achieving color 7.

Are there graphs where weak Grundy exceeds Grundy number?

Are there graphs where weak Grundy exceeds Grundy number?

Weak Grundy number $=3$, (connected) Grundy number $=2$.

Are there graphs where weak Grundy exceeds Grundy number?

Weak Grundy number $=3$, (connected) Grundy number $=2$.

Are there graphs where weak Grundy exceeds Grundy number?

Weak Grundy number $=3$, (connected) Grundy number $=2$.

Are there graphs where weak Grundy exceeds Grundy number?

Weak Grundy number $=3$, (connected) Grundy number $=2$.

Are there graphs where weak Grundy exceeds Grundy number?

Weak Grundy number $=3$, (connected) Grundy number $=2$.

Color Coding

- Add colors at random to the instance such that the colors enhance an optimal solution with probability $p(k)$.

Color Coding

- Add colors at random to the instance such that the colors enhance an optimal solution with probability $p(k)$.
- If we try $\frac{100}{p(k)}$ times, we always fail with probability $\left(1-\frac{1}{e}\right)^{100}$ (that's not happening).

Color Coding

- Add colors at random to the instance such that the colors enhance an optimal solution with probability $p(k)$.
- If we try $\frac{100}{p(k)}$ times, we always fail with probability $\left(1-\frac{1}{e}\right)^{100}$ (that's not happening).
- Solving the instance is easier with this extra information.

Now, can you propose an algorithm in $O\left(f(k) n^{c}\right)$ for finding a path of length k in a graph?

Now, can you propose an algorithm in $O\left(f(k) n^{c}\right)$ for finding a path of length k in a graph?

Now, can you propose an algorithm in $O\left(f(k) n^{c}\right)$ for finding a path of length k in a graph?

- How many times do you repeat the random coloring?

Now, can you propose an algorithm in $O\left(f(k) n^{c}\right)$ for finding a path of length k in a graph?

- How many times do you repeat the random coloring?
- How do find a path of length k in colored instances?

Theorem
Weak Grundy Coloring is in FPT.

FPT algorithm: $O\left(f(k) n^{c}\right)$.

Guess \#1

Guess \#1

Guess \#1

Guess \#2

Guess \#2

Guess \#2

Guess \#2

$\ldots O\left(k^{2^{k}}\right)$ unsuccessful guesses later ...

$\ldots O\left(k^{2^{k}}\right)$ unsuccessful guesses later ...

Open Problems

- Is Grundy Coloring solvable in $O\left(f(k) n^{c}\right)$?
- What is the complexity of Connected Grundy Coloring for $k=4, k=5$ and $k=6$?
- What is the complexity of Weak Connected Grundy Coloring for k constant?

