
Twin-width delineation and win-wins

Édouard Bonnet

ENS Lyon, LIP

July 4th, 2022, Paris

Trigraphs

a

b

c

d

e

f

g

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing

Contraction sequence

a

b

c

d

e

f

g

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that
Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that
Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

b

c

gef

a dad

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that
Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

c

g

ad

b efbef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that
Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

c

adg

bef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that
Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

adg

bcef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that
Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that
Gi is obtained by performing one contraction in Gi+1.

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

Maximum red degree = 0
overall maximum red degree = 0

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

b

c

gef

a dad

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

c

g

ad

b efbef

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

c

adg

bef

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

adg

bcef

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

abcdefg

Maximum red degree = 0
overall maximum red degree = 2

Trees have twin-width at most 2

If possible, contract two twin leaves

Trees have twin-width at most 2

If not, contract a deepest leaf with its parent

Trees have twin-width at most 2

If not, contract a deepest leaf with its parent

Trees have twin-width at most 2

If possible, contract two twin leaves

Trees have twin-width at most 2

Cannot create a red degree-3 vertex

Trees have twin-width at most 2

Cannot create a red degree-3 vertex

Trees have twin-width at most 2

Cannot create a red degree-3 vertex

Trees have twin-width at most 2

Cannot create a red degree-3 vertex

Trees have twin-width at most 2

Cannot create a red degree-3 vertex

Trees have twin-width at most 2

Cannot create a red degree-3 vertex

Trees have twin-width at most 2

Generalization to bounded treewidth and even bounded rank-width

Grids have twin-width at most 4

More generally, d-dimensional grids have twin-width Θ(d)

Grids have twin-width at most 4

More generally, d-dimensional grids have twin-width Θ(d)

Grids have twin-width at most 4

More generally, d-dimensional grids have twin-width Θ(d)

Grids have twin-width at most 4

More generally, d-dimensional grids have twin-width Θ(d)

Grids have twin-width at most 4

More generally, d-dimensional grids have twin-width Θ(d)

Grids have twin-width at most 4

More generally, d-dimensional grids have twin-width Θ(d)

Grids have twin-width at most 4

More generally, d-dimensional grids have twin-width Θ(d)

Grids have twin-width at most 4

More generally, d-dimensional grids have twin-width Θ(d)

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add a red full binary tree whose leaves are the vertex set

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add a red full binary tree whose leaves are the vertex set

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Take any subdivided edge

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shorten it to the length of the path in the red tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move to the next subdivided edge

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20, ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width or clique-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size,
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Do contraction sequences allow for faster algorithms?

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20, ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width or clique-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size,
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Do contraction sequences allow for faster algorithms?

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x∀y (E (x , y)⇒
∨

16i6k
x = xi ∨ y = xi)

G |= ϕ? ⇔ k-Vertex Cover

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
Any FO transduction of a bounded twin-width class has bounded
twin-width.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
Any FO transduction of a bounded twin-width class has bounded
twin-width.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
Any FO transduction of a bounded twin-width class has bounded
twin-width.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
Any FO transduction of a bounded twin-width class has bounded
twin-width.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
Any FO transduction of a bounded twin-width class has bounded
twin-width.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
Any FO transduction of a bounded twin-width class has bounded
twin-width.

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

Theorem (B., Kim, Thomassé, Watrigant ’20)
Any FO transduction of a bounded twin-width class has bounded
twin-width.

Dependence and monadic dependence

A class C is
dependent, if the hereditary closure of every simple interpretation
of C misses some graph
monadically dependent, if every transduction of C misses some
graph [Baldwin, Shelah ’85]

Theorem (Downey, Fellows, Taylor ’96)
FO model checking is AW [∗]-complete on general graphs,
thus unlikely FPT on independent classes.

Tractable: FO model checking is FPT on the class

Conjecture (FO, Workshop in Warwick ’16, Gajarský et al. ’18)
Every monadically dependent class is tractable, with equivalence
among hereditary classes.

Dependence and monadic dependence

A class C is
dependent, if the hereditary closure of every simple interpretation
of C misses some graph
monadically dependent, if every transduction of C misses some
graph [Baldwin, Shelah ’85]

Theorem (Downey, Fellows, Taylor ’96)
FO model checking is AW [∗]-complete on general graphs,
thus unlikely FPT on independent classes.

Tractable: FO model checking is FPT on the class

Conjecture (FO, Workshop in Warwick ’16, Gajarský et al. ’18)
Every monadically dependent class is tractable, with equivalence
among hereditary classes.

Tractable classes

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

bounded
degree

sparse
classes

bounded twin-width

bounded
rank-width

cographs

posets of
bounded
width

L-interval

unit interval

pattern
avoiding
permuta-
tions

map
graphs

dense
classes

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence.

Delineation

D is delineated if for every hereditary C ⊆ D,
C has bounded twin-width ⇔ C is monadically dependent

D is effectively delineated if further twin-width is FPT
approximable in D

Observation
Assuming FPT 6= AW [∗], for every hereditary subclass C of an
effectively delineated class:
FO model checking is FPT on C ⇔ C has bounded twin-width.

The FO conjecture is settled on subclasses of delineated classes

Delineation

D is delineated if for every hereditary closure C of a subclass of D,
C has bounded twin-width ⇔ C is monadically dependent.

D is effectively delineated if further twin-width is FPT
approximable in D

Observation
Assuming FPT 6= AW [∗], for every hereditary subclass C of an
effectively delineated class:
FO model checking is FPT on C ⇔ C has bounded twin-width.

The FO conjecture is settled on subclasses of delineated classes

Delineation

D is delineated if for every hereditary closure C of a subclass of D,
C has bounded twin-width ⇔ C is monadically dependent.

D is effectively delineated if further twin-width is FPT
approximable in D

Observation
Assuming FPT 6= AW [∗], for every hereditary subclass C of an
effectively delineated class:
FO model checking is FPT on C ⇔ C has bounded twin-width.

The FO conjecture is settled on subclasses of delineated classes

Delineation

D is delineated if for every hereditary closure C of a subclass of D,
C has bounded twin-width ⇔ C is monadically dependent.

D is effectively delineated if further twin-width is FPT
approximable in D

Observation
Assuming FPT 6= AW [∗], for every hereditary subclass C of an
effectively delineated class:
FO model checking is FPT on C ⇔ C has bounded twin-width.

The FO conjecture is settled on subclasses of delineated classes

How hard is computing twin-width?

Theorem (Bergé, B., Déprés ’22)
It is NP-complete to decide if the twin-width is at most 4.

Question
Is there an FPT f (OPT)-approximation of twin-width?

Question
Is twin-width at most k polytime recognizable? (for k ∈ {2, 3})

How hard is computing twin-width?

Theorem (Bergé, B., Déprés ’22)
It is NP-complete to decide if the twin-width is at most 4.

Question
Is there an FPT f (OPT)-approximation of twin-width?

Question
Is twin-width at most k polytime recognizable? (for k ∈ {2, 3})

Grid number, mixed number

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

gn(M) = largest k such that M has a k-grid minor
mxn(M) = largest k such that M has a k-mixed minor

Grid number, mixed number

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

gn(G) = min gn(M) among every adjacency matrix M of G
mxn(G) = min mxn(M) among every adjacency matrix M of G

Twin-width and mixed/grid number

Theorem (B., Kim, Watrigant, Thomassé ’20)
For every graph G, mxn(G)−1

2 6 tww(G) 6 22O(mxn(G)) .

Corollary
For every graph G, tww(G) 6 2O(gn(G)).

Theorem (B., Déprés ’22)
∀c < 1, ∃ a class C of unbounded twin-width such that ∀G ∈ C,

tww(G) > 2c·(gn(G)−2).

Question
Is the double-exponential dependence in mixed number necessary?

Twin-width and mixed/grid number

Theorem (B., Kim, Watrigant, Thomassé ’20)
For every graph G, mxn(G)−1

2 6 tww(G) 6 22O(mxn(G)) .

Corollary
For every graph G, tww(G) 6 2O(gn(G)).

Theorem (B., Déprés ’22)
∀c < 1, ∃ a class C of unbounded twin-width such that ∀G ∈ C,

tww(G) > 2c·(gn(G)−2).

Question
Is the double-exponential dependence in mixed number necessary?

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs have bounded twin-width

1

0

0

order by left endpoints

Unit interval graphs have bounded twin-width

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Regularizing mixed minors, k-grid permutation

Here with k = 3, it has every 3-permutation as subpermutation

The 6 universal patterns of unbounded twin-width

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk ’22)
∃f s.t. all the adjacency matrices of a graph of twin-width > f (k)
contains a k-grid permutation submatrix or one of its 5 encodings

Semi-induced matching, antimatching, and 4 half-graphs or ladders

Effectively delineated classes

Ordered graphs, permutation graphs, interval graphs, etc.

Find a natural ordering of the vertex set
I no universal pattern → bounded twin-width
I universal pattern → “transversal pair,” witness of monadic

independence

transversal pair: encoding of the ordered grid permutation
1
4
7
2
5
8
3
6
9

Effectively delineated classes

Ordered graphs, permutation graphs, interval graphs, etc.

Find a natural ordering of the vertex set
I no universal pattern → bounded twin-width
I universal pattern → “transversal pair,” witness of monadic

independence

transversal pair: encoding of the ordered grid permutation
1
4
7
2
5
8
3
6
9

Ordered graphs are delineated

Simply order along the linear order of the binary structure

Either witnesses bounded twin-width, or

Crucially we have in addition the linear order on the rows and
columns → monadic independence

Ordered graphs are delineated

Simply order along the linear order of the binary structure

Either witnesses bounded twin-width, or

Crucially we have in addition the linear order on the rows and
columns → monadic independence

Interval graphs are delineated
Right endpoint ordering witnesses bounded twin-width or

A B C

Back to the mixed minors

A

A

B

B

C

C

01
01

01
01

01

0
1

0

1

0

1

0

1

0
1

0

1

0

1

0
1

0

1

0
1

1
0

1
0

1
0

1
0

1
0

01
01

01
01

01

Interval graphs are delineated
Right endpoint ordering witnesses bounded twin-width or

A B C

Back to the mixed minors

A

A

B

B

C

C

01
01

01
01

01

0
1

0

1

0

1

0

1

0
1

0

1

0

1

0
1

0

1

0
1

1
0

1
0

1
0

1
0

1
0

01
01

01
01

01

Interval graphs are delineated
Right endpoint ordering witnesses bounded twin-width or

A B C

Back to the mixed minors

A

A

B

B

C

C

01
01

01
01

01

0
1

0

1

0

1

0

1

0
1

0

1

0

1

0
1

0

1

0
1

1
0

1
0

1
0

1
0

1
0

01
01

01
01

01

Interval graphs are delineated
Right endpoint ordering witnesses bounded twin-width or

A B C

Back to the mixed minors

A

A

B

B

C

C

01
01

01
01

01

0
1

0

1

0

1

0

1

0
1

0

1

0

1

0
1

0

1

0
1

1
0

1
0

1
0

1
0

1
0

01
01

01
01

01

Non-delineated classes

Exhibit two transdutions T,T′ and C ⊆ D such that T(C) contains
all subcubic graphs and T′({subcubic graphs}) contains C
I T implies that C has unbounded twin-width
I T′ implies that C is monadically dependent

Example: bounded degree, split graphs, segment graphs,

visibility graphs of simple polygons

Non-delineated classes

Exhibit two transdutions T,T′ and C ⊆ D such that T(C) contains
all subcubic graphs and T′({subcubic graphs}) contains C
I T implies that C has unbounded twin-width
I T′ implies that C is monadically dependent

Example: bounded degree, split graphs, segment graphs,

visibility graphs of simple polygons

Simple polygon graphs are not delineated

a1

b1

a2

b2

a3

b3

a4

b4
q1 q2 q3 q4

p1 p2 p3 p4

T: polygons � subcubic
ϕ(x , y) = blue(x) ∧ red(y) ∧

(
E (x , y) ∨

(∃z1∃z2 black(z1) ∧ green(z2) ∧ E (x , z1) ∧ E (z1, z2) ∧ E (z2, y)) ∨

(∃z1∃z2∃z3∃z4 black(z1) ∧ green(z2) ∧ black(z3) ∧ green(z4)
∧E (x , z1) ∧ E (z1, z2) ∧ E (z2, z3) ∧ E (z3, z4) ∧ E (z4, y))

)
T’: subcubic � polygons, add the clique on red and black vertices

Simple polygon graphs are not delineated

a1

b1

a2

b2

a3

b3

a4

b4
q1 q2 q3 q4

p1 p2 p3 p4

T: polygons � subcubic

ϕ(x , y) = blue(x) ∧ red(y) ∧
(
E (x , y) ∨

(∃z1∃z2 black(z1) ∧ green(z2) ∧ E (x , z1) ∧ E (z1, z2) ∧ E (z2, y)) ∨

(∃z1∃z2∃z3∃z4 black(z1) ∧ green(z2) ∧ black(z3) ∧ green(z4)
∧E (x , z1) ∧ E (z1, z2) ∧ E (z2, z3) ∧ E (z3, z4) ∧ E (z4, y))

)
T’: subcubic � polygons, add the clique on red and black vertices

Simple polygon graphs are not delineated

a1

b1

a2

b2

a3

b3

a4

b4
q1 q2 q3 q4

p1 p2 p3 p4

T: polygons � subcubic
ϕ(x , y) = blue(x) ∧ red(y) ∧

(
E (x , y) ∨

(∃z1∃z2 black(z1) ∧ green(z2) ∧ E (x , z1) ∧ E (z1, z2) ∧ E (z2, y)) ∨

(∃z1∃z2∃z3∃z4 black(z1) ∧ green(z2) ∧ black(z3) ∧ green(z4)
∧E (x , z1) ∧ E (z1, z2) ∧ E (z2, z3) ∧ E (z3, z4) ∧ E (z4, y))

)
T’: subcubic � polygons, add the clique on red and black vertices

Simple polygon graphs are not delineated

a1

b1

a2

b2

a3

b3

a4

b4
q1 q2 q3 q4

p1 p2 p3 p4

T: polygons � subcubic
ϕ(x , y) = blue(x) ∧ red(y) ∧

(
E (x , y) ∨

(∃z1∃z2 black(z1) ∧ green(z2) ∧ E (x , z1) ∧ E (z1, z2) ∧ E (z2, y)) ∨

(∃z1∃z2∃z3∃z4 black(z1) ∧ green(z2) ∧ black(z3) ∧ green(z4)
∧E (x , z1) ∧ E (z1, z2) ∧ E (z2, z3) ∧ E (z3, z4) ∧ E (z4, y))

)
T’: subcubic � polygons, add the clique on red and black vertices

Simple polygon graphs are not delineated

a1

b1

a2

b2

a3

b3

a4

b4
q1 q2 q3 q4

p1 p2 p3 p4

T: polygons � subcubic
ϕ(x , y) = blue(x) ∧ red(y) ∧

(
E (x , y) ∨

(∃z1∃z2 black(z1) ∧ green(z2) ∧ E (x , z1) ∧ E (z1, z2) ∧ E (z2, y)) ∨

(∃z1∃z2∃z3∃z4 black(z1) ∧ green(z2) ∧ black(z3) ∧ green(z4)
∧E (x , z1) ∧ E (z1, z2) ∧ E (z2, z3) ∧ E (z3, z4) ∧ E (z4, y))

)

T’: subcubic � polygons, add the clique on red and black vertices

Simple polygon graphs are not delineated

a1

b1

a2

b2

a3

b3

a4

b4
q1 q2 q3 q4

p1 p2 p3 p4

T: polygons � subcubic
ϕ(x , y) = blue(x) ∧ red(y) ∧

(
E (x , y) ∨

(∃z1∃z2 black(z1) ∧ green(z2) ∧ E (x , z1) ∧ E (z1, z2) ∧ E (z2, y)) ∨

(∃z1∃z2∃z3∃z4 black(z1) ∧ green(z2) ∧ black(z3) ∧ green(z4)
∧E (x , z1) ∧ E (z1, z2) ∧ E (z2, z3) ∧ E (z3, z4) ∧ E (z4, y))

)
T’: subcubic � polygons, add the clique on red and black vertices

Twin-width win-win

Goal: compute FO-definable parameter p in FPT time in C.

Show that ∃f non-decreasing, such that ∀G ∈ C an
f (p(G))-sequence of G can be computed in FPT time

I Width > f (k): report p(G) > k
I Width 6 f (k): use FO model checking algorithm

→ k-Independent Set in visibility graphs of simple polygons

Twin-width win-win

Goal: compute FO-definable parameter p in FPT time in C.

Show that ∃f non-decreasing, such that ∀G ∈ C an
f (p(G))-sequence of G can be computed in FPT time

I Width > f (k): report p(G) > k
I Width 6 f (k): use FO model checking algorithm

→ k-Independent Set in visibility graphs of simple polygons

Ordering along the boundary of the polygon

a

b c

d

c ′b′

b′ a b

c
d
c ′

Ordering along the boundary of the polygon

a

b c

d

c ′b′

b′ a b

c
d
c ′

Extractions

Here we only need a decreasing pattern

α1 α2 α3

β3

β2

β1

α1 α2 α3

β3

β2

β1

By Ramsey’s theorem, we can assume that the αis and the βis
both induce a clique.

Extractions

Here we only need a decreasing pattern

α1 α2 α3

β3

β2

β1

α1 α2 α3

β3

β2

β1

By Ramsey’s theorem, we can assume that the αis and the βis
both induce a clique.

Extractions

Here we only need a decreasing pattern

α1 α2 α3

β3

β2

β1

α1 α2 α3

β3

β2

β1

By Ramsey’s theorem, we can assume that the αis and the βis
both induce a clique.

Geometric arguments

α1

α2

α3
α4

β2

β3

Quadrangle α2α3β3β2 is not self-crossing

Geometric arguments

α1

α2

α3
α4

β2 β3
P−

P+

Quadrangle α2α3β3β2 has to be convex

Geometric arguments

α1

α2

α3
α4

β2

β3

Then α2, α3, β3, β2 induce K4, a contradiction

Visibility graphs of 1.5D terrains

Order along x -coordinates

a

b cc

d

a b
c
d

k-Biclique and k-Ladder are FPT in this class

Visibility graphs of 1.5D terrains

Order along x -coordinates

a

b cc

d

a b
c
d

k-Biclique and k-Ladder are FPT in this class

Questions on delineation

Question (Yes! Geniet, Thomassé ’22+)
Are tournaments delineated?

Question
Are visibility graphs of terrains delineated?

Question
Are unit segments delineated?

Question
Is non delineation equivalent to having a subclass transduction
equivalent to subcubic graphs?

Thank you for your attention!

Questions on delineation

Question (Yes! Geniet, Thomassé ’22+)
Are tournaments delineated?

Question
Are visibility graphs of terrains delineated?

Question
Are unit segments delineated?

Question
Is non delineation equivalent to having a subclass transduction
equivalent to subcubic graphs?

Thank you for your attention!

