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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs
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Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that
Gi is obtained by performing one contraction in Gi+1.
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Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that
Gi is obtained by performing one contraction in Gi+1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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Trees have twin-width at most 2

If possible, contract two twin leaves
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Cannot create a red degree-3 vertex
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Trees have twin-width at most 2

Cannot create a red degree-3 vertex



Trees have twin-width at most 2

Generalization to bounded treewidth and even bounded rank-width
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(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add a red full binary tree whose leaves are the vertex set
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(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Take any subdivided edge



(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shorten it to the length of the path in the red tree
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(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move to the next subdivided edge



Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20, ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width or clique-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size,
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Do contraction sequences allow for faster algorithms?
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First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x∀y (E (x , y)⇒
∨

16i6k
x = xi ∨ y = xi )

G |= ϕ? ⇔ k-Vertex Cover



FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
Any FO transduction of a bounded twin-width class has bounded
twin-width.
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Dependence and monadic dependence

A class C is
dependent, if the hereditary closure of every simple interpretation
of C misses some graph
monadically dependent, if every transduction of C misses some
graph [Baldwin, Shelah ’85]

Theorem (Downey, Fellows, Taylor ’96)
FO model checking is AW [∗]-complete on general graphs,
thus unlikely FPT on independent classes.

Tractable: FO model checking is FPT on the class

Conjecture (FO, Workshop in Warwick ’16, Gajarský et al. ’18)
Every monadically dependent class is tractable, with equivalence
among hereditary classes.
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Tractable classes
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Theorem (B., Kim, Thomassé, Watrigant ’20)
FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence.



Delineation

D is delineated if for every hereditary C ⊆ D,
C has bounded twin-width ⇔ C is monadically dependent

D is effectively delineated if further twin-width is FPT
approximable in D

Observation
Assuming FPT 6= AW [∗], for every hereditary subclass C of an
effectively delineated class:
FO model checking is FPT on C ⇔ C has bounded twin-width.

The FO conjecture is settled on subclasses of delineated classes
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How hard is computing twin-width?

Theorem (Bergé, B., Déprés ’22)
It is NP-complete to decide if the twin-width is at most 4.

Question
Is there an FPT f (OPT)-approximation of twin-width?

Question
Is twin-width at most k polytime recognizable? (for k ∈ {2, 3})
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Grid number, mixed number
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3-mixed minor

gn(M) = largest k such that M has a k-grid minor
mxn(M) = largest k such that M has a k-mixed minor
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3-mixed minor

gn(G) = min gn(M) among every adjacency matrix M of G
mxn(G) = min mxn(M) among every adjacency matrix M of G



Twin-width and mixed/grid number

Theorem (B., Kim, Watrigant, Thomassé ’20)
For every graph G, mxn(G)−1

2 6 tww(G) 6 22O(mxn(G)) .

Corollary
For every graph G, tww(G) 6 2O(gn(G)).

Theorem (B., Déprés ’22)
∀c < 1, ∃ a class C of unbounded twin-width such that ∀G ∈ C,

tww(G) > 2c·(gn(G)−2).

Question
Is the double-exponential dependence in mixed number necessary?
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Unit interval graphs

Intersection graph of unit segments on the real line



Unit interval graphs have bounded twin-width
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Unit interval graphs have bounded twin-width

1

0

0

not
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No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Regularizing mixed minors, k-grid permutation

Here with k = 3, it has every 3-permutation as subpermutation



The 6 universal patterns of unbounded twin-width

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk ’22)
∃f s.t. all the adjacency matrices of a graph of twin-width > f (k)
contains a k-grid permutation submatrix or one of its 5 encodings

Semi-induced matching, antimatching, and 4 half-graphs or ladders



Effectively delineated classes

Ordered graphs, permutation graphs, interval graphs, etc.

Find a natural ordering of the vertex set
I no universal pattern → bounded twin-width
I universal pattern → “transversal pair,” witness of monadic

independence

transversal pair: encoding of the ordered grid permutation
1
4
7
2
5
8
3
6
9
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Simply order along the linear order of the binary structure

Either witnesses bounded twin-width, or

Crucially we have in addition the linear order on the rows and
columns → monadic independence
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Interval graphs are delineated
Right endpoint ordering witnesses bounded twin-width or
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Non-delineated classes

Exhibit two transdutions T,T′ and C ⊆ D such that T(C) contains
all subcubic graphs and T′({subcubic graphs}) contains C
I T implies that C has unbounded twin-width
I T′ implies that C is monadically dependent

Example: bounded degree, split graphs, segment graphs,

visibility graphs of simple polygons
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Simple polygon graphs are not delineated

a1

b1

a2

b2

a3

b3
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T: polygons � subcubic
ϕ(x , y) = blue(x) ∧ red(y) ∧

(
E (x , y) ∨

(∃z1∃z2 black(z1) ∧ green(z2) ∧ E (x , z1) ∧ E (z1, z2) ∧ E (z2, y)) ∨

(∃z1∃z2∃z3∃z4 black(z1) ∧ green(z2) ∧ black(z3) ∧ green(z4)
∧E (x , z1) ∧ E (z1, z2) ∧ E (z2, z3) ∧ E (z3, z4) ∧ E (z4, y))

)
T’: subcubic � polygons, add the clique on red and black vertices
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Twin-width win-win

Goal: compute FO-definable parameter p in FPT time in C.

Show that ∃f non-decreasing, such that ∀G ∈ C an
f (p(G))-sequence of G can be computed in FPT time

I Width > f (k): report p(G) > k
I Width 6 f (k): use FO model checking algorithm

→ k-Independent Set in visibility graphs of simple polygons
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Ordering along the boundary of the polygon
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Extractions

Here we only need a decreasing pattern

α1 α2 α3

β3

β2

β1

α1 α2 α3

β3

β2

β1

By Ramsey’s theorem, we can assume that the αis and the βis
both induce a clique.
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Geometric arguments
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Quadrangle α2α3β3β2 is not self-crossing
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Quadrangle α2α3β3β2 has to be convex



Geometric arguments
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Then α2, α3, β3, β2 induce K4, a contradiction



Visibility graphs of 1.5D terrains

Order along x -coordinates

a

b cc
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a b
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d

k-Biclique and k-Ladder are FPT in this class
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Questions on delineation

Question (Yes! Geniet, Thomassé ’22+)
Are tournaments delineated?

Question
Are visibility graphs of terrains delineated?

Question
Are unit segments delineated?

Question
Is non delineation equivalent to having a subclass transduction
equivalent to subcubic graphs?

Thank you for your attention!
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