Twin-Width and Contraction Sequences

Édouard Bonnet

ENS de Lyon, LIP
April 19th 2024, Habilitation Defense, Lyon

The modeling power of graphs

Graph theory and its interactions

Structural graph theory
Algorithmic graph theory

Graph theory

Extremal graph theory

Random graphs

Tree-decomposition

Tree-decomposition

Cover by bags mapping to a tree s.t. each vertex lies in a subtree

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

Treewidth

Minimum largest bag size over all tree decompositions minus 1

- rediscovered several times in the 70's and 80's...
- made central by Graph Minors and algorithmic graph theory
- previous slide: $2^{O(\mathrm{tw})} n$ time for Max Independent Set
- generalized by Courcelle's theorem
- inspired other tree-based width parameters: clique-width, rank-width, mim-width, etc.

Treewidth

Minimum largest bag size over all tree decompositions minus 1

- rediscovered several times in the 70's and 80's...
- made central by Graph Minors and algorithmic graph theory
- previous slide: $2^{O(\mathrm{tw})} n$ time for Max Independent Set
- generalized by Courcelle's theorem
- inspired other tree-based width parameters: clique-width, rank-width, mim-width, etc.

Computing a tree decomposition?

Treewidth

Minimum largest bag size over all tree decompositions minus 1

- rediscovered several times in the 70's and 80's...
- made central by Graph Minors and algorithmic graph theory
- previous slide: $2^{O(\mathrm{tw})} n$ time for Max Independent Set
- generalized by Courcelle's theorem
- inspired other tree-based width parameters: clique-width, rank-width, mim-width, etc.

Computing a tree decomposition? NP-hard but various algorithms

$$
\text { width } 2 \mathrm{tw}+1 \text { in } 2^{O(\mathrm{tw})} n
$$

width tw in $2^{O\left(\mathrm{tw}^{2}\right)_{n}}$ width $\mathrm{tw} \sqrt{\log \mathrm{tw}}$ in $n^{O(1)}$
width tw in 1.74^{n}

Low treewidth is very restrictive

Grids have unbounded treewidth, clique-width, rank-width

Sparsity theory

Bounded expansion: only sparse graph by shallow tree contraction

Nowhere denseness: no large clique by shallow tree contraction

Going beyond sparsity and bounded clique-width?

Conciliating the grid and the clique

The genesis of twin-width: Permutation Pattern

Is 3124 in $57362841 ?$

The genesis of twin-width: Permutation Pattern

The genesis of twin-width: Permutation Pattern

τ

Theorem (Guillemot, Marx '14)
Permutation Pattern can be solved in time $f(|\sigma|)|\tau|$.

Guillemot and Marx's win-win algorithm

Is σ in τ ?
Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ 1-entries has a t-grid minor.

$$
\text { 4-grid minor }\left[\begin{array}{cc|cc|cc|cc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Guillemot and Marx's win-win algorithm

Is σ in τ ?
Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ 1-entries has a t-grid minor.

$$
\text { 4-grid minor }\left[\begin{array}{cc|cc|cc|cc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

$\geqslant c_{|\sigma|} n$ 1-entries: answer YES from the $|\sigma|$-grid minor, or $<c_{|\sigma|} n$ 1-entries: merge of two "similar" rectangles of 1 s

Guillemot and Marx's win-win algorithm

Is σ in τ ?
Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ 1-entries has a t-grid minor.

$$
\text { 4-grid minor }\left[\begin{array}{cc|cc|cc|cc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

$\geqslant c_{|\sigma|} n$ 1-entries: answer YES from the $|\sigma|$-grid minor, or $<c_{|\sigma|} n$ 1-entries: merge of two "similar" rectangles of 1 s

If the latter always holds: exploitable "decomposition" of τ

Graphs

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that
G_{i} is obtained by performing one contraction in G_{i+1}.
$\mathcal{R}\left(G_{i}\right)$: red graph of G_{i}, obtained by removing its black edges

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that
G_{i} is obtained by performing one contraction in G_{i+1}.
$\mathcal{R}\left(G_{i}\right)$: red graph of G_{i}, obtained by removing its black edges

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that
G_{i} is obtained by performing one contraction in G_{i+1}.
$\mathcal{R}\left(G_{i}\right)$: red graph of G_{i}, obtained by removing its black edges

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.
$\mathcal{R}\left(G_{i}\right)$: red graph of G_{i}, obtained by removing its black edges

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.
$\mathcal{R}\left(G_{i}\right)$: red graph of G_{i}, obtained by removing its black edges

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.
$\mathcal{R}\left(G_{i}\right)$: red graph of G_{i}, obtained by removing its black edges

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that
G_{i} is obtained by performing one contraction in G_{i+1}.
$\mathcal{R}\left(G_{i}\right)$: red graph of G_{i}, obtained by removing its black edges

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all red graphs have maximum degree at most d.

Maximum red degree $=0$ overall maximum red degree $=0$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all red graphs have maximum degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all red graphs have maximum degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all red graphs have maximum degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all red graphs have maximum degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all red graphs have maximum degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all red graphs have maximum degree at most d.

Maximum red degree $=0$ overall maximum red degree $=2$

Grids have twin-width at most 4

Grids have twin-width at most 4

4-sequence for 2-dimensional grids

3-dimensional grids

3-dimensional grids

Contract the blue edges

3-dimensional grids

The d-dimensional grid has twin-width $\Theta(d)$

$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Consider the branching vertices
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

and make them leaves of a red full binary tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Take any subdivided edge
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Shorten it to the length of the path in the red tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Take another subdivided edge and repeat

Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A matrix is said t-mixed free if it does not have a t-mixed minor

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If G admits a t-mixed free adjacency matrix, then $\operatorname{tww}(G)=2^{2^{0(t)}}$.

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \prec$ s.t. $\operatorname{Adj}_{\prec}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \prec$ s.t. $\operatorname{Adj}_{\prec}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Now to bound the twin-width of a class \mathcal{C} :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would contradict the structure of \mathcal{C}

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs

order by left endpoints

Unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Classes known to have effective bounded twin-width

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Classes known to have effective bounded twin-width

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.
Can we solve problems faster, given an $O(1)$-sequence?

k-Independent Set

Algorithms in time $f(k)|V(G)|^{o(k)}$ are unlikely in general

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) k-Independent Set can be solved in time $O\left(d^{2 k} k^{2}|V(G)|\right)$ given a d-sequence $G=G_{n}, \ldots, G_{1}$.

k-Independent Set

Algorithms in time $f(k)|V(G)|^{o(k)}$ are unlikely in general

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) k-Independent Set can be solved in time $O\left(d^{2 k} k^{2}|V(G)|\right)$ given a d-sequence $G=G_{n}, \ldots, G_{1}$.

Main idea: For every $D \in\binom{V\left(G_{i}\right)}{\leqslant k}$ such that $\mathcal{R}\left(G_{i}\right)[D]$ is connected, store a largest independent set in $G[\bigcup D]$ intersecting every vertex of D, for i going to n down to 1 .

k-Independent Set: First observations

Main idea: For every $D \in\binom{V\left(G_{i}\right)}{\leqslant k}$ such that $\mathcal{R}\left(G_{i}\right)[D]$ is connected, store a largest independent set in $G[\bigcup D]$ intersecting every vertex of D, for i going to n down to 1 .

k-Independent Set: First observations

Main idea: For every $D \in\binom{V\left(G_{i}\right)}{\leqslant k}$ such that $\mathcal{R}\left(G_{i}\right)[D]$ is connected, store a largest independent set in $G[\bigcup D]$ intersecting every vertex of D, for i going to n down to 1 .

Initialization: Every connected set in $\mathcal{R}\left(G_{n}\right)$ is of the form $\{v\}$ for $v \in V(G)$, for which we store the independent set $\{v\}$.

k-Independent Set: First observations

Main idea: For every $D \in\binom{V\left(G_{i}\right)}{\leqslant k}$ such that $\mathcal{R}\left(G_{i}\right)[D]$ is connected, store a largest independent set in $G[\bigcup D]$ intersecting every vertex of D, for i going to n down to 1 .

Initialization: Every connected set in $\mathcal{R}\left(G_{n}\right)$ is of the form $\{v\}$ for $v \in V(G)$, for which we store the independent set $\{v\}$.

Completeness: If no independent set of size at least k is detected, a maximum independent set of G is stored for $\{V(G)\}$ in $\mathcal{R}\left(G_{1}\right)$.

k-Independent Set: First observations

Main idea: For every $D \in\binom{V\left(G_{i}\right)}{\leqslant k}$ such that $\mathcal{R}\left(G_{i}\right)[D]$ is connected, store a largest independent set in $G[\bigcup D]$ intersecting every vertex of D, for i going to n down to 1 .

Initialization: Every connected set in $\mathcal{R}\left(G_{n}\right)$ is of the form $\{v\}$ for $v \in V(G)$, for which we store the independent set $\{v\}$.

Completeness: If no independent set of size at least k is detected, a maximum independent set of G is stored for $\{V(G)\}$ in $\mathcal{R}\left(G_{1}\right)$.

Running time: As $\mathcal{R}\left(G_{i}\right)$ has maximum degree at most d, it has at most $d^{2 k}{ }_{i}$ connected sets on up to k vertices.
k-Independent Set: Update of partial solutions

Best partial solution inhabiting •?
k-Independent Set: Update of partial solutions

3 unions of red connected subgraphs to consider in G_{i+1} with u, or v, or both

Model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow$

Model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Dominating Set

Model checking

```
Graph FO/MSO Model Checking Parameter: }|
Input: A graph G and a first-order/monadic second-order sen-
tence }\varphi\inFO/MSO({E}
Question: G}\models\varphi\mathrm{ ?
```

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$$
G \models \varphi ? \Leftrightarrow
$$

Model checking

```
Graph FO/MSO Model Checking Parameter: }|
Input: A graph G and a first-order/monadic second-order sen-
tence }\varphi\inFO/MSO({E}
Question: G}\models\varphi\mathrm{ ?
```

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Independent Set

Model checking

```
Graph FO/MSO Model Checking Parameter: \(|\varphi|\)
Input: A graph \(G\) and a first-order/monadic second-order sentence \(\varphi \in F O / M S O(\{E\})\)
Question: \(G \models \varphi\) ?
```

Example:
$\varphi=\exists X_{1} \exists X_{2} \exists X_{3}\left(\forall x \bigvee_{1 \leqslant i \leqslant 3} X_{i}(x)\right) \wedge \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3}\left(X_{i}(x) \wedge X_{i}(y) \rightarrow \neg E(x, y)\right)$
$G \models \varphi ? \Leftrightarrow$

Model checking

```
Graph FO/MSO Model Checking Parameter: \(|\varphi|\)
Input: A graph \(G\) and a first-order/monadic second-order sentence \(\varphi \in F O / M S O(\{E\})\)
Question: \(G \models \varphi\) ?
```

Example:
$\varphi=\exists X_{1} \exists X_{2} \exists X_{3}\left(\forall x \bigvee_{1 \leqslant i \leqslant 3} X_{i}(x)\right) \wedge \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3}\left(X_{i}(x) \wedge X_{i}(y) \rightarrow \neg E(x, y)\right)$
$G \models \varphi$? \Leftrightarrow 3-Coloring

Model checking

```
Graph FO/MSO Model Checking Parameter: \(|\varphi|\)
Input: A graph \(G\) and a first-order/monadic second-order sentence \(\varphi \in F O / M S O(\{E\})\)
Question: \(G \models \varphi\) ?
```

Example:
$\varphi=\exists X_{1} \exists X_{2} \exists X_{3}\left(\forall x \bigvee_{1 \leqslant i \leqslant 3} X_{i}(x)\right) \wedge \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3}\left(X_{i}(x) \wedge X_{i}(y) \rightarrow \neg E(x, y)\right)$
$G \models \varphi$? $\Leftrightarrow 3$-Coloring
When can we solve Model Checking in time $f(\varphi)|V(G)|^{O(1)}$?

Reduced parameters and component twin-width

$$
p^{\downarrow}(G)=\min \left\{\max _{i \in[n]} p\left(\mathcal{R}\left(G_{i}\right)\right): G_{n}, \ldots, G_{1} \text { sequence of } G\right\}
$$

reduced maximum degree $=$ twin-width

reduced component size \equiv cliquewidth $=$ component twin-width
reduced \#edges \equiv linear cliquewidth

Model checking on graphs of bounded twin-width

Recast of the Courcelle-Makowsky-Rotics theorem:
Theorem (B., Kim, Reinald, Thomassé '22)
MSO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ on graphs G given with a d-sequence of component twin-width.

Generalization of the k-Independent Set algorithm:
Theorem (B., Kim, Thomassé, Watrigant '20)
FO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ on graphs G given with a d-sequence.

Gaifman's locality + MSO model checking algorithm

Classes for which FO model checking is FPT

Theorem (Bergé, B., Déprés '22)
Deciding if the twin-width of a graph is at most 4 is NP-complete.

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{gathered}
\varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
\vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{gathered}
$$

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{aligned}
& \varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
& \vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{aligned}
$$

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

Stable and dependent (for hereditary classes)

Due to [Baldwin, Shelah '85; Braunfeld, Laskowski '22]
Stable class: no transduction of the class contains all ladders Dependent class: no transduction of the class contains all graphs

Stable and dependent (for hereditary classes)

Stable class: no transduction of the class contains all ladders Dependent class: no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable
Unit interval graphs \rightarrow dependent but not stable Interval graphs \rightarrow independent

Stable and dependent (for hereditary classes)

Stable class: no transduction of the class contains all ladders Dependent class: no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow dependent but not stable Interval graphs \rightarrow independent

Bounded twin-width graphs \rightarrow dependent but not stable

Classes for which FO model checking is FPT

Classes for which FO model checking is FPT

Classes for which FO model checking is FPT

Classes for which FO model checking is FPT

First-order transductions and twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)
For every class \mathcal{C} with bounded twin-width and transduction T , the class $\mathrm{T}(\mathcal{C})$ has bounded twin-width.

First-order transductions and twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)
For every class \mathcal{C} with bounded twin-width and transduction T , the class $\mathrm{T}(\mathcal{C})$ has bounded twin-width.

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
A class has bounded twin-width if and only if it is the transduction of a proper permutation class.

First-order transductions and twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)
For every class \mathcal{C} with bounded twin-width and transduction T , the class $\mathrm{T}(\mathcal{C})$ has bounded twin-width.

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
A class has bounded twin-width if and only if it is the transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24)
There is a fixed proper permutation class \mathcal{P} such that a class has bounded twin-width if and only if it is the transduction of \mathcal{P}.

The lens of contraction sequences

Class of bounded	FO transduction of	constr. on red graphs	efficient MC
linear rank-width	linear order	bd \#edges	MSO
rank-width	tree order	bd component	MSO
twin-width	proper perm. class	bd degree	FO

Equivalences for ordered graphs

Theorem (B., Giocanti, Ossona de Mendez, Toruńczyk, Thomassé, Simon '21)
Let \mathcal{C} be a hereditary class of ordered graphs. TFAE:
(i) \mathcal{C} has bounded twin-width.
(ii) \mathcal{C} has a tractable $F O$ model checking.
(iii) \mathcal{C} is monadically dependent.
(iv) \mathcal{C} has single-exponential growth.
(v) \mathcal{C} has subfactorial growth.

Equivalences for ordered graphs

Theorem (B., Giocanti, Ossona de Mendez, Toruńczyk, Thomassé, Simon '21)
Let \mathcal{C} be a hereditary class of ordered graphs. TFAE:
(i) \mathcal{C} has bounded twin-width.
(ii) \mathcal{C} has a tractable $F O$ model checking.
(iii) \mathcal{C} is monadically dependent.
(iv) \mathcal{C} has single-exponential growth.
(v) \mathcal{C} has subfactorial growth.

Bounded twin-width is the structural characterization of tame ordered binary structures

Open questions

- Algorithm to compute/approximate twin-width in general
- Fully classify classes with tractable FO model checking
- Constructions of subcubic unbounded twin-width graphs
- Better approximations on bounded twin-width classes

Open questions

- Algorithm to compute/approximate twin-width in general
- Fully classify classes with tractable FO model checking
- Constructions of subcubic unbounded twin-width graphs
- Better approximations on bounded twin-width classes

Thank you for your attention!

