
Twin-Width and Contraction Sequences

Édouard Bonnet

ENS de Lyon, LIP

April 19th 2024, Habilitation Defense, Lyon

The modeling power of graphs

The modeling power of graphs

The modeling power of graphs

The modeling power of graphs

The modeling power of graphs

Graph theory and its interactions

Graph theory

Algorithmic graph theory

Structural graph theory

Extremal graph theory

Random graphs

Spectral graph theory

Tree-decomposition

: solving Max Independent Set
Cover by bags mapping to a tree s.t. each vertex lies in a subtree

,4 ,5 ,5 ,4 ,5 ,?, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3

2+3+ 2− 1 = 6

Tree-decomposition

: solving Max Independent Set

Cover by bags mapping to a tree s.t. each vertex lies in a subtree

,4 ,5 ,5 ,4 ,5 ,?, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3

2+3+ 2− 1 = 6

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

,4 ,5 ,5 ,4 ,5 ,? ,?

, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3

2+3+ 2− 1 = 6

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

,4 ,5 ,5 ,4 ,5 ,? ,?

, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3

2+3+ 2− 1 = 6

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

,4 ,5 ,5 ,4 ,5 ,?

, 1 , 1 , 1 , 2

, 1 , 2 , 2 , 2 , 3

2+

3+ 2− 1 = 6

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

,4 ,5 ,5 ,4 ,5 ,?, 1 , 1 , 1 , 2

, 1 , 2 , 2 , 2 , 3

2+

3+ 2− 1 = 6

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

,4 ,5 ,5 ,4 ,5 ,?, 1 , 1 , 1 , 2

, 1 , 2 , 2 , 2 , 3

2+3+

2− 1 = 6

Tree-decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

,4 ,5 ,5 ,4 ,5 ,6 ,?

, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3

2+3+ 2− 1 = 6

Treewidth
Minimum largest bag size over all tree decompositions minus 1

I rediscovered several times in the 70’s and 80’s...
I made central by Graph Minors and algorithmic graph theory
I previous slide: 2O(tw)n time for Max Independent Set
I generalized by Courcelle’s theorem
I inspired other tree-based width parameters: clique-width,

rank-width, mim-width, etc.

Computing a tree decomposition? NP-hard but various algorithms

width 2tw + 1 in 2O(tw)n
width 5tw + 4 in 26.76twn log n

width tw in 2O(tw2)n

width tw in 1.74n

width tw
√

log tw in nO(1)

Treewidth
Minimum largest bag size over all tree decompositions minus 1

I rediscovered several times in the 70’s and 80’s...
I made central by Graph Minors and algorithmic graph theory
I previous slide: 2O(tw)n time for Max Independent Set
I generalized by Courcelle’s theorem
I inspired other tree-based width parameters: clique-width,

rank-width, mim-width, etc.

Computing a tree decomposition?

NP-hard but various algorithms

width 2tw + 1 in 2O(tw)n
width 5tw + 4 in 26.76twn log n

width tw in 2O(tw2)n

width tw in 1.74n

width tw
√

log tw in nO(1)

Treewidth
Minimum largest bag size over all tree decompositions minus 1

I rediscovered several times in the 70’s and 80’s...
I made central by Graph Minors and algorithmic graph theory
I previous slide: 2O(tw)n time for Max Independent Set
I generalized by Courcelle’s theorem
I inspired other tree-based width parameters: clique-width,

rank-width, mim-width, etc.

Computing a tree decomposition? NP-hard but various algorithms

width 2tw + 1 in 2O(tw)n
width 5tw + 4 in 26.76twn log n

width tw in 2O(tw2)n

width tw in 1.74n

width tw
√

log tw in nO(1)

Low treewidth is very restrictive

Grids have unbounded treewidth, clique-width, rank-width

Sparsity theory
Bounded expansion: only sparse graph by shallow tree contraction

Nowhere denseness: no large clique by shallow tree contraction

Going beyond sparsity and bounded clique-width?

Conciliating the grid and the clique

The genesis of twin-width: Permutation Pattern

σ

τ

?

Is 3124 in 57362841?

Theorem (Guillemot, Marx ’14)
Permutation Pattern can be solved in time f (|σ|)|τ |.

The genesis of twin-width: Permutation Pattern

σ

τ

?

Is 3124 in 57362841? Yes

Theorem (Guillemot, Marx ’14)
Permutation Pattern can be solved in time f (|σ|)|τ |.

The genesis of twin-width: Permutation Pattern

σ

τ

?

Is 3124 in 57362841? Yes

Theorem (Guillemot, Marx ’14)
Permutation Pattern can be solved in time f (|σ|)|τ |.

Guillemot and Marx’s win-win algorithm
Is σ in τ?

Theorem (Marcus, Tardos ’04)
∀t, ∃ct ∀ n × n 0,1-matrix with > ctn 1-entries has a t-grid minor.

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

> c|σ|n 1-entries: answer YES from the |σ|-grid minor, or
< c|σ|n 1-entries: merge of two “similar” rectangles of 1s

If the latter always holds: exploitable “decomposition” of τ

Guillemot and Marx’s win-win algorithm
Is σ in τ?

Theorem (Marcus, Tardos ’04)
∀t, ∃ct ∀ n × n 0,1-matrix with > ctn 1-entries has a t-grid minor.

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

> c|σ|n 1-entries: answer YES from the |σ|-grid minor, or
< c|σ|n 1-entries: merge of two “similar” rectangles of 1s

If the latter always holds: exploitable “decomposition” of τ

Guillemot and Marx’s win-win algorithm
Is σ in τ?

Theorem (Marcus, Tardos ’04)
∀t, ∃ct ∀ n × n 0,1-matrix with > ctn 1-entries has a t-grid minor.

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

> c|σ|n 1-entries: answer YES from the |σ|-grid minor, or
< c|σ|n 1-entries: merge of two “similar” rectangles of 1s

If the latter always holds: exploitable “decomposition” of τ

Graphs

a

b

c

d

e

f

g

Two outcomes between a pair of vertices:
edge or non-edge

Trigraphs

a

b

c

d

e

f

g

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing

Contraction sequence

a

b

c

d

e

f

g

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

R(Gi): red graph of Gi , obtained by removing its black edges

Contraction sequence

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

R(Gi): red graph of Gi , obtained by removing its black edges

Contraction sequence

a

b

c

d

e

f

g

b

c

gef

a dad

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

R(Gi): red graph of Gi , obtained by removing its black edges

Contraction sequence

a

b

c

d

e

f

g

c

g

ad

b efbef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

R(Gi): red graph of Gi , obtained by removing its black edges

Contraction sequence

a

b

c

d

e

f

g

c

adg

bef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

R(Gi): red graph of Gi , obtained by removing its black edges

Contraction sequence

a

b

c

d

e

f

g

adg

bcef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

R(Gi): red graph of Gi , obtained by removing its black edges

Contraction sequence

a

b

c

d

e

f

g

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

R(Gi): red graph of Gi , obtained by removing its black edges

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all red graphs have maximum degree at most d .

a

b

c

d

e

f

g

Maximum red degree = 0
overall maximum red degree = 0

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all red graphs have maximum degree at most d .

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all red graphs have maximum degree at most d .

a

b

c

d

e

f

g

b

c

gef

a dad

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all red graphs have maximum degree at most d .

a

b

c

d

e

f

g

c

g

ad

b efbef

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all red graphs have maximum degree at most d .

a

b

c

d

e

f

g

c

adg

bef

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all red graphs have maximum degree at most d .

a

b

c

d

e

f

g

adg

bcef

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all red graphs have maximum degree at most d .

a

b

c

d

e

f

g

abcdefg

Maximum red degree = 0
overall maximum red degree = 2

Grids have twin-width at most 4

4-sequence for 2-dimensional grids

Grids have twin-width at most 4

4-sequence for 2-dimensional grids

Grids have twin-width at most 4

4-sequence for 2-dimensional grids

Grids have twin-width at most 4

4-sequence for 2-dimensional grids

Grids have twin-width at most 4

4-sequence for 2-dimensional grids

Grids have twin-width at most 4

4-sequence for 2-dimensional grids

Grids have twin-width at most 4

4-sequence for 2-dimensional grids

3-dimensional grids

Contains arbitrary large clique minors

3-dimensional grids

Contract the blue edges

3-dimensional grids

The d-dimensional grid has twin-width Θ(d)

(> 2 log n)-subdivisions have twin-width at most 4

Consider the branching vertices

(> 2 log n)-subdivisions have twin-width at most 4

and make them leaves of a red full binary tree

(> 2 log n)-subdivisions have twin-width at most 4

Take any subdivided edge

(> 2 log n)-subdivisions have twin-width at most 4

Shorten it to the length of the path in the red tree

(> 2 log n)-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree

(> 2 log n)-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree

(> 2 log n)-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree

(> 2 log n)-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree

(> 2 log n)-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree

(> 2 log n)-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree

(> 2 log n)-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree

(> 2 log n)-subdivisions have twin-width at most 4

Take another subdivided edge and repeat

Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If G admits a t-mixed free adjacency matrix, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would contradict the
structure of C

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃ ≺ s.t. Adj≺(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would contradict the
structure of C

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃ ≺ s.t. Adj≺(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would contradict the
structure of C

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs

1

0

0

order by left endpoints

Unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Classes known to have effective bounded twin-width

I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Classes known to have effective bounded twin-width

I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.
Can we solve problems faster, given an O(1)-sequence?

k-Independent Set
Algorithms in time f (k)|V (G)|o(k) are unlikely in general

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
k-Independent Set can be solved in time O(d2kk2|V (G)|)
given a d-sequence G = Gn, . . . ,G1.

Main idea: For every D ∈
(V (Gi)

6k
)

such that R(Gi)[D] is
connected, store a largest independent set in G [

⋃
D]

intersecting every vertex of D, for i going to n down to 1.

Gi

k-Independent Set
Algorithms in time f (k)|V (G)|o(k) are unlikely in general

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
k-Independent Set can be solved in time O(d2kk2|V (G)|)
given a d-sequence G = Gn, . . . ,G1.

Main idea: For every D ∈
(V (Gi)

6k
)

such that R(Gi)[D] is
connected, store a largest independent set in G [

⋃
D]

intersecting every vertex of D, for i going to n down to 1.

Gi

k-Independent Set: First observations

Main idea: For every D ∈
(V (Gi)

6k
)

such that R(Gi)[D] is
connected, store a largest independent set in G [

⋃
D]

intersecting every vertex of D, for i going to n down to 1.

Initialization: Every connected set in R(Gn) is of the form {v} for
v ∈ V (G), for which we store the independent set {v}.

Completeness: If no independent set of size at least k is detected,
a maximum independent set of G is stored for {V (G)} in R(G1).

Running time: As R(Gi) has maximum degree at most d , it has
at most d2k i connected sets on up to k vertices.

k-Independent Set: First observations

Main idea: For every D ∈
(V (Gi)

6k
)

such that R(Gi)[D] is
connected, store a largest independent set in G [

⋃
D]

intersecting every vertex of D, for i going to n down to 1.

Initialization: Every connected set in R(Gn) is of the form {v} for
v ∈ V (G), for which we store the independent set {v}.

Completeness: If no independent set of size at least k is detected,
a maximum independent set of G is stored for {V (G)} in R(G1).

Running time: As R(Gi) has maximum degree at most d , it has
at most d2k i connected sets on up to k vertices.

k-Independent Set: First observations

Main idea: For every D ∈
(V (Gi)

6k
)

such that R(Gi)[D] is
connected, store a largest independent set in G [

⋃
D]

intersecting every vertex of D, for i going to n down to 1.

Initialization: Every connected set in R(Gn) is of the form {v} for
v ∈ V (G), for which we store the independent set {v}.

Completeness: If no independent set of size at least k is detected,
a maximum independent set of G is stored for {V (G)} in R(G1).

Running time: As R(Gi) has maximum degree at most d , it has
at most d2k i connected sets on up to k vertices.

k-Independent Set: First observations

Main idea: For every D ∈
(V (Gi)

6k
)

such that R(Gi)[D] is
connected, store a largest independent set in G [

⋃
D]

intersecting every vertex of D, for i going to n down to 1.

Initialization: Every connected set in R(Gn) is of the form {v} for
v ∈ V (G), for which we store the independent set {v}.

Completeness: If no independent set of size at least k is detected,
a maximum independent set of G is stored for {V (G)} in R(G1).

Running time: As R(Gi) has maximum degree at most d , it has
at most d2k i connected sets on up to k vertices.

k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both

k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

3 unions of red connected subgraphs to consider in Gi+1
with u, or v , or both

Model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

When can we solve Model Checking in time f (ϕ)|V (G)|O(1)?

Model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

When can we solve Model Checking in time f (ϕ)|V (G)|O(1)?

Model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔ k-Dominating Set

When can we solve Model Checking in time f (ϕ)|V (G)|O(1)?

Model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔

When can we solve Model Checking in time f (ϕ)|V (G)|O(1)?

Model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔ k-Independent Set

When can we solve Model Checking in time f (ϕ)|V (G)|O(1)?

Model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔

When can we solve Model Checking in time f (ϕ)|V (G)|O(1)?

Model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔ 3-Coloring

When can we solve Model Checking in time f (ϕ)|V (G)|O(1)?

Model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔ 3-Coloring

When can we solve Model Checking in time f (ϕ)|V (G)|O(1)?

Reduced parameters and component twin-width
p↓(G) = min{max

i∈[n]
p(R(Gi)) : Gn, . . . ,G1 sequence of G}

reduced maximum degree = twin-width

reduced component size ≡ cliquewidth
= component twin-width reduced #edges ≡ linear cliquewidth

Model checking on graphs of bounded twin-width

Recast of the Courcelle–Makowsky–Rotics theorem:

Theorem (B., Kim, Reinald, Thomassé ’22)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence of component twin-width.

Generalization of the k-Independent Set algorithm:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Gaifman’s locality + MSO model checking algorithm

Classes for which FO model checking is FPT

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

bounded
degree

sparse
classes

effective bounded twin-width

bounded
rank-width

cographs

posets of
bounded

width

L-interval

unit interval

pattern
avoiding
permuta-

tions

map
graphs

dense
classes

Theorem (Bergé, B., Déprés ’22)
Deciding if the twin-width of a graph is at most 4 is NP-complete.

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Stable and dependent (for hereditary classes)

Due to [Baldwin, Shelah ’85; Braunfeld, Laskowski ’22]

Stable class: no transduction of the class contains all ladders
Dependent class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → dependent but not stable
Interval graphs → independent

Bounded twin-width graphs → dependent but not stable

Stable and dependent (for hereditary classes)

Stable class: no transduction of the class contains all ladders
Dependent class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → dependent but not stable
Interval graphs → independent

Bounded twin-width graphs → dependent but not stable

Stable and dependent (for hereditary classes)

Stable class: no transduction of the class contains all ladders
Dependent class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → dependent but not stable
Interval graphs → independent

Bounded twin-width graphs → dependent but not stable

Classes for which FO model checking is FPT

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

monadically stable

bounded
degree

sparse
classes

effective bounded twin-width

bounded
rank-width

cographs

bounded flip-width?

monadically dependent?

posets of
bounded

width

L-interval

unit interval

pattern
avoiding
permuta-

tions

map
graphs

dense
classes

Classes for which FO model checking is FPT

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

monadically stable

bounded
degree

sparse
classes

effective bounded twin-width

bounded
rank-width

cographs

bounded flip-width?

monadically dependent?

posets of
bounded

width

L-interval

unit interval

pattern
avoiding
permuta-

tions

map
graphs

dense
classes

Classes for which FO model checking is FPT

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

monadically stable

bounded
degree

sparse
classes

effective bounded twin-width

bounded
rank-width

cographs

bounded flip-width?

monadically dependent?

posets of
bounded

width

L-interval

unit interval

pattern
avoiding
permuta-

tions

map
graphs

dense
classes

Classes for which FO model checking is FPT

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

monadically stable

bounded
degree

sparse
classes

effective bounded twin-width

bounded
rank-width

cographs

bounded flip-width?

monadically dependent?

posets of
bounded

width

L-interval

unit interval

pattern
avoiding
permuta-

tions

map
graphs

dense
classes

First-order transductions and twin-width

Theorem (B., Kim, Thomassé, Watrigant ’20)
For every class C with bounded twin-width and transduction T, the
class T(C) has bounded twin-width.

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class has bounded twin-width if and only if it is the transduction
of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé ’24)
There is a fixed proper permutation class P such that a class has
bounded twin-width if and only if it is the transduction of P.

First-order transductions and twin-width

Theorem (B., Kim, Thomassé, Watrigant ’20)
For every class C with bounded twin-width and transduction T, the
class T(C) has bounded twin-width.

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class has bounded twin-width if and only if it is the transduction
of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé ’24)
There is a fixed proper permutation class P such that a class has
bounded twin-width if and only if it is the transduction of P.

First-order transductions and twin-width

Theorem (B., Kim, Thomassé, Watrigant ’20)
For every class C with bounded twin-width and transduction T, the
class T(C) has bounded twin-width.

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class has bounded twin-width if and only if it is the transduction
of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé ’24)
There is a fixed proper permutation class P such that a class has
bounded twin-width if and only if it is the transduction of P.

The lens of contraction sequences

Class of bounded FO transduction of constr. on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width proper perm. class bd degree FO

Equivalences for ordered graphs

Theorem (B., Giocanti, Ossona de Mendez, Toruńczyk, Thomassé, Simon ’21)
Let C be a hereditary class of ordered graphs. TFAE:
(i) C has bounded twin-width.

(ii) C has a tractable FO model checking.

(iii) C is monadically dependent.

(iv) C has single-exponential growth.

(v) C has subfactorial growth.

Bounded twin-width is the structural characterization of
tame ordered binary structures

Equivalences for ordered graphs

Theorem (B., Giocanti, Ossona de Mendez, Toruńczyk, Thomassé, Simon ’21)
Let C be a hereditary class of ordered graphs. TFAE:
(i) C has bounded twin-width.

(ii) C has a tractable FO model checking.

(iii) C is monadically dependent.

(iv) C has single-exponential growth.

(v) C has subfactorial growth.

Bounded twin-width is the structural characterization of
tame ordered binary structures

Open questions

I Algorithm to compute/approximate twin-width in general
I Fully classify classes with tractable FO model checking
I Constructions of subcubic unbounded twin-width graphs
I Better approximations on bounded twin-width classes

Thank you for your attention!

Open questions

I Algorithm to compute/approximate twin-width in general
I Fully classify classes with tractable FO model checking
I Constructions of subcubic unbounded twin-width graphs
I Better approximations on bounded twin-width classes

Thank you for your attention!

