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Graph theory and its interactions

Graph theory

Algorithmic graph theory

Structural graph theory

Extremal graph theory

Random graphs

Spectral graph theory



Tree-decomposition

: solving Max Independent Set
Cover by bags mapping to a tree s.t. each vertex lies in a subtree

,4 ,5 ,5 ,4 ,5 ,?, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3

2+3+ 2− 1 = 6
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Treewidth
Minimum largest bag size over all tree decompositions minus 1

I rediscovered several times in the 70’s and 80’s...
I made central by Graph Minors and algorithmic graph theory
I previous slide: 2O(tw)n time for Max Independent Set
I generalized by Courcelle’s theorem
I inspired other tree-based width parameters: clique-width,

rank-width, mim-width, etc.

Computing a tree decomposition? NP-hard but various algorithms

width 2tw + 1 in 2O(tw)n
width 5tw + 4 in 26.76twn log n

width tw in 2O(tw2)n

width tw in 1.74n

width tw
√

log tw in nO(1)
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Low treewidth is very restrictive

Grids have unbounded treewidth, clique-width, rank-width



Sparsity theory
Bounded expansion: only sparse graph by shallow tree contraction

Nowhere denseness: no large clique by shallow tree contraction



Going beyond sparsity and bounded clique-width?

Conciliating the grid and the clique



The genesis of twin-width: Permutation Pattern

σ
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?

Is 3124 in 57362841?

Theorem (Guillemot, Marx ’14)
Permutation Pattern can be solved in time f (|σ|)|τ |.
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Guillemot and Marx’s win-win algorithm
Is σ in τ?

Theorem (Marcus, Tardos ’04)
∀t, ∃ct ∀ n × n 0,1-matrix with > ctn 1-entries has a t-grid minor.
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4-grid minor

> c|σ|n 1-entries: answer YES from the |σ|-grid minor, or
< c|σ|n 1-entries: merge of two “similar” rectangles of 1s

If the latter always holds: exploitable “decomposition” of τ
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Graphs
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Two outcomes between a pair of vertices:
edge or non-edge



Trigraphs
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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing



Contraction sequence
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

R(Gi ): red graph of Gi , obtained by removing its black edges
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all red graphs have maximum degree at most d .

a

b

c

d

e

f

g

Maximum red degree = 0
overall maximum red degree = 0
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4-sequence for 2-dimensional grids



3-dimensional grids

Contains arbitrary large clique minors



3-dimensional grids

Contract the blue edges



3-dimensional grids

The d-dimensional grid has twin-width Θ(d)



(> 2 log n)-subdivisions have twin-width at most 4

Consider the branching vertices



(> 2 log n)-subdivisions have twin-width at most 4

and make them leaves of a red full binary tree



(> 2 log n)-subdivisions have twin-width at most 4

Take any subdivided edge



(> 2 log n)-subdivisions have twin-width at most 4

Shorten it to the length of the path in the red tree



(> 2 log n)-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree
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(> 2 log n)-subdivisions have twin-width at most 4

Zip the subdivided edge onto the tree



(> 2 log n)-subdivisions have twin-width at most 4

Take another subdivided edge and repeat
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Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If G admits a t-mixed free adjacency matrix, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would contradict the
structure of C
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Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃ ≺ s.t. Adj≺(G) is t-mixed free, then tww(G) = 22O(t) .
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Unit interval graphs

Intersection graph of unit segments on the real line



Unit interval graphs

1

0

0

order by left endpoints



Unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Classes known to have effective bounded twin-width

I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?
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k-Independent Set
Algorithms in time f (k)|V (G)|o(k) are unlikely in general

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
k-Independent Set can be solved in time O(d2kk2|V (G)|)
given a d-sequence G = Gn, . . . ,G1.

Main idea: For every D ∈
(V (Gi )

6k
)

such that R(Gi )[D] is
connected, store a largest independent set in G [

⋃
D]

intersecting every vertex of D, for i going to n down to 1.

Gi
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k-Independent Set: First observations

Main idea: For every D ∈
(V (Gi )

6k
)

such that R(Gi )[D] is
connected, store a largest independent set in G [

⋃
D]

intersecting every vertex of D, for i going to n down to 1.

Initialization: Every connected set in R(Gn) is of the form {v} for
v ∈ V (G), for which we store the independent set {v}.

Completeness: If no independent set of size at least k is detected,
a maximum independent set of G is stored for {V (G)} in R(G1).

Running time: As R(Gi ) has maximum degree at most d , it has
at most d2k i connected sets on up to k vertices.
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k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both



k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

3 unions of red connected subgraphs to consider in Gi+1
with u, or v , or both



Model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔

When can we solve Model Checking in time f (ϕ)|V (G)|O(1)?
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Reduced parameters and component twin-width
p↓(G) = min{max

i∈[n]
p(R(Gi )) : Gn, . . . ,G1 sequence of G}

reduced maximum degree = twin-width

reduced component size ≡ cliquewidth
= component twin-width reduced #edges ≡ linear cliquewidth



Model checking on graphs of bounded twin-width

Recast of the Courcelle–Makowsky–Rotics theorem:

Theorem (B., Kim, Reinald, Thomassé ’22)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence of component twin-width.

Generalization of the k-Independent Set algorithm:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Gaifman’s locality + MSO model checking algorithm



Classes for which FO model checking is FPT

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

bounded
degree

sparse
classes

effective bounded twin-width

bounded
rank-width

cographs

posets of
bounded

width

L-interval

unit interval

pattern
avoiding
permuta-

tions

map
graphs

dense
classes

Theorem (Bergé, B., Déprés ’22)
Deciding if the twin-width of a graph is at most 4 is NP-complete.



First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))
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Stable and dependent (for hereditary classes)

Due to [Baldwin, Shelah ’85; Braunfeld, Laskowski ’22]

Stable class: no transduction of the class contains all ladders
Dependent class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → dependent but not stable
Interval graphs → independent

Bounded twin-width graphs → dependent but not stable
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First-order transductions and twin-width

Theorem (B., Kim, Thomassé, Watrigant ’20)
For every class C with bounded twin-width and transduction T, the
class T(C) has bounded twin-width.

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class has bounded twin-width if and only if it is the transduction
of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé ’24)
There is a fixed proper permutation class P such that a class has
bounded twin-width if and only if it is the transduction of P.
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The lens of contraction sequences

Class of bounded FO transduction of constr. on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width proper perm. class bd degree FO



Equivalences for ordered graphs

Theorem (B., Giocanti, Ossona de Mendez, Toruńczyk, Thomassé, Simon ’21)
Let C be a hereditary class of ordered graphs. TFAE:
(i) C has bounded twin-width.

(ii) C has a tractable FO model checking.

(iii) C is monadically dependent.

(iv) C has single-exponential growth.

(v) C has subfactorial growth.

Bounded twin-width is the structural characterization of
tame ordered binary structures
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Open questions

I Algorithm to compute/approximate twin-width in general
I Fully classify classes with tractable FO model checking
I Constructions of subcubic unbounded twin-width graphs
I Better approximations on bounded twin-width classes

Thank you for your attention!
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