Twin-width

Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP

Séminaire Algorithmes et Complexité, IRIF, May 26th

What is the most general tractable class?

What are the most general tractable classes?

What are the most general tractable classes?

What are the most general tractable classes?

Bounded rank-width cographs, treewidth tractable MSO_{1}

What are the most general tractable classes?

What are the most general tractable classes?

Bounded rank-width cographs, treewidth tractable MSO_{1}

Nowhere dense bounded degree, H-minor free tractable FO

What are the most general tractable classes?

Nowhere dense bounded degree, H-minor free tractable FO

Cograph generalization attempt

Iteratively identify near twins

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization

Iteratively identify near twins and keep the error degree small

It would not with that further restriction

Contraction and trigraph

Trigraph: non-edges, edges, and red edges (error)

Contraction and trigraph

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbent

Contraction sequence and twin-width

Maximum red degree $=0$ overall maximum red degree $=0$

Contraction sequence and twin-width

Maximum red degree $=2$ overall maximum red degree $=2$

Contraction sequence and twin-width

Maximum red degree $=2$ overall maximum red degree $=2$

Contraction sequence and twin-width

Maximum red degree $=2$ overall maximum red degree $=2$

Contraction sequence and twin-width

Maximum red degree $=1$ overall maximum red degree $=2$

Contraction sequence and twin-width

Maximum red degree $=1$ overall maximum red degree $=2$

Contraction sequence and twin-width

Maximum red degree $=0$ overall maximum red degree $=2$

Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2

Maximum red degree $=0$ overall maximum red degree $=2$

Graphs with bounded twin-width - trees

If possible, contract two twin leaves

Graphs with bounded twin-width - trees

If not, contract a deepest leaf with its parent

Graphs with bounded twin-width - trees

If not, contract a deepest leaf with its parent

Graphs with bounded twin-width - trees

If possible, contract two twin leaves

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Generalization to bounded treewidth and even bounded rank-width

Graphs with bounded twin-width - grids

Graphs with bounded twin-width - grids

4-sequence for planar grids, $3 d$-sequence for d-dimensional grids

Graphs with bounded twin-width - planar graphs?

Graphs with bounded twin-width - planar graphs?

For every d, a planar trigraph without planar d-contraction

More powerful tool needed

First-order model checking on graphs

Graph FO Model Checking Parameter: $|\phi|$ Input: A graph G and a first-order formula $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$ Question: $G \models \varphi$?

First-order model checking on graphs

Graph FO Model Checking Parameter: $|\phi|$
Input: A graph G and a first-order formula $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow$

First-order model checking on graphs

Graph FO Model Checking Parameter: $|\phi|$
Input: A graph G and a first-order formula $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Dominating Set

First-order model checking on graphs

Graph FO Model Checking
 Parameter: $|\phi|$

Input: A graph G and a first-order formula $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow$

First-order model checking on graphs

Graph FO Model Checking
 Parameter: $|\phi|$

Input: A graph G and a first-order formula $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$
Question: $G \models \varphi$?
Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Independent Set

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

```
\varphi(x,y) =\negE(x,y) (complement)
\varphi(x,y)=E(x,y)\vee\existszE(x,z)\wedgeE(z,y) (square)
```

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y)=\neg E(x, y) \quad$ (complement) $\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{aligned}
& \phi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
& \vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{aligned}
$$

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y)=\neg E(x, y) \quad$ (complement) $\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{aligned}
& \phi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
& \vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{aligned}
$$

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

```
\varphi(x,y) =\negE(x,y) (complement)
\varphi(x,y)=E(x,y)\vee\existszE(x,z)\wedgeE(z,y) (square)
```

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

Theorem (B, Kim, Thomassé, Watrigant '20+)
Bounded twin-width is preserved by transduction.

Stable and NIP

Stable class: not all the ladders can be obtained by transduction NIP class: not all the graphs can be obtained by transduction

Stable and NIP

Stable class: not all the ladders can be obtained by transduction NIP class: not all the graphs can be obtained by transduction

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Stable and NIP

Stable class: not all the ladders can be obtained by transduction NIP class: not all the graphs can be obtained by transduction

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Bounded twin-width classes \rightarrow NIP but not stable in general

Classes with known tractable FO model checking

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n$ on bounded-degree graphs [Seese '96]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

Classes with known tractable FO model checking

End of the story for the classes closed by taking subgraphs tractable FO Model Checking \Leftrightarrow nowhere dense \Leftrightarrow stable

Classes with known tractable FO model checking

New program: transductions of nowhere dense classes
Not sparse anymore but still stable

Classes with known tractable FO model checking

MSO_{1} Model Checking solvable in $f(|\varphi|, w) n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]

Classes with known tractable FO model checking

Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$
[Guillemot, Marx '14]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|, w) n^{2}$ on posets of width w [GHLOORS '15]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n^{O(1)}$ on map graphs [Eickmeyer, Kawarabayashi '17]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|, d) n$ on graphs with a d-sequence [B, Kim, Thomassé, Watrigant '20+]

Workflow of our FO model checking algorithm

Workflow of our FO model checking algorithm

Direct examples: trees, bounded rank-width, grids, d-dimensional grids, unit interval graphs, K_{t}-free unit ball graphs

Workflow of our FO model checking algorithm

We now explore the detour via mixed minor for: pattern-avoiding permutations, bounded width posets, K_{t}-minor free graphs

Workflow of our FO model checking algorithm

But before we give a snapshot of the FO model checking

DP for FO model checking with d-sequence

DP for FO model checking with d-sequence

only $f(d, \ell)$ trees

Permutation Pattern

Permutation Pattern

Permutation Pattern

Theorem (Guillemot, Marx '14)
Permutation Pattern can be solved in time $2^{|\sigma|^{2}}|\tau|$.

Guillemot and Marx's win-win algorithm

Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ entries 1 has a t-grid minor.
4-grid minor $\left[\begin{array}{cc|cc|cc|cc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Guillemot and Marx's win-win algorithm

Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ entries 1 has a t-grid minor.

$$
\text { 4-grid minor }\left[\begin{array}{cc|cc|cc|cc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A) $\geqslant c_{|\sigma|} n$ entries $1 \rightarrow$ YES from the $|\sigma|$-grid minor.
B) $<c_{|\sigma|} n$ entries $1 \rightarrow$ merge of two "similar" rectangles

Guillemot and Marx's win-win algorithm

Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ entries 1 has a t-grid minor.
4-grid minor $\left[\begin{array}{cc|cc|cc|cc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$
A) $\geqslant q_{|\sigma|} n$ entries $1 \rightarrow$ YES from the $|\sigma|$-grid minor.
B) $<c_{|\sigma|} n$ entries $1 \rightarrow$ merge of two "similar" rectangles

If B) always happens \rightarrow DP on this merge sequence

Our generalization to the dense case - mixed minor

Mixed zone: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Our generalization to the dense case - mixed minor

Mixed zone: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A matrix is said t-mixed free if it does not have a t-mixed minor

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20+)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{0(t)}}$.

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20+)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{0(t)}}$.
Now to bound the twin-width of a class \mathcal{C} :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with \mathcal{C}

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20+)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{0(t)}}$.
Now to bound the twin-width of a class \mathcal{C} :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with \mathcal{C}

Cutting after the $t / 2$-th division of the t-grid minor

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20+)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{0(t)}}$.
Now to bound the twin-width of a class \mathcal{C} :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with \mathcal{C}

One of the shaded areas contains a $t / 2$-grid minor on disjoint sets

Bounded twin-width - posets of bounded antichain

Warm-up with unit interval graphs: order by left endpoints

Bounded twin-width - posets of bounded antichain

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Bounded twin-width - posets of bounded antichain

Put the k chains in order one after the other

Bounded twin-width - posets of bounded antichain

A $3 k$-mixed minor implies a 3 -mixed minor between two chains

Bounded twin-width - posets of bounded antichain

Transitivity implies that a zone is constant

Bounded twin-width - posets of bounded antichain

And symmetrically

Bounded twin-width $-K_{t}$-minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width $-K_{t}$-minor free graphs

Contracting ${ }^{1}$ the $2 t$ subpaths yields a $K_{t, t}$-minor

[^0]
Bounded twin-width $-K_{t}$-minor free graphs

Instead we use a specially crafted lex-DFS discovery order

Small classes

Classes ${ }^{1}$ with at most $n!c^{n}$ labeled graphs on [n].
Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Unifies and extends the same result for:
σ-free permutations [Marcus, Tardos '04]
K_{t}-minor free graphs [Norine, Seymour, Thomas, Wollan '06]

[^1]
Small classes

Classes ${ }^{1}$ with at most $n!c^{n}$ labeled graphs on $[n]$.
Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have unbounded twin-width

[^2]
Small classes

Classes ${ }^{1}$ with at most $n!c^{n}$ labeled graphs on $[n]$.
Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Is the converse true?
Conjecture (small conjecture)
A class has bounded twin-width if and only if it is small.

[^3]
Future directions

Obvious questions:

Algorithm to compute/approximate twin-width in general Fully classify classes with tractable FO model checking Small conjecture, polynomial expansion

Future directions

Obvious questions:

Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion

Other directions we are exploring:
Better approximation algorithms on bounded twin-width classes
Extended nested dissection to bounded twin-width
Twin-width of groups

Future directions

Obvious questions:

Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion

Other directions we are exploring:
Better approximation algorithms on bounded twin-width classes
Extended nested dissection to bounded twin-width
Twin-width of groups
\vdots

On arxiv
Twin-width I: tractable FO model checking [BKTW '20]
Twin-width II: small classes [BGKTW '20]
Twin-width III: Max Independent Set and Coloring [BGKTW '20]

[^0]: ${ }^{1}$ Here it is an actual contration, not a mere identification

[^1]: ${ }^{1}$ sets closed by taking induced subgraphs

[^2]: ${ }^{1}$ sets closed by taking induced subgraphs

[^3]: ${ }^{1}$ sets closed by taking induced subgraphs

