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Bounded width posets

Pattern-avoiding permutations
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Cograph generalization
Iteratively identify near twins and keep the error degree small
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Contraction and trigraph

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uv

Trigraph: non-edges, edges, and red edges (error)



Contraction and trigraph

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbent
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Graphs with bounded twin-width – trees

If possible, contract two twin leaves
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Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex
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Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex



Graphs with bounded twin-width – trees

Generalization to bounded treewidth and even bounded rank-width



Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids
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Graphs with bounded twin-width – planar graphs?
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More powerful tool needed

BUT

ALREADY



First-order model checking on graphs

Graph FO Model Checking Parameter: |φ|
Input: A graph G and a first-order formula ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔
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First-order model checking on graphs

Graph FO Model Checking Parameter: |φ|
Input: A graph G and a first-order formula ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi )

G |= ϕ? ⇔ k-Independent Set



FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

φ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B, Kim, Thomassé, Watrigant ’20+)
Bounded twin-width is preserved by transduction.
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Stable and NIP

Stable class: not all the ladders can be obtained by transduction
NIP class: not all the graphs can be obtained by transduction

Bounded-degree graphs → stable
Unit interval graphs → NIP but not stable
Interval graphs → not NIP

Bounded twin-width classes → NIP but not stable in general
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FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs
[Seese ’96]
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[Grohe, Kreutzer, Siebertz ’14]
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End of the story for the classes closed by taking subgraphs
tractable FO Model Checking ⇔ nowhere dense ⇔ stable



Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere densenowhere dense

bounded
degree

bounded
degree

sparse
classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions

map
graphs

map
graphs

dense
classes

NIP \ stable

New program: transductions of nowhere dense classes
Not sparse anymore but still stable
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MSO1 Model Checking solvable in f (|ϕ|,w)n on graphs of rank-width w
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Is σ a subpermutation of τ? solvable in f (|σ|)|τ |
[Guillemot, Marx ’14]
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FO Model Checking solvable in f (|ϕ|)nO(1) on map graphs
[Eickmeyer, Kawarabayashi ’17]
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FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence
[B, Kim, Thomassé, Watrigant ’20+]



Workflow of our FO model checking algorithm

binary structure G
of bounded twin-width

binary structure G
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d-contraction sequence
G = Gn, . . . ,G1 = K1

d-contraction sequence
G = Gn, . . . ,G1 = K1nO(1) nO(1)

nO(1)

reduced morphism-tree
MT ′

`(G) of size h(`)
reduced morphism-tree
MT ′

`(G) of size h(`)
Query G |= φ

for any prenex φ of depth `
Query G |= φ

for any prenex φ of depth `

O`,d (n)

O`(1)

Direct examples: trees, bounded rank-width, grids, d-dimensional grids,
unit interval, Kt-free unit ball graphs
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Direct examples: trees, bounded rank-width, grids, d-dimensional grids,
unit interval graphs, Kt-free unit ball graphs



Workflow of our FO model checking algorithm

binary structure G
of bounded twin-width
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for any prenex φ of depth `

O`,d (n)

O`(1)

We now explore the detour via mixed minor for:
pattern-avoiding permutations, bounded width posets, Kt-minor free graphs



Workflow of our FO model checking algorithm

binary structure G
of bounded twin-width

binary structure G
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t-mixed-free order

d-contraction sequence
G = Gn, . . . ,G1 = K1
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nO(1)

reduced morphism-tree
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`(G) of size h(`)
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MT ′

`(G) of size h(`)
Query G |= φ

for any prenex φ of depth `
Query G |= φ

for any prenex φ of depth `

O`,d (n)

O`(1)

But before we give a snapshot of the FO model checking

unit interval graphs, Kt-free unit ball graphs



DP for FO model checking with d-sequence
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MT′(G,P15, •)
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MT′(G,P15, ••)

only f (d , `) trees

updates
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Permutation Pattern

σ

τ

?

Theorem (Guillemot, Marx ’14)
Permutation Pattern can be solved in time 2|σ|2 |τ |.
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Permutation Pattern

σ

τ

?

Theorem (Guillemot, Marx ’14)
Permutation Pattern can be solved in time 2|σ|2 |τ |.



Guillemot and Marx’s win-win algorithm

Theorem (Marcus, Tardos ’04)
∀t, ∃ct ∀ n × n 0,1-matrix with > ctn entries 1 has a t-grid minor.

1
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1
0
0
0
1
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1
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1
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1
1
0
0
0
1
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1
1
1
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0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

A) > c|σ|n entries 1 → YES from the |σ|-grid minor.
B) < c|σ|n entries 1 → merge of two “similar” rectangles

If B) always happens → DP on this merge sequence
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4-grid minor

A) > c|σ|n entries 1 → YES from the |σ|-grid minor.
B) < c|σ|n entries 1 → merge of two “similar” rectangles

If B) always happens → DP on this merge sequence



Our generalization to the dense case – mixed minor

Mixed zone: not horizontal nor vertical

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor
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Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20+)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Adjσ(G)

σ

σ

Cutting after the t/2-th division of the t-grid minor
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Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20+)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Adjσ(G)

σ

σ

One of the shaded areas contains a t/2-grid minor on disjoint sets



Bounded twin-width – posets of bounded antichain

1

0

0

Warm-up with unit interval graphs: order by left endpoints



Bounded twin-width – posets of bounded antichain

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Bounded twin-width – posets of bounded antichain

T1 T2 T3 Tk
. . .

Put the k chains in order one after the other



Bounded twin-width – posets of bounded antichain

Tj Ti

C1

C2

C3

R1

R2

R3

C1 C2 C3

Tj

R1

R2

R3

Ti
-1

A 3k-mixed minor implies a 3-mixed minor between two chains



Bounded twin-width – posets of bounded antichain

Tj Ti

C1

C2

C3

R1

R2

R3

C1 C2 C3

Tj

R1

R2

R3

Ti
-1

-1

Transitivity implies that a zone is constant



Bounded twin-width – posets of bounded antichain

Tj Ti

C1

C2

C3

R1

R2

R3

C1 C2 C3

Tj

R1

R2

R3

Ti 1

1

And symmetrically



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Given a hamiltonian path, we would just use this order



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Contracting1 the 2t subpaths yields a Kt,t-minor

1Here it is an actual contration, not a mere identification



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Instead we use a specially crafted lex-DFS discovery order



Small classes

Classes1 with at most n!cn labeled graphs on [n].

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Unifies and extends the same result for:
σ-free permutations [Marcus, Tardos ’04]
Kt-minor free graphs [Norine, Seymour, Thomas, Wollan ’06]

1sets closed by taking induced subgraphs



Small classes

Classes1 with at most n!cn labeled graphs on [n].

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs
have unbounded twin-width

1sets closed by taking induced subgraphs



Small classes

Classes1 with at most n!cn labeled graphs on [n].

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Is the converse true?

Conjecture (small conjecture)
A class has bounded twin-width if and only if it is small.

1sets closed by taking induced subgraphs



Future directions

Obvious questions:
Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion

Other directions we are exploring:
Better approximation algorithms on bounded twin-width classes
Extended nested dissection to bounded twin-width
Twin-width of groups
...

On arxiv
Twin-width I: tractable FO model checking [BKTW ’20]
Twin-width II: small classes [BGKTW ’20]
Twin-width III: Max Independent Set and Coloring [BGKTW ’20]
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