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Independent Set

Problem: Given a graph

and an integer k : Is there an independent set of size at least k?

NP-complete even in subcubic graphs

What about on graphs excluding an induced subgraph H?
(called H-free graphs)
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NP-hard cases [Alekseev ’82, Poljak ’73]

Subdivide every edge twice

This reduction + NP-hardness on subcubic graphs ⇒
NP-hardness for subcubic graphs, with arbitrarily large

I girth, and

I distance between two vertices with degree at least 3.

The constructed graph is H-free except if H is...
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P/NP-hard dichotomy

For H connected:

I NP-hard, if H is not a path or a subdivided claw (K1,3)

I in P, if H is a path on up to 6 vertices

I in P, if H is a claw with one edge subdivided once

I For other H, the problem is open

Minimal open cases:
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Other dichotomies

There are other goodies/baddies partition:

I PTAS/APX-hard

I SUBEXP/ETH-hard

I FPT/W[1]-hard



Parameterized complexity

Fixed-Parameter Tractable (FPT) algorithm:
in time f (k)nO(1) with

I n, the size of the instance,

I k, a parameter such as the solution size, and

I f , any computable function.

Example:

I Vertex Cover has a simple 2knO(1)-algorithm

I Independent Set is W[1]-hard (hence unlikely FPT)

Convenient definition of W[1]-hard for our purpose:
As hard as Independent Set for FPT reductions
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Ultimate goal: Dichotomy classification

For every H,

I if easy(H) then Independent Set is FPT on H-free graphs,

I otherwise it is W[1]-hard.

For the P/NP-hard dichotomy, we have at least a natural
candidate for the criterion easy(H)...
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Known results before 2018

Why is Independent Set FPT in Kr -free graphs?1

Every Kr -free graphs has either:

I at most Ramsey(k,r) ≈ k r−1 vertices → brute-force is FPT

I an independent set of size k → answer YES

I FPT for H on at most 4 vertices but C4 [Dabrowski et al. ’12]

I FPT for bull-free graphs [Thomassé et al. ’14]

I W[1]-hard in K1,4-free graphs [Hermelin et al. ’14]

1This is why the question is not interesting for subgraphs and minors
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BBCTW ’18: W[1]-hardness reduction

Ti,j

Ri,jLi,j

Bi,j

Gadget TGi,j

Li,j+1Ri,j−1

Simultaneously avoiding as induced subgraph:

I C4,C5, . . . ,Cs

I K1,4

I any tree with two degree-3+ vertices at distance at most s



FPT candidates
H should be chordal and

I either a path of cliques with simple connections between
adjacent cliques

I or a subdivided claw of cliques with very simple connections
between adjacent cliques

bipartite complete except possibly one edge

half-graph



Candidates on 5 vertices
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Other W[1]-hard cases due to a variant of the reduction

Mainly left with ”path of cliques”

P(a1, a2, . . . , as) = graph obtained from Ps by replacing the i-th
vertex by a clique of size ai .
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Ambitious conjecture

Conjecture: Independent Set is FPT in P(t, t, . . . , t)-free.

I We showed it for P(t, t, t) in the 2018 paper.

I No easy argument for P(1, 1, 1, 1, 1) and P7 is open.

Our main contribution:
An FPT algorithm for Independent Set in P(1, t, t, t)-free.

Our main new ingredient: introducing co-graphs with
parameterized noise, and associated FPT subroutines
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Co-graphs with parameterized noise

Sparse case

|R| 6 g(k)

A B

6 d(k)

Dense case

|R| 6 g(k)

A B

6 d(k)

Tripartition (A,B,R) of the graph, where R is small, and:

I Sparse case: the degree to the other side is small

I Dense case: the co-degree to the other side is small
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An FPT subroutine for the sparse case: no Kd ,d in G [A,B]
Trick 1: we can guess the solution on any subset of f (k) vertices

We just try all the 2f (k) possibilities

Trick 2: Excavating a sequence of solutions

A B

R
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s
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s

We guess how many vertices a solution contains in A and B
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By Kővari-Sós-Turán: less than d(sk)2−1/d < s2 edges



General roadmap for P(1, t, t, t)-free graphs

I Build C: a maximal collection of independent cliques

I Partition the graph in classes with the same neighborhood in C
I Show: large classes are attached to the cliques laminarly

This, the ubiquity of cliques, the P(1, t, t, t)-freeness imply

I a sparse tripartition: conclude with previous slide, or

I a dense tripartition: another lemma
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Open questions

I FPT algorithm for P(t, t, t, t)-free graphs.

I “easy” FPT algorithm for P5-free graphs.

I FPT algorithm for P7-free graphs.

I derandomized algorithms for the cricket and the dart.

Thank you for your attention!
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