Introduction to twin-width

Édouard Bonnet
based on joint works with Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant
ENS Lyon, LIP

April 2nd, 2021, Journées CALAMAR

Graphs

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=0$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=2$

Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"
- substitution, lexicographic product: max of the twin-widths

Complementation

\bar{G}

G

$$
\operatorname{tww}(\bar{G})=\operatorname{tww}(G)
$$

Complementation

$$
\operatorname{tww}(\bar{G})=\operatorname{tww}(G)
$$

Induced subgraph

H

G

$$
\operatorname{tww}(H) \leqslant \operatorname{tww}(G)
$$

Induced subgraph

Ignore absent vertices

Induced subgraph

Mimic the contractions otherwise

Adding one apex v

Ignore the contractions of $X \subseteq A$ with $Y \subseteq B$

Substitution and lexicographic product

$$
G=C_{5}
$$

Substitution and lexicographic product

$G=C_{5}, H=P_{4}, \quad$ substitution $G[v \leftarrow H]$

Substitution and lexicographic product

$G=C_{5}, H=P_{4}, \quad$ lexicographic product $G[H]$

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

$\operatorname{tww}(G[H])=\max (\operatorname{tww}(G), \operatorname{tww}(H))$

Classes with bounded twin-width

- cographs $=$ twin-width 0
- trees, bounded treewidth, clique-width/rank-width
- grids

Trees

If possible, contract two twin leaves

Trees

If not, contract a deepest leaf with its parent

Trees

If not, contract a deepest leaf with its parent

Trees

If possible, contract two twin leaves

Trees

Cannot create a red degree-3 vertex

Trees

Generalization to bounded treewidth and even bounded rank-width

Grids

Grids

Grids

Grids

Grids

Grids

Grids

4-sequence for planar grids

3-dimensional grids

Contains arbitrary large clique minors

3-dimensional grids

Contract the blue edges in any order $\rightarrow 12$-sequence

3-dimensional grids

The d-dimensional grid has twin-width $\leqslant 4 d$ (even $3 d$)

2-lifts, expanders with bounded twin-width

split each vertex in 2 , replace each edge by 1 of the 2 matchings

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6 but no balanced separators of size $O(n)$

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

First example of unbounded twin-width

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Planar graphs?

Planar graphs?

For every d, a planar trigraph without planar d-contraction

Planar graphs?

For every d, a planar trigraph without planar d-contraction
More powerfool tool needed

Twin-width in the language of matrices

$$
\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Encode a bipartite graph (or, if symmetric, any graph)

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|l|l|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Contraction of two columns (similar with two rows)

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|lllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

How is the twin-width (re)defined?

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|lllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & & 0 & 0 & 1
\end{array}\right]
$$

How to tune it for non-bipartite graph?

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|l|l|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Maximum number of non-constant zones per column or row part $=$ error value

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Maximum number of non-constant zones per column or row part
... until there are a single row part and column part

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Twin-width as maximum error value of a contraction/division sequence

Grid minor

t-grid minor: $t \times t$-division where every cell is non-empty Non-empty cell: contains at least one 1 entry
$\left[\begin{array}{ll|ll|ll|ll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Grid minor

t-grid minor: $t \times t$-division where every cell is non-empty Non-empty cell: contains at least one 1 entry
$\left[\begin{array}{ll|ll|ll|ll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

A matrix is said t-grid free if it does not have a t-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{cc|ccc|ccc}
11 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
10 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
10 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Every mixed cell is witnessed by a 2×2 square $=$ corner

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

$R_{4}\left[\begin{array}{ll|lll|l|ll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
\approx (maximum) number of cells with a corner per row/column part

Mixed value

$R_{4}\left[\begin{array}{ll|lll|l|ll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$

But we add the number of boundaries containing a corner

Mixed value

$R_{4}\left[\begin{array}{cc|ccc|c|cc}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ R_{3} \\ R_{2} \\ R_{1} & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
\therefore merging row parts do not increase mixed value of column part

Twin-width and mixed freeness

Theorem
If G admits a t-mixed free adjacency matrix, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $A d j_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|l|l|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $A d j_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Question
For every k, is there a c_{k} such that every $n \times m 0,1$-matrix with at least $c_{k} 1$ per row and column admits a k-grid minor?

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92)
For every k, there is a c_{k} such that every $n \times m 0$, 1-matrix with at least $c_{k} \max (n, m) 1$ entries admits a k-grid minor.

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92)
For every k, there is a c_{k} such that every $n \times m 0$, 1-matrix with at least $c_{k} \max (n, m) 1$ entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture '80s)
Any proper permutation class contains only $2^{O(n)}$ n-permutations.

Klazar showed Füredi-Hajnal \Rightarrow Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004

Marcus-Tardos one-page inductive proof

Let M be an $n \times n 0$, 1-matrix without k-grid minor

Marcus-Tardos one-page inductive proof

Draw a regular $\frac{n}{k^{2}} \times \frac{n}{k^{2}}$ division on top of M

Marcus-Tardos one-page inductive proof

A cell is wide if it has at least k columns with a 1

Marcus-Tardos one-page inductive proof

A cell is tall if it has at least k rows with a 1

Marcus-Tardos one-page inductive proof

There are less than $k\binom{k^{2}}{k}$ wide cells per column part. Why?

Marcus-Tardos one-page inductive proof

There are less than $k\binom{k^{2}}{k}$ tall cells per row part

Marcus-Tardos one-page inductive proof

In W and T, at most $2 \cdot \frac{n}{k^{2}} \cdot k\binom{k^{2}}{k} \cdot k^{4}=2 k^{3}\binom{k^{2}}{k} n$ entries 1

Marcus-Tardos one-page inductive proof

There are at most $(k-1)^{2} c_{k} \frac{n}{k^{2}}$ remaining 1 . Why?

Marcus-Tardos one-page inductive proof

Choose $c_{k}=2 k^{4}\binom{k^{2}}{k}$ so that $(k-1)^{2} c_{k} \frac{n}{k^{2}}+2 k^{3}\binom{k^{2}}{k} n \leqslant c_{k} n$

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part Impossible!

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$ Step 2: find a contraction sequence with error value $g(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Refinement of \mathcal{D}_{i} where each part coincides on the non-mixed cells

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Now to bound the twin-width of a class \mathcal{C} :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with \mathcal{C}

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs

order by left endpoints

Unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction
A graph G is H-minor free if H is not a minor of G
A graph class is H -minor free if all its graphs are

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction A graph G is H-minor free if H is not a minor of G A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K_{5} or $K_{3,3}$ as a minor

K_{5}

$K_{3,3}$

Bounded twin-width $-K_{t}$-minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width $-K_{t}$-minor free graphs

Contracting the $2 t$ subpaths yields a $K_{t, t}$-minor, hence a K_{t}-minor

Bounded twin-width $-K_{t}$-minor free graphs

Instead we use a specially crafted lex-DFS discovery order

Theorem

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an $O(1)$-sequence?

