Introduction to twin-width

Édouard Bonnet based on joint works with Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP

April 2nd, 2021, Journées CALAMAR

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 0 overall maximum red degree = 0

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 1 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 1 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"
- substitution, lexicographic product: max of the twin-widths

Complementation

 $\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)$

G

Complementation

$$\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)$$

 $\mathsf{tww}(H) \leq \mathsf{tww}(G)$

Н

Ignore absent vertices

Adding one apex v

Ignore the contractions of $X \subseteq A$ with $Y \subseteq B$

 $G = C_5$

 $G = C_5$, $H = P_4$, substitution $G[v \leftarrow H]$

 $G = C_5$, $H = P_4$, lexicographic product G[H]

More generally any modular decomposition

More generally any modular decomposition

Substitution and lexicographic product

 $\mathsf{tww}(G[H]) = \mathsf{max}(\mathsf{tww}(G), \mathsf{tww}(H))$

Classes with bounded twin-width

- cographs = twin-width 0
- trees, bounded treewidth, clique-width/rank-width
- grids
- ▶

If possible, contract two twin leaves

If not, contract a deepest leaf with its parent

If not, contract a deepest leaf with its parent

If possible, contract two twin leaves

Trees

Generalization to bounded treewidth and even bounded rank-width

4-sequence for planar grids

3-dimensional grids

Contains arbitrary large clique minors

3-dimensional grids

Contract the blue edges in any order ightarrow 12-sequence

3-dimensional grids

The *d*-dimensional grid has twin-width $\leq 4d$ (even 3d)

split each vertex in 2, replace each edge by 1 of the 2 matchings

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6 but no balanced separators of size o(n)

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

No pair of near twins

First example of unbounded twin-width

No pair of near twins

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence: twin-width is *not* an iterated identification of near twins.

No O(1)-contraction sequence: twin-width is *not* an iterated identification of near twins.

Planar graphs?

Planar graphs?

For every d, a planar trigraph without planar d-contraction

Planar graphs?

For every d, a planar trigraph without planar d-contraction

More powerfool tool needed

Encode a bipartite graph (or, if symmetric, any graph)

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Contraction of two columns (similar with two rows)

How is the twin-width (re)defined?

How to tune it for non-bipartite graph?

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1				0	
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Maximum number of non-constant zones per column or row part = error value

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

Maximum number of non-constant zones per column or row part ... until there are a single row part and column part

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

Twin-width as maximum error value of a contraction/division sequence

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

1	1	1	1	1	1	1	0	
0	1	1	0	0	1	0	1	
0	0	0	0	0	0	0	1	
0	1	0	0	1	0	1	0	
1	0	0	1	1	0	1	0	
0	1	1	1	1	1	0	0	
1	0	1	1	1	0	0	1	
4-grid minor								

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

1	1	1	1	1	1	1	0		
0	1	1	0	0	1	0	1		
0	0	0	0	0	0	0	1		
0	1	0	0	1	0	1	0		
1	0	0	1	1	0	1	0		
0	1	1	1	1	1	0	0		
1	0	1	1	1	0	0	1		
4-grid minor									

A matrix is said *t*-grid free if it does not have a *t*-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

1	1	1	1	1	1	1	0		
1 0	1	1	0	0	1	0	1		
0 0	0	0	0	0	0	0	1		
0	1	0	0	1	0	1	0		
1	0	0	1	1	0	1	0		
0	1	1	1	1	1	0	0		
1	0	1	1	1	0	0	1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									

3-mixed minor

Mixed minor

Mixed cell: not horizontal nor vertical

Every mixed cell is witnessed by a 2×2 square = corner

Mixed minor

Mixed cell: not horizontal nor vertical

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

pprox (maximum) number of cells with a corner per row/column part

Mixed value

But we add the number of boundaries containing a corner

Mixed value

 \therefore merging row parts do not increase mixed value of column part

Theorem

If G admits **a** t-mixed free adjacency matrix, then tww(G) = $2^{2^{O(t)}}$.

Theorem If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Theorem

If
$$\exists \sigma$$
 s.t. $Adj_{\sigma}(G)$ is t-mixed free, then tww(G) = $2^{2^{O(t)}}$

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1					1		
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem

If
$$\exists \sigma$$
 s.t. $Adj_{\sigma}(G)$ is t-mixed free, then tww(G) = $2^{2^{O(t)}}$

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Merge consecutive parts greedily

Theorem

If
$$\exists \sigma \text{ s.t. } Adj_{\sigma}(G)$$
 is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Merge consecutive parts greedily

Theorem

If
$$\exists \sigma$$
 s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Question

For every k, is there a c_k such that every $n \times m 0, 1$ -matrix with at least $c_k 1$ per row and column admits a k-grid minor?

Stanley-Wilf conjecture / Marcus-Tardos theorem Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92) For every k, there is a c_k such that every $n \times m$ 0,1-matrix with at least $c_k \max(n, m)$ 1 entries admits a k-grid minor. Stanley-Wilf conjecture / Marcus-Tardos theorem Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92) For every k, there is a c_k such that every $n \times m$ 0,1-matrix with at least $c_k \max(n, m)$ 1 entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture '80s) Any proper permutation class contains only $2^{O(n)}$ n-permutations.

Klazar showed Füredi-Hajnal \Rightarrow Stanley-Wilf in 2000 Marcus and Tardos showed Füredi-Hajnal in 2004

Let *M* be an $n \times n$ 0, 1-matrix without *k*-grid minor

Draw a regular $\frac{n}{k^2} \times \frac{n}{k^2}$ division on top of M

A cell is *wide* if it has at least k columns with a 1

A cell is *tall* if it has at least k rows with a 1

There are less than $k\binom{k^2}{k}$ wide cells per column part. Why?

There are less than $k\binom{k^2}{k}$ tall cells per row part

In W and T, at most $2 \cdot \frac{n}{k^2} \cdot k \binom{k^2}{k} \cdot k^4 = 2k^3 \binom{k^2}{k} n$ entries 1

There are at most $(k-1)^2 c_k \frac{n}{k^2}$ remaining 1. Why?

Theorem If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Theorem If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Theorem If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then tww(G) = $2^{2^{O(t)}}$.

Step 1: find a division sequence $(D_i)_i$ with mixed value f(t)Step 2: find a contraction sequence with error value g(t)

Refinement of \mathcal{D}_i where each part coincides on the non-mixed cells

Theorem If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Theorem If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Now to bound the twin-width of a class C:

1) Find a *good* vertex-ordering procedure

2) Argue that, in this order, a *t*-mixed minor would conflict with C

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs

order by left endpoints

Unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is *H*-minor free if H is not a minor of G

A graph class is *H*-minor free if all its graphs are

Graph minors

Formed by **vertex deletion**, **edge deletion**, and **edge contraction** A graph *G* is *H*-minor free if *H* is not a minor of *G* A graph class is *H*-minor free if all its graphs are

Planar graphs are exactly the graphs without K_5 or $K_{3,3}$ as a minor

Bounded twin-width – K_t -minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width – K_t -minor free graphs

Contracting the 2t subpaths yields a $K_{t,t}$ -minor, hence a K_t -minor

Bounded twin-width – K_t -minor free graphs

Instead we use a specially crafted lex-DFS discovery order

Theorem

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?