
Algorithms based on contraction sequences
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Unification and generalization via contraction sequences
Fixed-parameter tractable (f (k)nO(1)) algorithms for
I Hamiltonian Cycle parameterized by treewidth k:

Courcelle’s theorem or progdyn on tree-decompositions

I k-Subgraph Isomorphism on Kt-minor free graphs:
shifting, low treewidth decompositions

I k-Clique on graphs of locally bounded cliquewidth:
Gaifman’s locality + CMR’s theorems

I k-Permutation Pattern on all permutations:
ad hoc algorithm of Guillemot and Marx

I k-Subgraph Isomorphism on bounded-width posets:
Bova et al., Gajarský et al.

I k-Induced Subgraph Isomorphism on unit intervals:
Heggernes et al.

All these results are in fact part of the same framework
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Every induced subgraph has two twins
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Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing
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Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi ), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi ), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]



Different conditions imposed in the sequence of red graphs

bd degree: defines bd twin-width
bd outdegree: defines bd oriented twin-width

bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth



Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 61 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Bd boolean-width: binary tree layout s.t. every edge cut in the tree
induces a bipartition with bd # distinct neighborhoods



Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 61 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

There is a subtree on ` ∈ [d + 1, 2d ] leaves, where d bounds the
number of single-vertex neighborhoods in a bipartition



Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Two vertices have the same neighborhood outside of this subtree

a



Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Contracting them preserves the upper bound at 2d
on the size of red connected components



Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.

Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded total twin-width iff it has bounded linear
boolean-width/cliquewidth/rank-width.
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Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are incompatible



Is it easier to design algorithms via this characterization?
Solve 3-Coloring on a graph G with a contraction sequence s.t.

all red graphs have components of size at most d

C1

C2

C3

C

Initialization: time 3n
Update: time 7d d2

Total: time 7d d2n
End: still a profile on the single vertex containing the whole graph?



Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔
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Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi )

G |= ϕ? ⇔ k-Independent Set



Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔



Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔ 3-Coloring



Courcelle’s theorems
We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
graphs G of treewidth at most t.

I as the incidence graph preserves bounded treewidth,
possible edge-set quantification

I linear FPT approximation for treewidth
I (polynomial) FPT approximation for clique-width
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Rank-k m-types
Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of ∃xL[k].”

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.
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FO Ehrenfeucht-Fraissé game

A B

b1a1
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b2

a3

b2

a3

2-player game on two σ-structures A,B (for us, colored graphs)

A[a1, . . . , ak ]
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At each round, Spoiler picks a structure (B) and a vertex therein

A[a1, . . . , ak ]
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Duplicator answers with a vertex in the other structure

A[a1, . . . , ak ]
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After q rounds, Duplicator wishes that ai 7→ bi is an isomorphism
between A[a1, . . . , ak ] and B[b1, . . . , bk ]
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FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

If Duplicator can survive k rounds, we write A ≡FO
k B

Here A ≡FO
2 B and A 6≡FO

3 B



MSO Ehrenfeucht-Fraissé game

A B

Same game but Spoiler can now play set moves
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MSO Ehrenfeucht-Fraissé game

A B

To which Duplicator answers a set in the other structure



MSO Ehrenfeucht-Fraissé game

A B

Again we write A ≡MSO
k B if Duplicator can survive k rounds



k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.
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MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud )-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

For each v ∈ V (G), tpk(G ,Pn, {v}) = type of K1
tpk(G ,P1, {V (G)}) = type of G
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τ = tpMSO
k (G ,Pi ,C) based on the τj = tpMSO

k (G ,Pi+1,Cj)?



MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud )-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

B

X Y
C1, τ1

C2, τ2

C3, τ3

C arises from C1, . . . ,Cd ′ : τ = F (τ1, . . . , τd ′ ,B,X ,Y )



Showing τ = F (τ1, . . . , τd ′,B,X ,Y ) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Duplicator combines her strategies in the red components
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If Spoiler plays a vertex in the component of type τ1,



Showing τ = F (τ1, . . . , τd ′,B,X ,Y ) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Duplicator answers the corresponding winning move
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calls her winning strategy in C ′1
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Turning it into a uniform algorithm

Reminder:
I #non-equivalent partitioned sentences of rank k: f (d , k)
I #rank-k partitioned types bounded by g(d , k) = 2f (d ,k)

For each newly observed type τ ,
I keep a representative (H,P)τ on at most (d + 1)g(d ,k) vertices
I determine the 0, 1-vector of satisfied sentences on (H,P)τ
I record the value of F (τ1, . . . , τd ′ ,B,X ,Y ) for future uses

To decide G |= ϕ, look at position ϕ in the 0, 1-vector of tpMSO
k (G)
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Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?
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k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i ] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i ] from all the T [D′, i + 1]?
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k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both



k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both



FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Add Gaifman’s locality to our MSO model checking algorithm
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Local tuple of parts

P1
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P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...

P2 is at distance at most 2k−2 from {P1} in (G ,Pi )
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(P1,P2, . . . ,Pq) is local around P1 if...
P3 is at distance at most 2k−3 from {P1,P2} in (G ,Pi )
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(P1,P2, . . . ,Pq) is local around P1 if...
P4 is at distance at most 2k−4 from {P1,P2,P3} in (G ,Pi )
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(P1,P2, . . . ,Pq) is local around P1 if...
Pq is at distance at most 2k−q from {P1, ...,Pq−1} in (G ,Pi )
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Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G ,Pi ) if of the
form Qx1 ∈ X Qx2 ∈ P2 . . . Qxk ∈ Pk ψ(x1, . . . , xk) with
I ψ is quantifier-free, and
I (X ,P2, . . . ,Pk) local around X in (G ,Pi ).

And the corresponding types:

ltpFO
k (G ,Pi ,X ) = {ϕ : qr(ϕ) 6 k,

ϕ is partitioned local around X in (G ,Pi ),

(G ,Pi ) |= ϕ}.
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Partitioned local sentences/types in (G ,Pn) and (G ,P1)

Initialization of the dynamic programming

In (G ,Pn = {{v} : v ∈ V (G)}): for every v ∈ V (G),
Qx1 ∈ {v} Qx2 ∈ {v} . . . Qxk ∈ {v} ψ ≡ ψ(v , v , . . . , v)

Partitioned local types are easy to compute in (G ,Pn)

Output of the dynamic programming

In (G ,P1 = {V (G)}):
Qx1 ∈ V (G) Qx2 ∈ V (G) . . . Qxk ∈ V (G) ψ ≡ classic sentences

The partitioned local type in (G ,P1) coincides with the type of G
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Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X ) = ltpFO
k (G ′,P ′i , f (X ))

(G ,Pi )

(G ′,P ′i )

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Local strategies win the global game
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Duplicator answers in f (P1) following the local game around P1
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If Spoiler plays too far
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Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi ) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z

I update only involves parts at distance at most 2k−1 from P
I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k ) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)
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Conclusion

Contraction sequences offer an interesting unifying and
generalizing perspective

Class of bounded MSO tr. of FO tr. of seq. constraint eff. MC

linear rank-width paths linear order bd #edges MSO
rank-width trees tree order bd component MSO
twin-width not closed perm. subclass bd degree FO

Bounded degree, bounded expansion, nowhere denseness?

Thank you for your attention!
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