
Algorithms based on contraction sequences

Édouard Bonnet
based on joint works with Colin Geniet, Eun Jung Kim,

Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP

November 15th, 2021, Journées Graphes et Algorithmes

Unification and generalization via contraction sequences
Fixed-parameter tractable (f (k)nO(1)) algorithms for
I Hamiltonian Cycle parameterized by treewidth k:

Courcelle’s theorem or progdyn on tree-decompositions

I k-Subgraph Isomorphism on Kt-minor free graphs:
shifting, low treewidth decompositions

I k-Clique on graphs of locally bounded cliquewidth:
Gaifman’s locality + CMR’s theorems

I k-Permutation Pattern on all permutations:
ad hoc algorithm of Guillemot and Marx

I k-Subgraph Isomorphism on bounded-width posets:
Bova et al., Gajarský et al.

I k-Induced Subgraph Isomorphism on unit intervals:
Heggernes et al.

All these results are in fact part of the same framework

Unification and generalization via contraction sequences
Fixed-parameter tractable (f (k)nO(1)) algorithms for
I Hamiltonian Cycle parameterized by treewidth k:

Courcelle’s theorem or progdyn on tree-decompositions
I k-Subgraph Isomorphism on Kt-minor free graphs:

shifting, low treewidth decompositions

I k-Clique on graphs of locally bounded cliquewidth:
Gaifman’s locality + CMR’s theorems

I k-Permutation Pattern on all permutations:
ad hoc algorithm of Guillemot and Marx

I k-Subgraph Isomorphism on bounded-width posets:
Bova et al., Gajarský et al.

I k-Induced Subgraph Isomorphism on unit intervals:
Heggernes et al.

All these results are in fact part of the same framework

Unification and generalization via contraction sequences
Fixed-parameter tractable (f (k)nO(1)) algorithms for
I Hamiltonian Cycle parameterized by treewidth k:

Courcelle’s theorem or progdyn on tree-decompositions
I k-Subgraph Isomorphism on Kt-minor free graphs:

shifting, low treewidth decompositions
I k-Clique on graphs of locally bounded cliquewidth:

Gaifman’s locality + CMR’s theorems

I k-Permutation Pattern on all permutations:
ad hoc algorithm of Guillemot and Marx

I k-Subgraph Isomorphism on bounded-width posets:
Bova et al., Gajarský et al.

I k-Induced Subgraph Isomorphism on unit intervals:
Heggernes et al.

All these results are in fact part of the same framework

Unification and generalization via contraction sequences
Fixed-parameter tractable (f (k)nO(1)) algorithms for
I Hamiltonian Cycle parameterized by treewidth k:

Courcelle’s theorem or progdyn on tree-decompositions
I k-Subgraph Isomorphism on Kt-minor free graphs:

shifting, low treewidth decompositions
I k-Clique on graphs of locally bounded cliquewidth:

Gaifman’s locality + CMR’s theorems
I k-Permutation Pattern on all permutations:

ad hoc algorithm of Guillemot and Marx
I k-Subgraph Isomorphism on bounded-width posets:

Bova et al., Gajarský et al.
I k-Induced Subgraph Isomorphism on unit intervals:

Heggernes et al.

All these results are in fact part of the same framework

Unification and generalization via contraction sequences
Fixed-parameter tractable (f (k)nO(1)) algorithms for
I Hamiltonian Cycle parameterized by treewidth k:

Courcelle’s theorem or progdyn on tree-decompositions
I k-Subgraph Isomorphism on Kt-minor free graphs:

shifting, low treewidth decompositions
I k-Clique on graphs of locally bounded cliquewidth:

Gaifman’s locality + CMR’s theorems
I k-Permutation Pattern on all permutations:

ad hoc algorithm of Guillemot and Marx
I k-Subgraph Isomorphism on bounded-width posets:

Bova et al., Gajarský et al.
I k-Induced Subgraph Isomorphism on unit intervals:

Heggernes et al.

All these results are in fact part of the same framework

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

A single vertex is a cograph,

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

as well as the union of two cographs,

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

and the complete join of two cographs.

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

Many NP-hard problems are polytime solvable on cographs
+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

For instance the independence number α(G) is polytime

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a disjoint union: combine the solutions
+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a complete join: pick the larger one
+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a complete join: pick the larger one

max

max +

1 + 1 max

1 1 1 1

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Is there another algorithmic scheme based on this definition?

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Is there another algorithmic scheme based on this definition?

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

We store in each vertex its inner max independent set

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5

→ 7
1

1

4

3
→ 7 4

1

1
. . .

We can find a pair of false/true twins

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3

→ 7 4
1

1
. . .

Sum them if they are false twins

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Max them if they are true twins

Trigraphs

a

b

c

d

e

f

g

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)

Red graph: trigraph minus its black edges

Trigraphs

a

b

c

d

e

f

g

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)

Red graph: trigraph minus its black edges

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing

Contraction sequence

a

b

c

d

e

f

g

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

b

c

gef

a dad

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

c

g

ad

b efbef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

c

adg

bef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

adg

bcef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Different conditions imposed in the sequence of red graphs

bd degree: defines bd twin-width
bd outdegree: defines bd oriented twin-width

bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 61 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Bd boolean-width: binary tree layout s.t. every edge cut in the tree
induces a bipartition with bd # distinct neighborhoods

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 61 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

There is a subtree on ` ∈ [d + 1, 2d] leaves, where d bounds the
number of single-vertex neighborhoods in a bipartition

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Two vertices have the same neighborhood outside of this subtree

a

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Contracting them preserves the upper bound at 2d
on the size of red connected components

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.

Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded total twin-width iff it has bounded linear
boolean-width/cliquewidth/rank-width.

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.
Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded total twin-width iff it has bounded linear
boolean-width/cliquewidth/rank-width.

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.
Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded total twin-width iff it has bounded linear
boolean-width/cliquewidth/rank-width.

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are incompatible

Is it easier to design algorithms via this characterization?
Solve 3-Coloring on a graph G with a contraction sequence s.t.

all red graphs have components of size at most d

C1

C2

C3

C

Initialization: time 3n
Update: time 7d d2

Total: time 7d d2n
End: still a profile on the single vertex containing the whole graph?

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔ k-Dominating Set

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔ k-Independent Set

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔ 3-Coloring

Courcelle’s theorems
We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
graphs G of treewidth at most t.

I as the incidence graph preserves bounded treewidth,
possible edge-set quantification

I linear FPT approximation for treewidth
I (polynomial) FPT approximation for clique-width

Courcelle’s theorems
We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
graphs G of treewidth at most t.
I as the incidence graph preserves bounded treewidth,

possible edge-set quantification
I linear FPT approximation for treewidth
I (polynomial) FPT approximation for clique-width

Rank-k m-types
Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of ∃xL[k].”

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.

Rank-k m-types
Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of ∃xL[k].”

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.

Rank-k m-types
Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of ∃xL[k].”

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.

FO Ehrenfeucht-Fraissé game

A B

b1a1

a2

b2

a3

b2

a3

2-player game on two σ-structures A,B (for us, colored graphs)

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1

a1

a2

b2

a3

b2

a3

At each round, Spoiler picks a structure (B) and a vertex therein

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

Duplicator answers with a vertex in the other structure

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

After q rounds, Duplicator wishes that ai 7→ bi is an isomorphism
between A[a1, . . . , ak] and B[b1, . . . , bk]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

After q rounds, Duplicator wishes that ai 7→ bi is an isomorphism
between A[a1, . . . , ak] and B[b1, . . . , bk]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

When no longer possible, Spoiler wins

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

When no longer possible, Spoiler wins

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

If Duplicator can survive k rounds, we write A ≡FO
k B

Here A ≡FO
2 B and A 6≡FO

3 B

MSO Ehrenfeucht-Fraissé game

A B

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

A B

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

A B

To which Duplicator answers a set in the other structure

MSO Ehrenfeucht-Fraissé game

A B

Again we write A ≡MSO
k B if Duplicator can survive k rounds

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

For each v ∈ V (G), tpk(G ,Pn, {v}) = type of K1
tpk(G ,P1, {V (G)}) = type of G

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

For each v ∈ V (G), tpk(G ,Pn, {v}) = type of K1
tpk(G ,P1, {V (G)}) = type of G

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

τ = tpMSO
k (G ,Pi ,C) based on the τj = tpMSO

k (G ,Pi+1,Cj)?

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

B

X Y
C1, τ1

C2, τ2

C3, τ3

C arises from C1, . . . ,Cd ′ : τ = F (τ1, . . . , τd ′ ,B,X ,Y)

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Duplicator combines her strategies in the red components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

If Spoiler plays a vertex in the component of type τ1,

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Duplicator answers the corresponding winning move

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4

b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

If Spoiler plays a set, Duplicator looks at the intersection with C1,

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

If Spoiler plays a set, Duplicator looks at the intersection with C1,

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

calls her winning strategy in C ′1

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

same for the other components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

same for the other components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

same for the other components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and plays the union

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Turning it into a uniform algorithm

Reminder:
I #non-equivalent partitioned sentences of rank k: f (d , k)
I #rank-k partitioned types bounded by g(d , k) = 2f (d ,k)

For each newly observed type τ ,
I keep a representative (H,P)τ on at most (d + 1)g(d ,k) vertices
I determine the 0, 1-vector of satisfied sentences on (H,P)τ
I record the value of F (τ1, . . . , τd ′ ,B,X ,Y) for future uses

To decide G |= ϕ, look at position ϕ in the 0, 1-vector of tpMSO
k (G)

Turning it into a uniform algorithm

Reminder:
I #non-equivalent partitioned sentences of rank k: f (d , k)
I #rank-k partitioned types bounded by g(d , k) = 2f (d ,k)

For each newly observed type τ ,
I keep a representative (H,P)τ on at most (d + 1)g(d ,k) vertices
I determine the 0, 1-vector of satisfied sentences on (H,P)τ
I record the value of F (τ1, . . . , τd ′ ,B,X ,Y) for future uses

To decide G |= ϕ, look at position ϕ in the 0, 1-vector of tpMSO
k (G)

Twin-width is more general than the classic widths

4-sequence for planar grids

Twin-width is more general than the classic widths

4-sequence for planar grids

Twin-width is more general than the classic widths

4-sequence for planar grids

Twin-width is more general than the classic widths

4-sequence for planar grids

Twin-width is more general than the classic widths

4-sequence for planar grids

Twin-width is more general than the classic widths

4-sequence for planar grids

Twin-width is more general than the classic widths

4-sequence for planar grids

Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both

k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Add Gaifman’s locality to our MSO model checking algorithm

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Add Gaifman’s locality to our MSO model checking algorithm

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...

P2 is at distance at most 2k−2 from {P1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P2 is at distance at most 2k−2 from {P1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P2 is at distance at most 2k−2 from {P1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P3 is at distance at most 2k−3 from {P1,P2} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P3 is at distance at most 2k−3 from {P1,P2} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P4 is at distance at most 2k−4 from {P1,P2,P3} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P4 is at distance at most 2k−4 from {P1,P2,P3} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
Pq is at distance at most 2k−q from {P1, ...,Pq−1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
Pq is at distance at most 2k−q from {P1, ...,Pq−1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
Pq is at distance at most 2k−q from {P1, ...,Pq−1} in (G ,Pi)

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G ,Pi) if of the
form Qx1 ∈ X Qx2 ∈ P2 . . . Qxk ∈ Pk ψ(x1, . . . , xk) with
I ψ is quantifier-free, and
I (X ,P2, . . . ,Pk) local around X in (G ,Pi).

And the corresponding types:

ltpFO
k (G ,Pi ,X) = {ϕ : qr(ϕ) 6 k,

ϕ is partitioned local around X in (G ,Pi),

(G ,Pi) |= ϕ}.

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G ,Pi) if of the
form Qx1 ∈ X Qx2 ∈ P2 . . . Qxk ∈ Pk ψ(x1, . . . , xk) with
I ψ is quantifier-free, and
I (X ,P2, . . . ,Pk) local around X in (G ,Pi).

And the corresponding types:

ltpFO
k (G ,Pi ,X) = {ϕ : qr(ϕ) 6 k,

ϕ is partitioned local around X in (G ,Pi),

(G ,Pi) |= ϕ}.

Partitioned local sentences/types in (G ,Pn) and (G ,P1)

Initialization of the dynamic programming

In (G ,Pn = {{v} : v ∈ V (G)}): for every v ∈ V (G),
Qx1 ∈ {v} Qx2 ∈ {v} . . . Qxk ∈ {v} ψ ≡ ψ(v , v , . . . , v)

Partitioned local types are easy to compute in (G ,Pn)

Output of the dynamic programming

In (G ,P1 = {V (G)}):
Qx1 ∈ V (G) Qx2 ∈ V (G) . . . Qxk ∈ V (G) ψ ≡ classic sentences

The partitioned local type in (G ,P1) coincides with the type of G

Partitioned local sentences/types in (G ,Pn) and (G ,P1)

Initialization of the dynamic programming

In (G ,Pn = {{v} : v ∈ V (G)}): for every v ∈ V (G),
Qx1 ∈ {v} Qx2 ∈ {v} . . . Qxk ∈ {v} ψ ≡ ψ(v , v , . . . , v)

Partitioned local types are easy to compute in (G ,Pn)

Output of the dynamic programming

In (G ,P1 = {V (G)}):
Qx1 ∈ V (G) Qx2 ∈ V (G) . . . Qxk ∈ V (G) ψ ≡ classic sentences

The partitioned local type in (G ,P1) coincides with the type of G

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Local strategies win the global game

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1

P2
a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Say, Spoiler plays in P1

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1

P2
a2

P3a3

f (P1)
b1

f (P2)
b2

f (P3)
b3

f

Duplicator answers in f (P1) following the local game around P1

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1

P2
a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Now when Spoiler plays close to P1 or f (P1)

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

If Spoiler plays too far

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator starts a new local game around that new part

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator starts a new local game around that new part

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z

I update only involves parts at distance at most 2k−1 from P
I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z
I update only involves parts at distance at most 2k−1 from P

I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z
I update only involves parts at distance at most 2k−1 from P
I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z
I update only involves parts at distance at most 2k−1 from P
I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

Conclusion

Contraction sequences offer an interesting unifying and
generalizing perspective

Class of bounded MSO tr. of FO tr. of seq. constraint eff. MC

linear rank-width paths linear order bd #edges MSO
rank-width trees tree order bd component MSO
twin-width not closed perm. subclass bd degree FO

Bounded degree, bounded expansion, nowhere denseness?

Thank you for your attention!

Conclusion

Contraction sequences offer an interesting unifying and
generalizing perspective

Class of bounded MSO tr. of FO tr. of seq. constraint eff. MC

linear rank-width paths linear order bd #edges MSO
rank-width trees tree order bd component MSO
twin-width not closed perm. subclass bd degree FO

Bounded degree, bounded expansion, nowhere denseness?

Thank you for your attention!

