Algorithms based on contraction sequences

Édouard Bonnet
based on joint works with Colin Geniet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP

November 15th, 2021, Journées Graphes et Algorithmes

Unification and generalization via contraction sequences

Fixed-parameter tractable $\left(f(k) n^{O(1)}\right)$ algorithms for

- Hamiltonian Cycle parameterized by treewidth k : Courcelle's theorem or progdyn on tree-decompositions

Unification and generalization via contraction sequences

Fixed-parameter tractable $\left(f(k) n^{O(1)}\right)$ algorithms for

- Hamiltonian Cycle parameterized by treewidth k : Courcelle's theorem or progdyn on tree-decompositions
- k-SUbGRAPH ISOMORPHISM on K_{t}-minor free graphs: shifting, low treewidth decompositions

Unification and generalization via contraction sequences

Fixed-parameter tractable $\left(f(k) n^{O(1)}\right)$ algorithms for

- Hamiltonian Cycle parameterized by treewidth k : Courcelle's theorem or progdyn on tree-decompositions
- k-SUbGRAPH ISOMORPHISM on K_{t}-minor free graphs: shifting, low treewidth decompositions
- k-Clique on graphs of locally bounded cliquewidth:

Gaifman's locality + CMR's theorems

Unification and generalization via contraction sequences

Fixed-parameter tractable $\left(f(k) n^{O(1)}\right)$ algorithms for

- Hamiltonian Cycle parameterized by treewidth k : Courcelle's theorem or progdyn on tree-decompositions
- k-SUbGraph ISOMORPHISM on K_{t}-minor free graphs: shifting, low treewidth decompositions
- k-Clique on graphs of locally bounded cliquewidth:

Gaifman's locality + CMR's theorems

- k-Permutation Pattern on all permutations: ad hoc algorithm of Guillemot and Marx
- k-Subgraph Isomorphism on bounded-width posets: Bova et al., Gajarský et al.
- k-Induced Subgraph Isomorphism on unit intervals: Heggernes et al.

Unification and generalization via contraction sequences

Fixed-parameter tractable $\left(f(k) n^{O(1)}\right)$ algorithms for

- Hamiltonian Cycle parameterized by treewidth k : Courcelle's theorem or progdyn on tree-decompositions
- k-SUbGraph ISOMORPHISM on K_{t}-minor free graphs: shifting, low treewidth decompositions
- k-Clique on graphs of locally bounded cliquewidth:

Gaifman's locality + CMR's theorems

- k-Permutation Pattern on all permutations: ad hoc algorithm of Guillemot and Marx
- k-Subgraph Isomorphism on bounded-width posets: Bova et al., Gajarský et al.
- k-Induced Subgraph Isomorphism on unit intervals: Heggernes et al.

All these results are in fact part of the same framework

Cographs

A single vertex is a cograph,

Cographs

as well as the union of two cographs,

Cographs

and the complete join of two cographs.

Cographs

Many NP-hard problems are polytime solvable on cographs

Cographs

For instance the independence number $\alpha(G)$ is polytime

Cographs

In case of a disjoint union: combine the solutions

Cographs

In case of a complete join: pick the larger one

Cographs

Another cograph definition

Every induced subgraph has two twins

Another cograph definition

Every induced subgraph has two twins

Is there another algorithmic scheme based on this definition?

Another cograph definition

Every induced subgraph has two twins
(1) (1) (1) (1)
(1) (1) (1) (1)
(1) (1) (1) (1)
(1) (1) (1) (1)

We store in each vertex its inner max independent set

Another cograph definition

Every induced subgraph has two twins

We can find a pair of false/true twins

Another cograph definition

Every induced subgraph has two twins

Sum them if they are false twins

Another cograph definition

Every induced subgraph has two twins

Max them if they are true twins

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Red graph: trigraph minus its black edges

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.
partition viewpoint: $G_{i} \longleftrightarrow\left(G, \mathcal{P}_{i}\right)$, vertex $\rightsquigarrow \gg$ part $G\langle S\rangle=G[\bigcup$ vertices of G contracted into a vertex of $S]$

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.
partition viewpoint: $G_{i} \longleftrightarrow\left(G, \mathcal{P}_{i}\right)$, vertex $\leadsto \gg$ part $G\langle S\rangle=G[\bigcup$ vertices of G contracted into a vertex of $S]$

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.
partition viewpoint: $G_{i} \leadsto\left(G, \mathcal{P}_{i}\right)$, vertex $\leadsto \gg$ part $G\langle S\rangle=G[\bigcup$ vertices of G contracted into a vertex of $S]$

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.
partition viewpoint: $G_{i} \leadsto \leadsto\left(G, \mathcal{P}_{i}\right)$, vertex $\leadsto \rightsquigarrow$ part $G\langle S\rangle=G[\bigcup$ vertices of G contracted into a vertex of $S]$

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.
partition viewpoint: $G_{i} \leadsto \leadsto\left(G, \mathcal{P}_{i}\right)$, vertex $\leadsto \rightsquigarrow$ part $G\langle S\rangle=G[\bigcup$ vertices of G contracted into a vertex of $S]$

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.
partition viewpoint: $G_{i} \longleftrightarrow\left(G, \mathcal{P}_{i}\right)$, vertex $\leadsto \gg$ part $G\langle S\rangle=G[\bigcup$ vertices of G contracted into a vertex of $S]$

Different conditions imposed in the sequence of red graphs

bd degree: defines bd twin-width

bd component: redefines bd cliquewidth

bd outdegree: defines bd oriented twin-width

bd \#edges: redefines bd linear cliquewidth

Bd boolean-width \Rightarrow bd component twin-width

Bd boolean-width: binary tree layout s.t. every edge cut in the tree induces a bipartition with bd \# distinct neighborhoods

Bd boolean-width \Rightarrow bd component twin-width

There is a subtree on $\ell \in[d+1,2 d]$ leaves, where d bounds the number of single-vertex neighborhoods in a bipartition

Bd boolean-width \Rightarrow bd component twin-width

Two vertices have the same neighborhood outside of this subtree

Bd boolean-width \Rightarrow bd component twin-width

Contracting them preserves the upper bound at $2 d$ on the size of red connected components

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé '22)
A class has bounded component twin-width iff it has bounded boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé '22)
A class has bounded component twin-width iff it has bounded boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.
Conversely, build the binary tree layout based on the contractions. When red components merge, their subtree gets a same parent. \square

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé '22)
A class has bounded component twin-width iff it has bounded boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.
Conversely, build the binary tree layout based on the contractions. When red components merge, their subtree gets a same parent. \square

Theorem (B., Kim, Reinald, Thomassé '22)
A class has bounded total twin-width iff it has bounded linear boolean-width/cliquewidth/rank-width.

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

For every red component C keep every profile $V(C) \rightarrow 2^{\{1,2,3\}} \backslash\{\emptyset\}$ realizable by a proper 3-coloring of $G\langle C\rangle$

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

For every red component C keep every profile $V(C) \rightarrow 2^{\{1,2,3\}} \backslash\{\emptyset\}$ realizable by a proper 3-coloring of $G\langle C\rangle$

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

For every red component C keep every profile $V(C) \rightarrow 2^{\{1,2,3\}} \backslash\{\emptyset\}$ realizable by a proper 3-coloring of $G\langle C\rangle$

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

Some tuples of the at most $d+1$ profiles corresponding to merging red components are compatible

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

Some tuples of the at most $d+1$ profiles corresponding to merging red components are compatible

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

Some tuples of the at most $d+1$ profiles corresponding to merging red components are incompatible

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

Initialization: time $3 n$
Update: time $7^{d} d^{2}$
Total: time $7^{d} d^{2} n$
End: still a profile on the single vertex containing the whole graph?

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow$

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Dominating Set

Formulas, sentences, and model checking

```
Graph FO/MSO Model Checking Parameter: |\varphi|
Input: A graph G and a first-order/monadic second-order sen-
tence }\varphi\inFO/MSO({E}
Question: G}\models\varphi\mathrm{ ?
```

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow$

Formulas, sentences, and model checking

```
Graph FO/MSO Model Checking Parameter: |\varphi|
Input: A graph G and a first-order/monadic second-order sen-
tence }\varphi\inFO/MSO({E}
Question: G}\models\varphi\mathrm{ ?
```

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Independent Set

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:
$\varphi=\exists X_{1} \exists X_{2} \exists X_{3}\left(\forall x \bigvee_{1 \leqslant i \leqslant 3} X_{i}(x)\right) \wedge \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3}\left(X_{i}(x) \wedge X_{i}(y) \rightarrow \neg E(x, y)\right)$
$G \models \varphi ? \Leftrightarrow$

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:
$\varphi=\exists X_{1} \exists X_{2} \exists X_{3}\left(\forall x \bigvee_{1 \leqslant i \leqslant 3} X_{i}(x)\right) \wedge \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3}\left(X_{i}(x) \wedge X_{i}(y) \rightarrow \neg E(x, y)\right)$
$G \models \varphi$? $\Leftrightarrow 3$-Coloring

Courcelle's theorems

We will reprove with contraction sequences:
Theorem (Courcelle, Makowsky, Rotics '00)
MSO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ given a witness that the clique-width/component twin-width of the input G is at most d.
generalizes
Theorem (Courcelle '90)
MSO model checking can be solved in time $f(|\varphi|, t) \cdot|V(G)|$ on graphs G of treewidth at most t.

Courcelle's theorems

We will reprove with contraction sequences:
Theorem (Courcelle, Makowsky, Rotics '00)
MSO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ given a witness that the clique-width/component twin-width of the input G is at most d.
generalizes
Theorem (Courcelle '90)
MSO model checking can be solved in time $f(|\varphi|, t) \cdot|V(G)|$ on graphs G of treewidth at most t.

- as the incidence graph preserves bounded treewidth, possible edge-set quantification
- linear FPT approximation for treewidth
- (polynomial) FPT approximation for clique-width

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$
\begin{aligned}
\operatorname{tp}_{k}^{\mathcal{L}}\left(\mathscr{A}, \vec{a} \in A^{m}\right) & =\{\varphi(\vec{x}) \in \mathcal{L}[k]: \mathscr{A} \models \varphi(\vec{a})\}, \\
\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) & =\{\varphi \in \mathcal{L}[k]: \mathscr{A} \models \varphi\} .
\end{aligned}
$$

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$
\begin{aligned}
\operatorname{tp}_{k}^{\mathcal{L}}\left(\mathscr{A}, \vec{a} \in A^{m}\right) & =\{\varphi(\vec{x}) \in \mathcal{L}[k]: \mathscr{A} \models \varphi(\vec{a})\}, \\
\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) & =\{\varphi \in \mathcal{L}[k]: \mathscr{A} \models \varphi\} .
\end{aligned}
$$

Theorem (folklore)
For $\mathcal{L} \in\{F O, M S O\}$, the number of rank-k m-types is bounded by a function of k and m only.

Proof.
" $\mathcal{L}[k+1]$ are Boolean combinations of $\exists x \mathcal{L}[k]$."

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$
\begin{aligned}
\operatorname{tp}_{k}^{\mathcal{L}}\left(\mathscr{A}, \vec{a} \in A^{m}\right) & =\{\varphi(\vec{x}) \in \mathcal{L}[k]: \mathscr{A} \models \varphi(\vec{a})\}, \\
\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) & =\{\varphi \in \mathcal{L}[k]: \mathscr{A} \models \varphi\} .
\end{aligned}
$$

Theorem (folklore)
For $\mathcal{L} \in\{F O, M S O\}$, the number of rank-k m-types is bounded by a function of k and m only.

Proof.
" $\mathcal{L}[k+1]$ are Boolean combinations of $\exists x \mathcal{L}[k]$."

Rank- k types partition the graphs into $g(k)$ classes. Efficient Model Checking = quickly finding the class of the input.

FO Ehrenfeucht-Fraissé game

2-player game on two σ-structures \mathscr{A}, \mathscr{B} (for us, colored graphs)

FO Ehrenfeucht-Fraissé game

At each round, Spoiler picks a structure (\mathscr{B}) and a vertex therein

FO Ehrenfeucht-Fraissé game

Duplicator answers with a vertex in the other structure

FO Ehrenfeucht-Fraissé game

After q rounds, Duplicator wishes that $a_{i} \mapsto b_{i}$ is an isomorphism between $\mathscr{A}\left[a_{1}, \ldots, a_{k}\right]$ and $\mathscr{B}\left[b_{1}, \ldots, b_{k}\right]$

FO Ehrenfeucht-Fraissé game

After q rounds, Duplicator wishes that $a_{i} \mapsto b_{i}$ is an isomorphism between $\mathscr{A}\left[a_{1}, \ldots, a_{k}\right]$ and $\mathscr{B}\left[b_{1}, \ldots, b_{k}\right]$

FO Ehrenfeucht-Fraissé game

When no longer possible, Spoiler wins

FO Ehrenfeucht-Fraissé game

When no longer possible, Spoiler wins

FO Ehrenfeucht-Fraissé game

If Duplicator can survive k rounds, we write $\mathscr{A} \equiv{ }_{k}^{\mathrm{FO}} \mathscr{B}$ Here $\mathscr{A} \equiv{ }_{2}^{\mathrm{FO}} \mathscr{B}$ and $\mathscr{A} \not \equiv{ }_{3}^{\mathrm{FO}} \mathscr{B}$

MSO Ehrenfeucht-Fraissé game

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

To which Duplicator answers a set in the other structure

MSO Ehrenfeucht-Fraissé game

Again we write $\mathscr{A} \equiv{ }_{k}^{\mathrm{MSO}} \mathscr{B}$ if Duplicator can survive k rounds

k-round EF games capture rank- k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in\{F O, M S O\}$,

$$
\mathscr{A} \equiv \equiv_{k}^{\mathcal{L}} \mathscr{B} \text { if and only if } t p_{k}^{\mathcal{L}}(\mathscr{A})=t p_{k}^{\mathcal{L}}(\mathscr{B}) .
$$

k-round EF games capture rank- k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in\{F O, M S O\}$,

$$
\mathscr{A} \equiv \equiv_{k}^{\mathcal{L}} \mathscr{B} \text { if and only if } t p_{k}^{\mathcal{L}}(\mathscr{A})=t p_{k}^{\mathcal{L}}(\mathscr{B}) .
$$

Proof.
Induction on k.
$(\Rightarrow) \mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to $x=a$ or $X=A$.

k-round EF games capture rank- k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in\{F O, M S O\}$,

$$
\mathscr{A} \equiv \equiv_{k}^{\mathcal{L}} \mathscr{B} \text { if and only if } t p_{k}^{\mathcal{L}}(\mathscr{A})=t p_{k}^{\mathcal{L}}(\mathscr{B})
$$

Proof.
Induction on k.
$(\Rightarrow) \mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to $x=a$ or $X=A$.
(\Leftarrow) If $\operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{A})=\operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{B})$, then the type $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{A}, a)$ is equal to some $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{B}, b)$. Move a can be answered by playing b.

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, U_{1}, \ldots, U_{d})-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}(k):\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \models \varphi\right\} .
$$

MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, U_{1}, \ldots, U_{d})-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}(k):\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \models \varphi\right\} .
$$

For each $v \in V(G), \operatorname{tp}_{k}\left(G, \mathcal{P}_{n},\{v\}\right)=$ type of K_{1}

$$
\operatorname{tp}_{k}\left(G, \mathcal{P}_{1},\{V(G)\}\right)=\text { type of } G
$$

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, U_{1}, \ldots, U_{d})-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\operatorname{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}(k):\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \models \varphi\right\} .
$$

$$
\tau=\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right) \text { based on the } \tau_{j}=\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i+1}, C_{j}\right) ?
$$

MSO model checking for component twin-width d

Partitioned sentences: sentences on $\left(E, U_{1}, \ldots, U_{d}\right)$-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\operatorname{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}(k):\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \models \varphi\right\} .
$$

C arises from $C_{1}, \ldots, C_{d^{\prime}}: \tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Duplicator combines her strategies in the red components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

If Spoiler plays a vertex in the component of type τ_{1},

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Duplicator answers the corresponding winning move

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

If Spoiler plays a set, Duplicator looks at the intersection with C_{1},

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

If Spoiler plays a set, Duplicator looks at the intersection with C_{1},

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

calls her winning strategy in C_{1}^{\prime}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

same for the other components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

same for the other components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

same for the other components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Turning it into a uniform algorithm

Reminder:

- \#non-equivalent partitioned sentences of rank $k: f(d, k)$
- \#rank-k partitioned types bounded by $g(d, k)=2^{f(d, k)}$

For each newly observed type τ,

- keep a representative $(H, \mathcal{P})_{\tau}$ on at most $(d+1)^{g(d, k)}$ vertices
- determine the 0,1 -vector of satisfied sentences on $(H, \mathcal{P})_{\tau}$
- record the value of $F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ for future uses

Turning it into a uniform algorithm

Reminder:

- \#non-equivalent partitioned sentences of rank $k: f(d, k)$
- \#rank-k partitioned types bounded by $g(d, k)=2^{f(d, k)}$

For each newly observed type τ,

- keep a representative $(H, \mathcal{P})_{\tau}$ on at most $(d+1)^{g(d, k)}$ vertices
- determine the 0,1 -vector of satisfied sentences on $(H, \mathcal{P})_{\tau}$
- record the value of $F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ for future uses

To decide $G \models \varphi$, look at position φ in the 0,1 -vector of $\operatorname{tp}_{k}^{\mathrm{MSO}}(G)$

Twin-width is more general than the classic widths

Twin-width is more general than the classic widths

4-sequence for planar grids

Theorem

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an $O(1)$-sequence?

k-Independent Set given a $d=O(1)$-sequence

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: For every connected subset D of size at most k of the red graph of every G_{i}, store in $T[D, i]$ one largest independent set in $G\langle D\rangle$ intersecting every vertex of D.

k-Independent Set given a $d=O(1)$-sequence

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: For every connected subset D of size at most k of the red graph of every G_{i}, store in $T[D, i]$ one largest independent set in $G\langle D\rangle$ intersecting every vertex of D.

Initialization: $T[\{v\}, n]=\{v\}$
End: $T[\{V(G)\}, 1]=$ IS of size at least k or largest IS in G
Running time: $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$ updates

k-Independent Set given a $d=O(1)$-sequence

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: For every connected subset D of size at most k of the red graph of every G_{i}, store in $T[D, i]$ one largest independent set in $G\langle D\rangle$ intersecting every vertex of D.

Initialization: $T[\{v\}, n]=\{v\}$
End: $T[\{V(G)\}, 1]=$ IS of size at least k or largest IS in G
Running time: $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$ updates

How to compute $T[D, i]$ from all the $T\left[D^{\prime}, i+1\right]$?
k-Independent Set: Update of partial solutions

Best partial solution inhabiting •?
k-Independent Set: Update of partial solutions

3 unions of $\leqslant d+2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:
Theorem (B., Kim, Thomassé, Watrigant '20)
FO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ on graphs G given with a d-sequence.

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:
Theorem (B., Kim, Thomassé, Watrigant '20)
FO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ on graphs G given with a d-sequence.

Add Gaifman's locality to our MSO model checking algorithm

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is local around P_{1} if...

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is local around P_{1} if...
P_{2} is at distance at most 2^{k-2} from $\left\{P_{1}\right\}$ in $\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is local around P_{1} if...
P_{2} is at distance at most 2^{k-2} from $\left\{P_{1}\right\}$ in $\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is local around P_{1} if...
P_{3} is at distance at most 2^{k-3} from $\left\{P_{1}, P_{2}\right\}$ in $\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is local around P_{1} if...
P_{3} is at distance at most 2^{k-3} from $\left\{P_{1}, P_{2}\right\}$ in $\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

($P_{1}, P_{2}, \ldots, P_{q}$) is local around P_{1} if...
P_{4} is at distance at most 2^{k-4} from $\left\{P_{1}, P_{2}, P_{3}\right\}$ in (G, \mathcal{P}_{i})

Local tuple of parts

道

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is local around P_{1} if...
P_{4} is at distance at most 2^{k-4} from $\left\{P_{1}, P_{2}, P_{3}\right\}$ in $\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is local around P_{1} if...
P_{q} is at distance at most 2^{k-q} from $\left\{P_{1}, \ldots, P_{q-1}\right\}$ in $\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is local around P_{1} if...
P_{q} is at distance at most 2^{k-q} from $\left\{P_{1}, \ldots, P_{q-1}\right\}$ in $\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is local around P_{1} if...
P_{q} is at distance at most 2^{k-q} from $\left\{P_{1}, \ldots, P_{q-1}\right\}$ in $\left(G, \mathcal{P}_{i}\right)$

Partitioned local sentences and types

A prenex sentence is partitioned local around X in $\left(G, \mathcal{P}_{i}\right)$ if of the form $Q x_{1} \in X Q x_{2} \in P_{2} \ldots Q x_{k} \in P_{k} \psi\left(x_{1}, \ldots, x_{k}\right)$ with

- ψ is quantifier-free, and
- $\left(X, P_{2}, \ldots, P_{k}\right)$ local around X in $\left(G, \mathcal{P}_{i}\right)$.

Partitioned local sentences and types

A prenex sentence is partitioned local around X in $\left(G, \mathcal{P}_{i}\right)$ if of the form $Q x_{1} \in X Q x_{2} \in P_{2} \ldots Q x_{k} \in P_{k} \psi\left(x_{1}, \ldots, x_{k}\right)$ with

- ψ is quantifier-free, and
- $\left(X, P_{2}, \ldots, P_{k}\right)$ local around X in $\left(G, \mathcal{P}_{i}\right)$.

And the corresponding types:

$$
\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\{\varphi: \operatorname{qr}(\varphi) \leqslant k
$$

φ is partitioned local around X in $\left(G, \mathcal{P}_{i}\right)$,

$$
\left.\left(G, \mathcal{P}_{i}\right) \models \varphi\right\} .
$$

Partitioned local sentences/types in $\left(G, \mathcal{P}_{n}\right)$ and $\left(G, \mathcal{P}_{1}\right)$

Initialization of the dynamic programming
In $\left(G, \mathcal{P}_{n}=\{\{v\}: v \in V(G)\}\right)$: for every $v \in V(G)$,
$Q x_{1} \in\{v\} Q x_{2} \in\{v\} \ldots Q x_{k} \in\{v\} \psi \equiv \psi(v, v, \ldots, v)$
Partitioned local types are easy to compute in (G, \mathcal{P}_{n})

Partitioned local sentences/types in $\left(G, \mathcal{P}_{n}\right)$ and $\left(G, \mathcal{P}_{1}\right)$

Initialization of the dynamic programming
In $\left(G, \mathcal{P}_{n}=\{\{v\}: v \in V(G)\}\right)$: for every $v \in V(G)$,
$Q x_{1} \in\{v\} Q x_{2} \in\{v\} \ldots Q x_{k} \in\{v\} \psi \equiv \psi(v, v, \ldots, v)$
Partitioned local types are easy to compute in (G, \mathcal{P}_{n})

Output of the dynamic programming
$\ln \left(G, \mathcal{P}_{1}=\{V(G)\}\right):$
$Q x_{1} \in V(G) Q x_{2} \in V(G) \ldots Q x_{k} \in V(G) \psi \equiv$ classic sentences
The partitioned local type in $\left(G, \mathcal{P}_{1}\right)$ coincides with the type of G

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$
$\left(G, \mathcal{P}_{i}\right)$
$\left(G^{\prime}, \mathcal{P}_{i}^{\prime}\right)$

Local strategies win the global game

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

$\left(G^{\prime}, \mathcal{P}_{i}^{\prime}\right)$

Say, Spoiler plays in P_{1}

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Duplicator answers in $f\left(P_{1}\right)$ following the local game around P_{1}

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Now when Spoiler plays close to P_{1} or $f\left(P_{1}\right)$

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

If Spoiler plays too far

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Duplicator starts a new local game around that new part

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Duplicator starts a new local game around that new part

Concluding as in the MSO model checking algorithm

$\left(G, \mathcal{P}_{i+1}\right) \rightsquigarrow\left(G, \mathcal{P}_{i}\right): X$ and Y are merged in Z

Partitioned local types around P

- only needs an update if P is at distance at most 2^{k-1} from Z

Concluding as in the MSO model checking algorithm

$\left(G, \mathcal{P}_{i+1}\right) \rightsquigarrow\left(G, \mathcal{P}_{i}\right): X$ and Y are merged in Z

Partitioned local types around P

- only needs an update if P is at distance at most 2^{k-1} from Z
- update only involves parts at distance at most 2^{k-1} from P

Concluding as in the MSO model checking algorithm

$\left(G, \mathcal{P}_{i+1}\right) \rightsquigarrow\left(G, \mathcal{P}_{i}\right): X$ and Y are merged in Z
Partitioned local types around P

- only needs an update if P is at distance at most 2^{k-1} from Z
- update only involves parts at distance at most 2^{k-1} from P
- hence at most $d^{2^{k}}$ parts: conclude like MSO model checking

Concluding as in the MSO model checking algorithm

$\left(G, \mathcal{P}_{i+1}\right) \rightsquigarrow\left(G, \mathcal{P}_{i}\right): X$ and Y are merged in Z
Partitioned local types around P

- only needs an update if P is at distance at most 2^{k-1} from Z
- update only involves parts at distance at most 2^{k-1} from P
- hence at most $d^{2^{k}}$ parts: conclude like MSO model checking

Each contraction: $O_{d, k}(1)=O\left(d^{2^{k}}\right)$ updates in $O_{d, k}(1)=f(d, k)$ Total time: $O_{d, k}(n)$

Conclusion

Contraction sequences offer an interesting unifying and generalizing perspective

Class of bounded	MSO tr. of	FO tr. of	seq. constraint	eff. MC
linear rank-width	paths	linear order	bd \#edges	MSO
rank-width	trees	tree order	bd component	MSO
twin-width	not closed	perm. subclass	bd degree	FO

Bounded degree, bounded expansion, nowhere denseness?

Conclusion

Contraction sequences offer an interesting unifying and generalizing perspective

Class of bounded	MSO tr. of	FO tr. of	seq. constraint	eff. MC
linear rank-width	paths	linear order	bd \#edges	MSO
rank-width	trees	tree order	bd component	MSO
twin-width	not closed	perm. subclass	bd degree	FO

Bounded degree, bounded expansion, nowhere denseness?

Thank you for your attention!

