Twin-width and Logic

Édouard Bonnet

ENS Lyon, LIP

November 6th, combprob2023, Leeds, UK

Graphs

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=0$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=2$

Extension to binary structures

- Red edges appear between two vertices X, Y such that, for some binary relation $R, R(x, y)$ holds for some $x \in X$ and $y \in Y$, and $R\left(x^{\prime}, y^{\prime}\right)$ does not, for some $x^{\prime} \in X$ and $y^{\prime} \in Y$.
- Contraction only allowed within vertices satisfying the same unary relations.

We now contract to up to 2^{h} remaining vertices, with h the number of unary relations.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 \& '21)
The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 \& '21)
The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an $O(1)$-sequence?

Different conditions imposed in the sequence of red graphs

bd component: redefines bd cliquewidth

bd \#edges: redefines bd linear cliquewidth

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow$

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Dominating Set

Formulas, sentences, and model checking

```
Graph FO/MSO Model Checking Parameter: |\varphi|
Input: A graph G and a first-order/monadic second-order sen-
tence }\varphi\inFO/MSO({E}
Question: G}\models\varphi\mathrm{ ?
```

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow$

Formulas, sentences, and model checking

```
Graph FO/MSO Model Checking Parameter: |\varphi|
Input: A graph G and a first-order/monadic second-order sen-
tence }\varphi\inFO/MSO({E}
Question: G}\models\varphi\mathrm{ ?
```

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Independent Set

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:
$\varphi=\exists X_{1} \exists X_{2} \exists X_{3}\left(\forall x \bigvee_{1 \leqslant i \leqslant 3} X_{i}(x)\right) \wedge \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3}\left(X_{i}(x) \wedge X_{i}(y) \rightarrow \neg E(x, y)\right)$
$G \models \varphi ? \Leftrightarrow$

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$?

Example:
$\varphi=\exists X_{1} \exists X_{2} \exists X_{3}\left(\forall x \bigvee_{1 \leqslant i \leqslant 3} X_{i}(x)\right) \wedge \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3}\left(X_{i}(x) \wedge X_{i}(y) \rightarrow \neg E(x, y)\right)$
$G \models \varphi$? $\Leftrightarrow 3$-Coloring

The lens of contraction sequences

Class of bounded	constraint on red graphs	efficient model-checking
linear rank-width	bd \#edges	MSO
rank-width	bd component	MSO
twin-width	bd degree	$?$

The lens of contraction sequences

Class of bounded	constraint on red graphs	efficient model-checking
linear rank-width	bd \#edges	MSO
rank-width	bd component	MSO
twin-width	bd degree	$?$

We will reprove the result in bold, and fill the ?

Courcelle's theorems

We will reprove with contraction sequences:
Theorem (Courcelle, Makowsky, Rotics '00)
MSO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ given a witness that the clique-width/component twin-width of the input G is at most d.
generalizes
Theorem (Courcelle '90)
MSO model checking can be solved in time $f(|\varphi|, t) \cdot|V(G)|$ on incidence graphs of graphs G of treewidth at most t.

Courcelle's theorems

We will reprove with contraction sequences:
Theorem (Courcelle, Makowsky, Rotics '00)
MSO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ given a witness that the clique-width/component twin-width of the input G is at most d.
generalizes
Theorem (Courcelle '90)
MSO model checking can be solved in time $f(|\varphi|, t) \cdot|V(G)|$ on incidence graphs of graphs G of treewidth at most t.

- as the incidence graph preserves bounded treewidth, possible edge-set quantification
- linear FPT approximation for treewidth
- (polynomial) FPT approximation for clique-width

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$
\begin{aligned}
\operatorname{tp}_{k}^{\mathcal{L}}\left(\mathscr{A}, \vec{a} \in A^{m}\right) & =\{\varphi(\vec{x}) \in \mathcal{L}[k]: \mathscr{A} \models \varphi(\vec{a})\}, \\
\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) & =\{\varphi \in \mathcal{L}[k]: \mathscr{A} \models \varphi\} .
\end{aligned}
$$

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$
\begin{aligned}
\operatorname{tp}_{k}^{\mathcal{L}}\left(\mathscr{A}, \vec{a} \in A^{m}\right) & =\{\varphi(\vec{x}) \in \mathcal{L}[k]: \mathscr{A} \models \varphi(\vec{a})\}, \\
\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) & =\{\varphi \in \mathcal{L}[k]: \mathscr{A} \models \varphi\} .
\end{aligned}
$$

Theorem (folklore)
For $\mathcal{L} \in\{F O, M S O\}$, the number of rank-k m-types is bounded by a function of k and m only.

Proof.
" $\mathcal{L}[k+1]$ are Boolean combinations of $\exists x \mathcal{L}[k]$."

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$
\begin{aligned}
\operatorname{tp}_{k}^{\mathcal{L}}\left(\mathscr{A}, \vec{a} \in A^{m}\right) & =\{\varphi(\vec{x}) \in \mathcal{L}[k]: \mathscr{A} \models \varphi(\vec{a})\}, \\
\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) & =\{\varphi \in \mathcal{L}[k]: \mathscr{A} \models \varphi\} .
\end{aligned}
$$

Theorem (folklore)
For $\mathcal{L} \in\{F O, M S O\}$, the number of rank-k m-types is bounded by a function of k and m only.

Proof.
" $\mathcal{L}[k+1]$ are Boolean combinations of $\exists x \mathcal{L}[k]$."

Rank- k types partition the graphs into $g(k)$ classes. Efficient Model Checking = quickly finding the class of the input.

FO Ehrenfeucht-Fraissé game

2-player game on two σ-structures \mathscr{A}, \mathscr{B} (for us, colored graphs)

FO Ehrenfeucht-Fraissé game

At each round, Spoiler picks a structure (\mathscr{B}) and a vertex therein

FO Ehrenfeucht-Fraissé game

Duplicator answers with a vertex in the other structure

FO Ehrenfeucht-Fraissé game

After q rounds, Duplicator wishes that $a_{i} \mapsto b_{i}$ is an isomorphism between $\mathscr{A}\left[a_{1}, \ldots, a_{k}\right]$ and $\mathscr{B}\left[b_{1}, \ldots, b_{k}\right]$

FO Ehrenfeucht-Fraissé game

After q rounds, Duplicator wishes that $a_{i} \mapsto b_{i}$ is an isomorphism between $\mathscr{A}\left[a_{1}, \ldots, a_{k}\right]$ and $\mathscr{B}\left[b_{1}, \ldots, b_{k}\right]$

FO Ehrenfeucht-Fraissé game

When no longer possible, Spoiler wins

FO Ehrenfeucht-Fraissé game

When no longer possible, Spoiler wins

FO Ehrenfeucht-Fraissé game

If Duplicator can survive k rounds, we write $\mathscr{A} \equiv{ }_{k}^{\mathrm{FO}} \mathscr{B}$ Here $\mathscr{A} \equiv{ }_{2}^{\mathrm{FO}} \mathscr{B}$ and $\mathscr{A} \not \equiv{ }_{3}^{\mathrm{FO}} \mathscr{B}$

MSO Ehrenfeucht-Fraissé game

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

To which Duplicator answers a set in the other structure

MSO Ehrenfeucht-Fraissé game

Again we write $\mathscr{A} \equiv{ }_{k}^{\mathrm{MSO}} \mathscr{B}$ if Duplicator can survive k rounds

k-round EF games capture rank- k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in\{F O, M S O\}$,

$$
\mathscr{A} \equiv \equiv_{k}^{\mathcal{L}} \mathscr{B} \text { if and only if } t p_{k}^{\mathcal{L}}(\mathscr{A})=t p_{k}^{\mathcal{L}}(\mathscr{B}) .
$$

k-round EF games capture rank- k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in\{F O, M S O\}$,

$$
\mathscr{A} \equiv \equiv_{k}^{\mathcal{L}} \mathscr{B} \text { if and only if } t p_{k}^{\mathcal{L}}(\mathscr{A})=t p_{k}^{\mathcal{L}}(\mathscr{B}) .
$$

Proof.
Induction on k.
$(\Rightarrow) \mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to $x=a$ or $X=A$.

k-round EF games capture rank- k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in\{F O, M S O\}$,

$$
\mathscr{A} \equiv \equiv_{k}^{\mathcal{L}} \mathscr{B} \text { if and only if } t p_{k}^{\mathcal{L}}(\mathscr{A})=t p_{k}^{\mathcal{L}}(\mathscr{B})
$$

Proof.
Induction on k.
$(\Rightarrow) \mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to $x=a$ or $X=A$.
(\Leftarrow) If $\operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{A})=\operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{B})$, then the type $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{A}, a)$ is equal to some $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{B}, b)$. Move a can be answered by playing b.

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, U_{1}, \ldots, U_{d})-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}[k]:\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \models \varphi\right\} .
$$

MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, U_{1}, \ldots, U_{d})-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}[k]:\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \models \varphi\right\} .
$$

For each $v \in V(G), \operatorname{tp}_{k}\left(G, \mathcal{P}_{n},\{v\}\right)=$ type of K_{1}

$$
\operatorname{tp}_{k}\left(G, \mathcal{P}_{1},\{V(G)\}\right)=\text { type of } G
$$

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, U_{1}, \ldots, U_{d})-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}[k]:\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \mid=\varphi\right\} .
$$

$$
\tau=\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right) \text { based on the } \tau_{j}=\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i+1}, C_{j}\right) ?
$$

MSO model checking for component twin-width d
Partitioned sentences: sentences on $\left(E, U_{1}, \ldots, U_{d}\right)$-structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_{i}

$$
\operatorname{tp}_{k}^{\mathrm{MSO}}\left(G, \mathcal{P}_{i}, C\right)=\left\{\varphi \in \mathrm{MSO}_{E, U_{1}, \ldots, U_{d}}[k]:\left(G\langle C\rangle, \mathcal{P}_{i}\langle C\rangle\right) \models \varphi\right\} .
$$

C arises from $C_{1}, \ldots, C_{d^{\prime}}: \tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Duplicator combines her strategies in the red components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

If Spoiler plays a vertex in the component of type τ_{1},

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Duplicator answers the corresponding winning move

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Same in the component of type τ_{2}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

If Spoiler plays a set, Duplicator looks at the intersection with C_{1},

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

If Spoiler plays a set, Duplicator looks at the intersection with C_{1},

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

calls her winning strategy in C_{1}^{\prime}

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

same for the other components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

same for the other components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

same for the other components

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Showing $\tau=F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ via MSO EF game

that fully defines the winning strategy of Duplicator

Turning it into a uniform algorithm

Reminder:

- \#non-equivalent partitioned sentences of rank $k: f(d, k)$
- \#rank-k partitioned types bounded by $g(d, k)=2^{f(d, k)}$

For each newly observed type τ,

- keep a representative $(H, \mathcal{P})_{\tau}$ on at most $(d+1)^{g(d, k)}$ vertices
- determine the 0,1 -vector of satisfied sentences on $(H, \mathcal{P})_{\tau}$
- record the value of $F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ for future uses

Turning it into a uniform algorithm

Reminder:

- \#non-equivalent partitioned sentences of rank $k: f(d, k)$
- \#rank-k partitioned types bounded by $g(d, k)=2^{f(d, k)}$

For each newly observed type τ,

- keep a representative $(H, \mathcal{P})_{\tau}$ on at most $(d+1)^{g(d, k)}$ vertices
- determine the 0,1 -vector of satisfied sentences on $(H, \mathcal{P})_{\tau}$
- record the value of $F\left(\tau_{1}, \ldots, \tau_{d^{\prime}}, B, X, Y\right)$ for future uses

To decide $G \models \varphi$, look at position φ in the 0,1 -vector of $\operatorname{tp}_{k}^{\mathrm{MSO}}(G)$

Back to twin-width

k-Independent Set given a d-sequence

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: For every connected subset D of size at most k of the red graph of every G_{i}, store in $T[D, i]$ one largest independent set in $G\langle D\rangle$ intersecting every vertex of D.

k-Independent Set given a d-sequence

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: For every connected subset D of size at most k of the red graph of every G_{i}, store in $T[D, i]$ one largest independent set in $G\langle D\rangle$ intersecting every vertex of D.

Initialization: $T[\{v\}, n]=\{v\}$
End: $T[\{V(G)\}, 1]=$ IS of size at least k or largest IS in G
Running time: $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$ updates

k-Independent Set given a d-sequence

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: For every connected subset D of size at most k of the red graph of every G_{i}, store in $T[D, i]$ one largest independent set in $G\langle D\rangle$ intersecting every vertex of D.

Initialization: $T[\{v\}, n]=\{v\}$
End: $T[\{V(G)\}, 1]=$ IS of size at least k or largest IS in G
Running time: $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$ updates

How to compute $T[D, i]$ from all the $T\left[D^{\prime}, i+1\right]$?
k-Independent Set: Update of partial solutions

Best partial solution inhabiting •?
k-Independent Set: Update of partial solutions

3 unions of $\leqslant d+2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:
Theorem (B., Kim, Thomassé, Watrigant '20)
FO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ on graphs G given with a d-sequence.

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:
Theorem (B., Kim, Thomassé, Watrigant '20)
FO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ on graphs G given with a d-sequence.

Add Gaifman's locality to our MSO model checking algorithm

Following [Gajarský, Pilipczuk, Przybyszewski, Toruńczyk '22]

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is k-local around P_{1} in $\left(G, P_{i}\right)$ if...

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is k-local around P_{1} in (G, P_{i}) if... P_{2} is at distance at most 2^{k-2} from $\left\{P_{1}\right\}$ in $\mathcal{R}\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is k-local around P_{1} in $\left(G, P_{i}\right)$ if... P_{2} is at distance at most 2^{k-2} from $\left\{P_{1}\right\}$ in $\mathcal{R}\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is k-local around P_{1} in $\left(G, \mathcal{P}_{i}\right)$ if... P_{3} is at distance at most 2^{k-3} from $\left\{P_{1}, P_{2}\right\}$ in $\mathcal{R}\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is k-local around P_{1} in $\left(G, \mathcal{P}_{i}\right)$ if... P_{3} is at distance at most 2^{k-3} from $\left\{P_{1}, P_{2}\right\}$ in $\mathcal{R}\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is k-local around P_{1} in (G, \mathcal{P}_{i}) if... P_{4} is at distance at most 2^{k-4} from $\left\{P_{1}, P_{2}, P_{3}\right\}$ in $\mathcal{R}\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is k-local around P_{1} in (G, \mathcal{P}_{i}) if... P_{4} is at distance at most 2^{k-4} from $\left\{P_{1}, P_{2}, P_{3}\right\}$ in $\mathcal{R}\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is k-local around P_{1} in $\left(G, P_{i}\right)$ if... P_{q} is at distance at most 2^{k-q} from $\left\{P_{1}, \ldots, P_{q-1}\right\}$ in $\mathcal{R}\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is k-local around P_{1} in $\left(G, \mathcal{P}_{i}\right)$ if... P_{q} is at distance at most 2^{k-q} from $\left\{P_{1}, \ldots, P_{q-1}\right\}$ in $\mathcal{R}\left(G, \mathcal{P}_{i}\right)$

Local tuple of parts

$\left(P_{1}, P_{2}, \ldots, P_{q}\right)$ is k-local around P_{1} in $\left(G, \mathcal{P}_{i}\right)$ if... P_{q} is at distance at most 2^{k-q} from $\left\{P_{1}, \ldots, P_{q-1}\right\}$ in $\mathcal{R}\left(G, \mathcal{P}_{i}\right)$

Partitioned local sentences and types

A prenex sentence is partitioned local around X in $\left(G, \mathcal{P}_{i}\right)$ if of the form $Q x_{1} \in X Q x_{2} \in P_{2} \ldots Q x_{k} \in P_{k} \psi\left(x_{1}, \ldots, x_{k}\right)$ with

- ψ is quantifier-free, and
- $\left(X, P_{2}, \ldots, P_{k}\right)$ local around X in $\left(G, \mathcal{P}_{i}\right)$.

Partitioned local sentences and types

A prenex sentence is partitioned local around X in $\left(G, \mathcal{P}_{i}\right)$ if of the form $Q x_{1} \in X Q x_{2} \in P_{2} \ldots Q x_{k} \in P_{k} \psi\left(x_{1}, \ldots, x_{k}\right)$ with

- ψ is quantifier-free, and
- $\left(X, P_{2}, \ldots, P_{k}\right)$ local around X in $\left(G, \mathcal{P}_{i}\right)$.

And the corresponding types:

$$
\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\{\varphi: \operatorname{qr}(\varphi) \leqslant k
$$

φ is partitioned local around X in $\left(G, \mathcal{P}_{i}\right)$,

$$
\left.\left(G, \mathcal{P}_{i}\right) \models \varphi\right\} .
$$

Partitioned local sentences/types in $\left(G, \mathcal{P}_{n}\right)$ and $\left(G, \mathcal{P}_{1}\right)$

Initialization of the dynamic programming
In $\left(G, \mathcal{P}_{n}=\{\{v\}: v \in V(G)\}\right)$: for every $v \in V(G)$,
$Q x_{1} \in\{v\} Q x_{2} \in\{v\} \ldots Q x_{k} \in\{v\} \psi \equiv \psi(v, v, \ldots, v)$
Partitioned local types are easy to compute in (G, \mathcal{P}_{n})

Partitioned local sentences/types in $\left(G, \mathcal{P}_{n}\right)$ and $\left(G, \mathcal{P}_{1}\right)$

Initialization of the dynamic programming
In $\left(G, \mathcal{P}_{n}=\{\{v\}: v \in V(G)\}\right)$: for every $v \in V(G)$,
$Q x_{1} \in\{v\} Q x_{2} \in\{v\} \ldots Q x_{k} \in\{v\} \psi \equiv \psi(v, v, \ldots, v)$
Partitioned local types are easy to compute in (G, \mathcal{P}_{n})

Output of the dynamic programming
$\ln \left(G, \mathcal{P}_{1}=\{V(G)\}\right):$
$Q x_{1} \in V(G) Q x_{2} \in V(G) \ldots Q x_{k} \in V(G) \psi \equiv$ classic sentences
The partitioned local type in $\left(G, \mathcal{P}_{1}\right)$ coincides with the type of G

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$
$\left(G, \mathcal{P}_{i}\right)$
$\left(G^{\prime}, \mathcal{P}_{i}^{\prime}\right)$

Local strategies win the global game

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

$\left(G^{\prime}, \mathcal{P}_{i}^{\prime}\right)$

Say, Spoiler plays in P_{1}

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Duplicator answers in $f\left(P_{1}\right)$ following the local game around P_{1}

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Now when Spoiler plays close to P_{1} or $f\left(P_{1}\right)$

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

If Spoiler plays too far

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Duplicator starts a new local game around that new part

Partitioned local types give the partitioned types

Isom. $f: \mathcal{P}_{i} \rightarrow \mathcal{P}_{i}^{\prime}$ with $\operatorname{Itp}_{k}^{\mathrm{FO}}\left(G, \mathcal{P}_{i}, X\right)=\operatorname{ltp}_{k}^{\mathrm{FO}}\left(G^{\prime}, \mathcal{P}_{i}^{\prime}, f(X)\right)$

Duplicator starts a new local game around that new part

Concluding as in the MSO model checking algorithm

$\left(G, \mathcal{P}_{i+1}\right) \rightsquigarrow\left(G, \mathcal{P}_{i}\right): X$ and Y are merged in Z

Partitioned local types around P

- only needs an update if P is at distance at most 2^{k-1} from Z

Concluding as in the MSO model checking algorithm

$\left(G, \mathcal{P}_{i+1}\right) \rightsquigarrow\left(G, \mathcal{P}_{i}\right): X$ and Y are merged in Z

Partitioned local types around P

- only needs an update if P is at distance at most 2^{k-1} from Z
- update only involves parts at distance at most 2^{k-1} from P

Concluding as in the MSO model checking algorithm

$\left(G, \mathcal{P}_{i+1}\right) \rightsquigarrow\left(G, \mathcal{P}_{i}\right): X$ and Y are merged in Z
Partitioned local types around P

- only needs an update if P is at distance at most 2^{k-1} from Z
- update only involves parts at distance at most 2^{k-1} from P
- hence at most $d^{2^{k}}$ parts: conclude like MSO model checking

Concluding as in the MSO model checking algorithm

$\left(G, \mathcal{P}_{i+1}\right) \rightsquigarrow\left(G, \mathcal{P}_{i}\right): X$ and Y are merged in Z
Partitioned local types around P

- only needs an update if P is at distance at most 2^{k-1} from Z
- update only involves parts at distance at most 2^{k-1} from P
- hence at most $d^{2^{k}}$ parts: conclude like MSO model checking

Each contraction: $O_{d, k}(1)=O\left(d^{2^{k}}\right)$ updates in $O_{d, k}(1)=f(d, k)$ Total time: $O_{d, k}(n)$

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{gathered}
\varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
\vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{gathered}
$$

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{aligned}
& \varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
& \vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{aligned}
$$

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

Stable and NIP for hereditary classes

Due to [Baldwin, Shelah '85; Braunfeld, Laskowski '22]
Stable class: no transduction of the class contains all ladders NIP class: no transduction of the class contains all graphs

Stable and NIP for hereditary classes

Stable class: no transduction of the class contains all ladders NIP class: no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Stable and NIP for hereditary classes

Stable class: no transduction of the class contains all ladders NIP class: no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Bounded twin-width classes \rightarrow NIP, but in general not stable

Classes with known tractable FO model checking

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n$ on bounded-degree graphs [Seese '96]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

Classes with known tractable FO model checking

End of the story for the subgraph-closed classes tractable FO Model Checking \Leftrightarrow nowhere dense \Leftrightarrow stable

Classes with known tractable FO model checking

New program: transductions of nowhere dense classes Not sparse anymore but still stable

Classes with known tractable FO model checking

MSO_{1} Model Checking solvable in $f(|\varphi|, w) n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]

Classes with known tractable FO model checking

Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$
[Guillemot, Marx '14]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|, w) n^{2}$ on posets of width w [GHLOORS '15]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n^{O(1)}$ on map graphs [Eickmeyer, Kawarabayashi '17]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|, d) n$ on graphs with a d-sequence [B., Kim, Thomassé, Watrigant '20]

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)
For every class \mathcal{C} of binary structures with bounded twin-width and transduction \mathscr{T}, the class $\mathscr{T}(\mathcal{C})$ has bounded twin-width.

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)
For every class \mathcal{C} of binary structures with bounded twin-width and transduction \mathscr{T}, the class $\mathscr{T}(\mathcal{C})$ has bounded twin-width.

- Making copies does not change the twin-width
- Adding a unary relation at most doubles it

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)
For every class \mathcal{C} of binary structures with bounded twin-width and transduction \mathscr{T}, the class $\mathscr{T}(\mathcal{C})$ has bounded twin-width.

- Making copies does not change the twin-width
- Adding a unary relation at most doubles it
- Refine parts of the partition sequence by partitioned local 1-type

Linearly ordered binary structures

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22)
Let \mathscr{C} be a hereditary class of ordered graphs. The following are equivalent.
(1) \mathscr{C} has bounded twin-width.
(2) \mathscr{C} is monadically dependent.
(3) \mathscr{C} is dependent.
(4) \mathscr{C} contains $2^{O(n)}$ ordered n-vertex graphs.
(5) \mathscr{C} contains less than $\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} k$! ordered n-vertex graphs, for some n.
(6) \mathscr{C} does not include one of 25 hereditary ordered graph classes with unbounded twin-width.
(7) FO-model checking is fixed-parameter tractable on \mathscr{C}.

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere dense class.

Morally: Stability coincides with structural sparsity

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)
Every monadically stable class is the FO transduction of a nowhere dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth, and now twin-width:

Theorem (Gajarský, Pilipczuk, Toruńczyk '22)
Every stable class of bounded twin-width is the FO transduction of a class of bounded twin-width without arbitrarily large bicliques.

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)
Every monadically stable class is the FO transduction of a nowhere dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth, and now twin-width:

Theorem (Gajarský, Pilipczuk, Toruńczyk '22, Tww II '21)
Every stable class of bounded twin-width is the FO transduction of a class of bounded expansion.

The lens of contraction sequences

Class of bounded	FO transduction of	constraint on red graphs	efficient MC
linear rank-width	linear order	bd \#edges	MSO
rank-width	tree order	bd component	MSO
twin-width	$?$	bd degree	FO

Compiling bounded twin-width graphs as p-f permutations

Our next goal:
Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Compiling bounded twin-width graphs as p-f permutations

Our next goal:
Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.
"if direction:" proper permutation classes have bounded twin-width + FO transductions preserve bounded twin-width

We now want to show:
\forall class \mathcal{C} of bounded twin-width, \exists permutation class \mathcal{P} avoiding one permutation and an FO transduction \mathscr{T} such that $\mathcal{C} \subseteq \mathscr{T}(\mathcal{P})$.

Twin-decomposition

Contraction tree + transversal adjacencies (bicliques) + time τ

Reading out trigraphs from a twin-decomposition

Twin-models

Twin-model: tree edges T, transversal edges V Example: $T(3,5), V(4, c)$

Twin-models

Twin-model: tree edges T, transversal edges V
Full twin-model: ancestor-descendant relation \prec, V Example: $2 \prec e$

Twin-models

Twin-model: tree edges T, transversal edges V
Full twin-model: ancestor-descendant relation $\prec, ~ V$
Ordered twin-model: T, tree pre-order $<, V$
$1<3<5<a<d<g<2<c<4<b<6<e<f$

Twin-models

Twin-model: tree edges T, transversal edges V
Full twin-model: ancestor-descendant relation \prec, V
Ordered twin-model: T, tree pre-order $<, V$

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model

$$
E(x, y):=\exists x^{\prime} \exists y^{\prime}\left(x^{\prime} \preceq x \wedge y^{\prime} \preceq y \wedge V\left(x^{\prime}, y^{\prime}\right)\right)
$$

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model

$$
E(x, y):=\exists x^{\prime} \exists y^{\prime}\left(x^{\prime} \preceq x \wedge y^{\prime} \preceq y \wedge V\left(x^{\prime}, y^{\prime}\right)\right)
$$

Example: $E(c, f)$ since $c \preceq c, 4 \preceq f, V(4, c)$

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model

$$
E(x, y):=\exists x^{\prime} \exists y^{\prime}\left(x^{\prime} \preceq x \wedge y^{\prime} \preceq y \wedge V\left(x^{\prime}, y^{\prime}\right)\right)
$$

but not from a mere twin-model, in general

Why ordered twin-models?

> A linear order
> $1<3<5<a<d<g<2<c<4<b<6<e<f$
brings us closer to a permutation (\equiv two linear orders)

Full and ordered twin-models are transduction equivalent

Full and ordered twin-models are transduction equivalent

y is a strict descendant of x if it comes after in the pre-order, and every neighbor w (in the tree) of any intermediate z (possibly y) comes (non-strictly) after x

Full and ordered twin-models are transduction equivalent

To define $x<y$ from \prec, mark each left child with one color, and express that the before-last vertex on the path from x to the least ancestor of x and y is marked (or simply $x \prec y$)

Done and left to do

graphs \longleftrightarrow full twin-models \longleftrightarrow ordered twin-models bounded twin-width

Done and left to do

graphs \longleftrightarrow _ full twin-models \longleftrightarrow ordered twin-models bounded twin-width \longrightarrow bounded twin-width

Mimicking a good contraction sequence on a full twin-model yields a good contraction sequence

Done and left to do

$$
\underset{\text { graphs } \longleftrightarrow \text { full twin-models } \longleftrightarrow \text { ordered twin-models }}{\text { bounded twin-width } \longrightarrow \text { bounded twin-width }}
$$

permutations

Past this point bounded twin-width is preserved by the FO transductions, and we just need to show that: ordered twin-models and permutations are transduction equivalent

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width and degeneracy \Rightarrow bounded expansion.

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width and degeneracy \Rightarrow bounded expansion.
Theorem (Nešetřil, Ossona de Mendez '08)
Bounded expansion \Rightarrow bounded star chromatic number.
I.e., proper $O(1)$-coloring such that every two colors induce a disjoint union of stars

Encoding: Ordered twin-models to permutations

Fix a star coloring and orient edges away from centers of stars
\rightarrow bounded in-degree

Encoding: Ordered twin-models to permutations

Fix a star coloring and orient edges away from centers of stars
\rightarrow bounded in-degree

List in the pre-order traversal:

- $<_{1}$: the incoming arcs
- $<_{2}$: the outgoing arcs
where an arc is a copy of its out-vertex with color of its in-vertex

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

		A(3)		A(6)	A(8)			A(11)		A(12)		A(15)		$A(1$			A(20)			A 2			A(26)		A		A			A(33	
$<_{1}$	1	2) (3)	4	5 (6)		(8)	9	10	(11)	(12)	13	14	(15)	16	(17)	18	19	(20)		22	(23)		25	(26)		(28)	29	(30)		,	
$<_{2}$	(3)	2) (6)	5	25	(8)	31	(11)	7	10	14	29	(12)	4	(15)	1	18	(17)	(20)	16	19	(23)	21	(26)	13	22	24	32	(28)		(30)	33
	$B(3) B(6)$			$B(8)$	$B(11)$				$B(12)$			$B(15)$			$B(17)$		$B(20)$		$B(23)$			$B(26)$			$B(28)$		$B(30) B(33)$				

$3<6<8<11<12<15<17<20<23<26<28<30<33$
is the tree pre-order (on the domain of the image)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

)		$A(6)$	A(8)			A		$A(12)$		$A(15)$		$A(1$	17)		A(2))			A			A		A		A(30)		$A(33)$	
$<_{1}$	1	(3)	4	5 (6)	7	(8)	9	10	(11)	(12)	13	14	(15)	16	(17)	7) 18	819		(20)	21	22	23		425	26	27	(28)	29	(30)		323
$<_{2}$	(3)	2 (6)	5	925	(8)	31	(11)	(1)	10	1014	29	(12)	4	(15)	1	18	8 (17)	7)	(20)	16	19	(23)		126)	13	22	24	32	(28)		(30) 33
	$B(3) B(6)$		$B(8)$		$B(11)$				$B(12)$			$B(15)$				$B(17)$			$B(20)$		$B(23)$		$B(26)$			$B(28)$				$B(30) B(33)$	

$3<6<8<11<12<15<17<20<23<26<28<30<33$
is the tree pre-order (on the domain of the image)
Two vertices are adjacent if their blocks along $<_{1}$ and $<_{2}$ contain a same element (namely, their linking arc)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

		$A(3)$		(6)	(A(1)		A(12)		A(15)			(17)		A			A(2			A		A		$A(30)$		A(33)		
$<_{1}$		2 (3)	4	5 (6)		(8)	9	10	(11)	(12)	13	14	(15)) 16	(17)	18	819	(20)	21	122	(2)	24	25	(26)		28	29	(30)		32	
$<_{2}$	(3)	2 (6)	5	925	(8)		(11)	7	10	14	29	(12)	4	(15)		18	8 (17)	(20)	16	16	(23)	21	(26)	13	22	24	32	28	27	(30)	33
	$B(3) B(6)$		$B(8)$		$B(11)$			$B(12)$				$B(15)$				$B(17)$		$B(20)$		$B(23)$		$B(26)$			$B(28)$			$B(30) B(33)$			

$3<6<8<11<12<15<17<20<23<26<28<30<33$
is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along $<_{1}$ and $<_{2}$ contain a same element (namely, their linking arc)

Use an extra color for the transversal edges (color 2)

Recent developments

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Recent developments

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24)
Pattern-free permutations are bounded products of separable permutations.

Recent developments

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)
A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24)
Pattern-free permutations are bounded products of separable permutations.

As a by-product of these two results,
Corollary (B., Bourneuf, Geniet, Thomassé '24)
There is a proper permutation class \mathcal{P} such that every class of binary structures has bounded twin-width if and only if it is a first-order transduction of \mathcal{P}.

The lens of contraction sequences

Class of bounded	FO transduction of	constr. on red graphs	efficient MC
linear rank-width	linear order	bd \#edges	MSO
rank-width	tree order	bd component	MSO
twin-width	proper perm. class	bd degree	FO

The lens of contraction sequences

Class of bounded	FO transduction of	constr. on red graphs	efficient MC
linear rank-width	linear order	bd \#edges	MSO
rank-width	tree order	bd component	MSO
twin-width	proper perm. class	bd degree	FO

Thank you for your attention!

