Twin-width and Logic

Édouard Bonnet

ENS Lyon, LIP

November 6th, combprob2023, Leeds, UK

Graphs

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} \mbox{Maximum red degree} = 0 \\ \mbox{overall maximum red degree} = 0 \end{array}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \end{array}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \end{array}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} Maximum \ red \ degree = 0 \\ \textbf{overall maximum red degree} = 2 \end{array}$

Extension to binary structures

- ► Red edges appear between two vertices X, Y such that, for some binary relation R, R(x, y) holds for some x ∈ X and y ∈ Y, and R(x', y') does not, for some x' ∈ X and y' ∈ Y.
- Contraction only allowed within vertices satisfying the same unary relations.

We now contract to up to 2^h remaining vertices, with h the number of unary relations.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Different conditions imposed in the sequence of red graphs

bd #edges: redefines bd linear cliquewidth

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi$? \Leftrightarrow *k*-Dominating Set

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi$? \Leftrightarrow k-Independent Set

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists X_1 \exists X_2 \exists X_3 (\forall x \bigvee_{1 \leqslant i \leqslant 3} X_i(x)) \land \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3} (X_i(x) \land X_i(y) \to \neg E(x,y))$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists X_1 \exists X_2 \exists X_3 (\forall x \bigvee_{1 \leqslant i \leqslant 3} X_i(x)) \land \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3} (X_i(x) \land X_i(y) \to \neg E(x,y))$$

 $G \models \varphi$? \Leftrightarrow 3-Coloring

The lens of contraction sequences

Class of bounded	constraint on red graphs	efficient model-checking
linear rank-width	bd #edges	MSO
rank-width	bd component	MSO
twin-width	bd degree	?

The lens of contraction sequences

Class of bounded	constraint on red graphs	efficient model-checking
linear rank-width	bd #edges	MSO
rank-width	bd component	MSO
twin-width	bd degree	?

We will reprove the result in bold, and fill the ?

Courcelle's theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics '00)

MSO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ given a witness that the clique-width/component twin-width of the input G is at most d.

generalizes

Theorem (Courcelle '90)

MSO model checking can be solved in time $f(|\varphi|, t) \cdot |V(G)|$ on incidence graphs of graphs G of treewidth at most t.

Courcelle's theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics '00)

MSO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ given a witness that the clique-width/component twin-width of the input G is at most d.

generalizes

Theorem (Courcelle '90)

MSO model checking can be solved in time $f(|\varphi|, t) \cdot |V(G)|$ on incidence graphs of graphs G of treewidth at most t.

- as the incidence graph preserves bounded treewidth, possible edge-set quantification
- Inear FPT approximation for treewidth
- ▶ (polynomial) FPT approximation for clique-width

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$\mathsf{tp}^\mathcal{L}_k(\mathscr{A}, ec{a} \in A^m) = \{ arphi(ec{x}) \in \mathcal{L}[k] : \mathscr{A} \models arphi(ec{a}) \},$$

$$\mathsf{tp}_k^{\mathcal{L}}(\mathscr{A}) = \{ \varphi \in \mathcal{L}[k] : \mathscr{A} \models \varphi \}.$$

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$\mathsf{tp}^\mathcal{L}_k(\mathscr{A}, ec{a} \in A^m) = \{ arphi(ec{x}) \in \mathcal{L}[k] : \mathscr{A} \models arphi(ec{a}) \},$$

$$\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) = \{ \varphi \in \mathcal{L}[k] : \mathscr{A} \models \varphi \}.$$

Theorem (folklore)

For $\mathcal{L} \in \{FO, MSO\}$, the number of rank-k m-types is bounded by a function of k and m only.

Proof.

" $\mathcal{L}[k+1]$ are Boolean combinations of $\exists x \mathcal{L}[k]$."

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$\mathsf{tp}_k^\mathcal{L}(\mathscr{A}, ec{a} \in A^m) = \{ arphi(ec{x}) \in \mathcal{L}[k] : \mathscr{A} \models arphi(ec{a}) \}$$

$$\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) = \{ \varphi \in \mathcal{L}[k] : \mathscr{A} \models \varphi \}.$$

Theorem (folklore)

For $\mathcal{L} \in \{FO, MSO\}$, the number of rank-k m-types is bounded by a function of k and m only.

Proof.

" $\mathcal{L}[k+1]$ are Boolean combinations of $\exists x \mathcal{L}[k]$."

Rank-k types partition the graphs into g(k) classes. Efficient Model Checking = quickly finding the class of the input.

2-player game on two σ -structures \mathscr{A}, \mathscr{B} (for us, colored graphs)

At each round, Spoiler picks a structure (\mathscr{B}) and a vertex therein

Duplicator answers with a vertex in the other structure

After q rounds, Duplicator wishes that $a_i \mapsto b_i$ is an isomorphism between $\mathscr{A}[a_1, \ldots, a_k]$ and $\mathscr{B}[b_1, \ldots, b_k]$

After q rounds, Duplicator wishes that $a_i \mapsto b_i$ is an isomorphism between $\mathscr{A}[a_1, \ldots, a_k]$ and $\mathscr{B}[b_1, \ldots, b_k]$

When no longer possible, Spoiler wins

When no longer possible, Spoiler wins

If Duplicator can survive k rounds, we write $\mathscr{A} \equiv^{\mathsf{FO}}_k \mathscr{B}$ Here $\mathscr{A} \equiv^{\mathsf{FO}}_2 \mathscr{B}$ and $\mathscr{A} \not\equiv^{\mathsf{FO}}_3 \mathscr{B}$

Same game but Spoiler can now play set moves

Same game but Spoiler can now play set moves

To which Duplicator answers a set in the other structure

Again we write $\mathscr{A} \equiv_k^{\mathsf{MSO}} \mathscr{B}$ if Duplicator can survive k rounds

k-round EF games capture rank-*k* types

Theorem (Ehrenfeucht-Fraissé)

For every σ -structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in \{FO, MSO\}$,

$$\mathscr{A} \equiv^{\mathcal{L}}_{k} \mathscr{B}$$
 if and only if $tp^{\mathcal{L}}_{k}(\mathscr{A}) = tp^{\mathcal{L}}_{k}(\mathscr{B})$.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)

For every σ -structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in \{FO, MSO\}$,

$$\mathscr{A} \equiv^{\mathcal{L}}_{k} \mathscr{B}$$
 if and only if $tp^{\mathcal{L}}_{k}(\mathscr{A}) = tp^{\mathcal{L}}_{k}(\mathscr{B})$.

Proof.

Induction on k.

(⇒) $\mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to x = a or X = A. k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)

For every σ -structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in \{FO, MSO\}$,

$$\mathscr{A} \equiv^{\mathcal{L}}_{k} \mathscr{B}$$
 if and only if $tp^{\mathcal{L}}_{k}(\mathscr{A}) = tp^{\mathcal{L}}_{k}(\mathscr{B})$.

Proof.

Induction on k.

(⇒) $\mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to x = a or X = A.

(\Leftarrow) If $\operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{A}) = \operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{B})$, then the type $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{A}, a)$ is equal to some $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{B}, b)$. Move *a* can be answered by playing *b*.

Partitioned sentences: sentences on (E, U_1, \ldots, U_d) -structures, interpreted as a graph vertex partitioned in *d* parts

Maintain for every red component C of every trigraph G_i

 $\mathsf{tp}_k^{\mathsf{MSO}}(G,\mathcal{P}_i,C) = \{\varphi \in \mathsf{MSO}_{E,U_1,\dots,U_d}[k] : (G\langle C \rangle, \mathcal{P}_i \langle C \rangle) \models \varphi\}.$

Partitioned sentences: sentences on (E, U_1, \ldots, U_d) -structures, interpreted as a graph vertex partitioned in *d* parts

Maintain for every red component C of every trigraph G_i

 $\mathsf{tp}_k^{\mathsf{MSO}}(G,\mathcal{P}_i,C) = \{\varphi \in \mathsf{MSO}_{E,U_1,\dots,U_d}[k] : (G\langle C \rangle, \mathcal{P}_i \langle C \rangle) \models \varphi\}.$

For each $v \in V(G)$, $tp_k(G, \mathcal{P}_n, \{v\}) = type$ of K_1 $tp_k(G, \mathcal{P}_1, \{V(G)\}) = type$ of G

Partitioned sentences: sentences on (E, U_1, \ldots, U_d) -structures, interpreted as a graph vertex partitioned in *d* parts

Maintain for every red component C of every trigraph G_i

 $\mathsf{tp}_k^{\mathsf{MSO}}(G,\mathcal{P}_i,C) = \{\varphi \in \mathsf{MSO}_{E,U_1,\dots,U_d}[k] : (G\langle C \rangle, \mathcal{P}_i \langle C \rangle) \models \varphi\}.$

 $\tau = tp_k^{MSO}(G, \mathcal{P}_i, C)$ based on the $\tau_j = tp_k^{MSO}(G, \mathcal{P}_{i+1}, C_j)$?

Partitioned sentences: sentences on $(E, U_1, ..., U_d)$ -structures, interpreted as a graph vertex partitioned in *d* parts

Maintain for every red component C of every trigraph G_i

 $\mathsf{tp}_k^{\mathsf{MSO}}(G,\mathcal{P}_i,C) = \{\varphi \in \mathsf{MSO}_{E,U_1,\dots,U_d}[k] : (G\langle C \rangle, \mathcal{P}_i \langle C \rangle) \models \varphi\}.$

C arises from $C_1, \ldots, C_{d'}$: $\tau = F(\tau_1, \ldots, \tau_{d'}, B, X, Y)$

Duplicator combines her strategies in the red components

If Spoiler plays a vertex in the component of type τ_1 ,

Duplicator answers the corresponding winning move

If Spoiler plays a set, Duplicator looks at the intersection with C_1 ,

If Spoiler plays a set, Duplicator looks at the intersection with C_1 ,

calls her winning strategy in C'_1

same for the other components

same for the other components

same for the other components

and plays the union

Turning it into a uniform algorithm

Reminder:

- #non-equivalent partitioned sentences of rank k: f(d, k)
- ▶ #rank-k partitioned types bounded by $g(d, k) = 2^{f(d,k)}$

For each newly observed type τ ,

- ▶ keep a representative $(H, P)_{\tau}$ on at most $(d+1)^{g(d,k)}$ vertices
- determine the 0, 1-vector of satisfied sentences on $(H, \mathcal{P})_{\tau}$
- ▶ record the value of $F(\tau_1, ..., \tau_{d'}, B, X, Y)$ for future uses

Turning it into a uniform algorithm

Reminder:

- #non-equivalent partitioned sentences of rank k: f(d, k)
- #rank-k partitioned types bounded by $g(d, k) = 2^{f(d,k)}$

For each newly observed type τ ,

- ▶ keep a representative $(H, P)_{\tau}$ on at most $(d+1)^{g(d,k)}$ vertices
- determine the 0, 1-vector of satisfied sentences on $(H, \mathcal{P})_{\tau}$
- ▶ record the value of $F(\tau_1, \ldots, \tau_{d'}, B, X, Y)$ for future uses

To decide $G \models \varphi$, look at position φ in the 0, 1-vector of $tp_k^{MSO}(G)$

Back to twin-width

k-INDEPENDENT SET given a *d*-sequence

d-sequence:
$$G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$$

Algorithm: For every connected subset D of size at most k of the red graph of every G_i , store in T[D, i] one largest independent set in $G\langle D \rangle$ intersecting every vertex of D.

k-INDEPENDENT SET given a *d*-sequence

d-sequence:
$$G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$$

Algorithm: For every connected subset D of size at most k of the red graph of every G_i , store in T[D, i] one largest independent set in $G\langle D \rangle$ intersecting every vertex of D.

Initialization: $T[\{v\}, n] = \{v\}$ End: $T[\{V(G)\}, 1] = IS$ of size at least k or largest IS in GRunning time: $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$ updates *k*-INDEPENDENT SET given a *d*-sequence

d-sequence:
$$G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$$

Algorithm: For every connected subset D of size at most k of the red graph of every G_i , store in T[D, i] one largest independent set in $G\langle D \rangle$ intersecting every vertex of D.

Initialization: $T[\{v\}, n] = \{v\}$ End: $T[\{V(G)\}, 1] = IS$ of size at least k or largest IS in GRunning time: $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$ updates

How to compute T[D, i] from all the T[D', i+1]?

k-INDEPENDENT SET: Update of partial solutions

Best partial solution inhabiting •?

k-INDEPENDENT SET: Update of partial solutions

3 unions of $\leqslant d + 2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant '20)

FO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ on graphs G given with a d-sequence.

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to: Theorem (B., Kim, Thomassé, Watrigant '20) FO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ on graphs G given with a d-sequence.

Add Gaifman's locality to our MSO model checking algorithm

Following [Gajarský, Pilipczuk, Przybyszewski, Toruńczyk '22]

 (P_1, P_2, \ldots, P_q) is k-local around P_1 in (G, \mathcal{P}_i) if...

 (P_1, P_2, \ldots, P_q) is k-local around P_1 in (G, \mathcal{P}_i) if... P_2 is at distance at most 2^{k-2} from $\{P_1\}$ in $\mathcal{R}(G, \mathcal{P}_i)$

 (P_1, P_2, \ldots, P_q) is k-local around P_1 in (G, \mathcal{P}_i) if... P_2 is at distance at most 2^{k-2} from $\{P_1\}$ in $\mathcal{R}(G, \mathcal{P}_i)$

 (P_1, P_2, \ldots, P_q) is k-local around P_1 in (G, \mathcal{P}_i) if... P_3 is at distance at most 2^{k-3} from $\{P_1, P_2\}$ in $\mathcal{R}(G, \mathcal{P}_i)$

 (P_1, P_2, \ldots, P_q) is k-local around P_1 in (G, \mathcal{P}_i) if... P_3 is at distance at most 2^{k-3} from $\{P_1, P_2\}$ in $\mathcal{R}(G, \mathcal{P}_i)$

 (P_1, P_2, \ldots, P_q) is k-local around P_1 in (G, \mathcal{P}_i) if... P_4 is at distance at most 2^{k-4} from $\{P_1, P_2, P_3\}$ in $\mathcal{R}(G, \mathcal{P}_i)$

 (P_1, P_2, \ldots, P_q) is k-local around P_1 in (G, \mathcal{P}_i) if... P_4 is at distance at most 2^{k-4} from $\{P_1, P_2, P_3\}$ in $\mathcal{R}(G, \mathcal{P}_i)$

 (P_1, P_2, \ldots, P_q) is k-local around P_1 in (G, \mathcal{P}_i) if... P_q is at distance at most 2^{k-q} from $\{P_1, \ldots, P_{q-1}\}$ in $\mathcal{R}(G, \mathcal{P}_i)$

 (P_1, P_2, \ldots, P_q) is k-local around P_1 in (G, \mathcal{P}_i) if... P_q is at distance at most 2^{k-q} from $\{P_1, \ldots, P_{q-1}\}$ in $\mathcal{R}(G, \mathcal{P}_i)$

 (P_1, P_2, \ldots, P_q) is k-local around P_1 in (G, \mathcal{P}_i) if... P_q is at distance at most 2^{k-q} from $\{P_1, \ldots, P_{q-1}\}$ in $\mathcal{R}(G, \mathcal{P}_i)$

Partitioned local sentences and types

A prenex sentence is *partitioned local around* X in (G, \mathcal{P}_i) if of the form $Qx_1 \in X \ Qx_2 \in P_2 \ \dots \ Qx_k \in P_k \ \psi(x_1, \dots, x_k)$ with

- $\blacktriangleright \psi$ is quantifier-free, and
- (X, P_2, \ldots, P_k) local around X in (G, \mathcal{P}_i) .

Partitioned local sentences and types

A prenex sentence is *partitioned local around* X in (G, \mathcal{P}_i) if of the form $Qx_1 \in X \ Qx_2 \in P_2 \ \dots \ Qx_k \in P_k \ \psi(x_1, \dots, x_k)$ with

- $\blacktriangleright \psi$ is quantifier-free, and
- (X, P_2, \ldots, P_k) local around X in (G, \mathcal{P}_i) .

And the corresponding types:

$$\mathsf{ltp}_k^{\mathsf{FO}}(G,\mathcal{P}_i,X) = \{\varphi : \mathsf{qr}(\varphi) \leqslant k, \}$$

 φ is partitioned local around X in (G, \mathcal{P}_i) , $(G, \mathcal{P}_i) \models \varphi$. Partitioned local sentences/types in (G, \mathcal{P}_n) and (G, \mathcal{P}_1)

Initialization of the dynamic programming

In
$$(G, \mathcal{P}_n = \{\{v\} : v \in V(G)\})$$
: for every $v \in V(G)$,
 $Qx_1 \in \{v\} Qx_2 \in \{v\} \dots Qx_k \in \{v\} \psi \equiv \psi(v, v, \dots, v)$

Partitioned local types are easy to compute in (G, \mathcal{P}_n)

Partitioned local sentences/types in (G, \mathcal{P}_n) and (G, \mathcal{P}_1)

Initialization of the dynamic programming

In
$$(G, \mathcal{P}_n = \{\{v\} : v \in V(G)\})$$
: for every $v \in V(G)$,
 $Qx_1 \in \{v\} \ Qx_2 \in \{v\} \ \dots \ Qx_k \in \{v\} \ \psi \equiv \psi(v, v, \dots, v)$

Partitioned local types are easy to compute in (G, \mathcal{P}_n)

Output of the dynamic programming

In $(G, \mathcal{P}_1 = \{V(G)\})$: $Qx_1 \in V(G) \ Qx_2 \in V(G) \ \dots \ Qx_k \in V(G) \ \psi \equiv \text{classic sentences}$ The partitioned local type in (G, \mathcal{P}_1) coincides with the type of G Partitioned local types give the partitioned types Isom. $f : \mathcal{P}_i \to \mathcal{P}'_i$ with $ltp_k^{FO}(G, \mathcal{P}_i, X) = ltp_k^{FO}(G', \mathcal{P}'_i, f(X))$

Local strategies win the global game

Partitioned local types give the partitioned types Isom. $f : \mathcal{P}_i \to \mathcal{P}'_i$ with $ltp_k^{FO}(G, \mathcal{P}_i, X) = ltp_k^{FO}(G', \mathcal{P}'_i, f(X))$

 (G', \mathcal{P}'_i)

Say, Spoiler plays in P_1

Partitioned local types give the partitioned types Isom. $f : \mathcal{P}_i \to \mathcal{P}'_i$ with $ltp_k^{FO}(G, \mathcal{P}_i, X) = ltp_k^{FO}(G', \mathcal{P}'_i, f(X))$

Duplicator answers in $f(P_1)$ following the local game around P_1

Now when Spoiler plays close to P_1 or $f(P_1)$

Duplicator follows the winning local strategy

Duplicator follows the winning local strategy

If Spoiler plays too far

Duplicator starts a new local game around that new part

Duplicator starts a new local game around that new part

 $(G, \mathcal{P}_{i+1}) \rightsquigarrow (G, \mathcal{P}_i) : X \text{ and } Y \text{ are merged in } Z$

Partitioned local types around P

• only needs an update if P is at distance at most 2^{k-1} from Z

 $(G, \mathcal{P}_{i+1}) \rightsquigarrow (G, \mathcal{P}_i) : X \text{ and } Y \text{ are merged in } Z$

Partitioned local types around P

- only needs an update if P is at distance at most 2^{k-1} from Z
- update only involves parts at distance at most 2^{k-1} from P

 $(G, \mathcal{P}_{i+1}) \rightsquigarrow (G, \mathcal{P}_i) : X \text{ and } Y \text{ are merged in } Z$

Partitioned local types around P

- only needs an update if P is at distance at most 2^{k-1} from Z
- update only involves parts at distance at most 2^{k-1} from P
- hence at most d^{2^k} parts: conclude like MSO model checking

 $(G, \mathcal{P}_{i+1}) \rightsquigarrow (G, \mathcal{P}_i) : X \text{ and } Y \text{ are merged in } Z$

Partitioned local types around P

- only needs an update if P is at distance at most 2^{k-1} from Z
- update only involves parts at distance at most 2^{k-1} from P
- hence at most d^{2^k} parts: conclude like MSO model checking

Each contraction: $O_{d,k}(1) = O(d^{2^k})$ updates in $O_{d,k}(1) = f(d,k)$ Total time: $O_{d,k}(n)$

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

 $\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$ $\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

 $\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$ $\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

Stable and NIP for hereditary classes

Due to [Baldwin, Shelah '85; Braunfeld, Laskowski '22]

Stable class: no transduction of the class contains all ladders NIP class: no transduction of the class contains all graphs

ladder

Stable and NIP for hereditary classes

Stable class: no transduction of the class contains all ladders **NIP class:** no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Stable and NIP for hereditary classes

Stable class: no transduction of the class contains all ladders **NIP class:** no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Bounded twin-width classes \rightarrow NIP, but in general not stable

FO MODEL CHECKING solvable in $f(|\varphi|)n$ on bounded-degree graphs [Seese '96]

FO MODEL CHECKING solvable in $f(|\varphi|)n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

 $\label{eq:constraint} \begin{array}{c} \text{End of the story for the subgraph-closed classes} \\ \text{tractable FO MODEL CHECKING} \Leftrightarrow \text{nowhere dense} \Leftrightarrow \text{stable} \end{array}$

New program: transductions of nowhere dense classes Not sparse anymore but still stable

MSO₁ MODEL CHECKING solvable in $f(|\varphi|, w)n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]

Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$ [Guillemot, Marx '14]

FO MODEL CHECKING solvable in $f(|\varphi|, w)n^2$ on posets of width w [GHLOORS '15]

FO MODEL CHECKING solvable in $f(|\varphi|)n^{O(1)}$ on map graphs [Eickmeyer, Kawarabayashi '17]

FO MODEL CHECKING solvable in $f(|\varphi|, d)n$ on graphs with a *d*-sequence [B., Kim, Thomassé, Watrigant '20] First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20) For every class C of binary structures with bounded twin-width and transduction \mathcal{T} , the class $\mathcal{T}(C)$ has bounded twin-width. First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20) For every class C of binary structures with bounded twin-width and transduction \mathcal{T} , the class $\mathcal{T}(C)$ has bounded twin-width.

Making copies does not change the twin-width

Adding a unary relation at most doubles it

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20) For every class C of binary structures with bounded twin-width and transduction \mathcal{T} , the class $\mathcal{T}(C)$ has bounded twin-width.

- Making copies does not change the twin-width
- Adding a unary relation at most doubles it
- Refine parts of the partition sequence by partitioned local 1-type

Linearly ordered binary structures

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22)

Let $\mathscr C$ be a hereditary class of ordered graphs. The following are equivalent.

- (1) \mathscr{C} has bounded twin-width.
- (2) C is monadically dependent.
- (3) \mathscr{C} is dependent.
- (4) \mathscr{C} contains $2^{O(n)}$ ordered n-vertex graphs.
- (5) \mathscr{C} contains less than $\sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} k!$ ordered n-vertex graphs, for some n.
- (6) C does not include one of 25 hereditary ordered graph classes with unbounded twin-width.
- (7) FO-model checking is fixed-parameter tractable on \mathscr{C} .

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere dense class.

Morally: Stability coincides with structural sparsity

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth, and now twin-width:

Theorem (Gajarský, Pilipczuk, Toruńczyk '22)

Every stable class of bounded twin-width is the FO transduction of a class of bounded twin-width without arbitrarily large bicliques. Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth, and now twin-width:

Theorem (Gajarský, Pilipczuk, Toruńczyk '22, Tww II '21) Every stable class of bounded twin-width is the FO transduction of a class of bounded expansion.

The lens of contraction sequences

Class of bounded	FO transduction of	constraint on red graphs	efficient MC
linear rank-width	linear order	bd #edges	MSO
rank-width	tree order	bd component	MSO
twin-width	?	bd degree	FO

Compiling bounded twin-width graphs as p-f permutations

Our next goal:

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21) A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class. Compiling bounded twin-width graphs as p-f permutations

Our next goal:

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21) A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

"if direction:" proper permutation classes have bounded twin-width + FO transductions preserve bounded twin-width

We now want to show:

 \forall class C of bounded twin-width, \exists permutation class \mathcal{P} avoiding one permutation and an FO transduction \mathcal{T} such that $C \subseteq \mathcal{T}(\mathcal{P})$.

Twin-decomposition

Contraction tree + transversal adjacencies (bicliques) + time τ

Reading out trigraphs from a twin-decomposition

Twin-model: tree edges T, transversal edges V Example: T(3,5), V(4,c)

Twin-model: tree edges T, transversal edges VFull twin-model: ancestor-descendant relation \prec , VExample: $2 \prec e$

Twin-model: tree edges T, transversal edges VFull twin-model: ancestor-descendant relation \prec , V

Ordered twin-model: ${\cal T}$, tree pre-order < , ${\cal V}$ 1 < 3 < 5 < a < d < g < 2 < c < 4 < b < 6 < e < f

Twin-model: tree edges T, transversal edges VFull twin-model: ancestor-descendant relation \prec , VOrdered twin-model: T, tree pre-order <, V

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model

$$E(x,y) := \exists x' \exists y' (x' \preceq x \land y' \preceq y \land V(x',y'))$$

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model

$$E(x,y) := \exists x' \exists y' (x' \preceq x \land y' \preceq y \land V(x',y'))$$

Example: E(c, f) since $c \leq c$, $4 \leq f$, V(4, c)

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model

$$E(x,y) := \exists x' \exists y' (x' \preceq x \land y' \preceq y \land V(x',y'))$$

but not from a mere twin-model, in general

Why ordered twin-models?

A linear order

1 < 3 < 5 < a < d < g < 2 < c < 4 < b < 6 < e < f

brings us closer to a permutation (\equiv two linear orders)

Full and ordered twin-models are transduction equivalent

 $x \prec y := x < y \land \forall x < z \le y \forall w T(z, w) \rightarrow x \le w$

Full and ordered twin-models are transduction equivalent

 $x \prec y := x < y \land \forall x < z \leq y \forall w T(z, w) \rightarrow x \leq w$

y is a strict descendant of x if it comes after in the pre-order, and every neighbor w (in the tree) of any intermediate z (possibly y) comes (non-strictly) after x

Full and ordered twin-models are transduction equivalent

To define x < y from \prec , mark each left child with one color, and express that the before-last vertex on the path from x to the least ancestor of x and y is marked (or simply $x \prec y$)

Done and left to do

graphs «----- full twin-models «----» ordered twin-models

bounded twin-width

Done and left to do

graphs «----- full twin-models «-----» ordered twin-models

bounded twin-width \longrightarrow bounded twin-width

Mimicking a good contraction sequence on a full twin-model yields a good contraction sequence

Done and left to do

Past this point *bounded twin-width* is preserved by the FO transductions, and we just need to show that:

ordered twin-models and permutations are transduction equivalent

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width and degeneracy \Rightarrow bounded expansion. Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width and degeneracy \Rightarrow bounded expansion.

Theorem (Nešetřil, Ossona de Mendez '08) Bounded expansion \Rightarrow bounded star chromatic number.

I.e., proper O(1)-coloring such that every two colors induce a disjoint union of stars

Encoding: Ordered twin-models to permutations

Fix a star coloring and orient edges away from centers of stars \rightarrow bounded in-degree

Encoding: Ordered twin-models to permutations

Fix a star coloring and orient edges away from centers of stars \rightarrow bounded in-degree

List in the pre-order traversal:

- <1: the incoming arcs</p>
- \triangleright <₂: the outgoing arcs

where an arc is a copy of its out-vertex with color of its in-vertex

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

3 < 6 < 8 < 11 < 12 < 15 < 17 < 20 < 23 < 26 < 28 < 30 < 33 is the tree pre-order (on the domain of the image)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

	A(3)	A(6)	A(8) = A(1)	1) A(12)	A(15) = A(17)	7) A(20)	A(23)	A(26)	A(28) $A(30)$	A(33)
$<_1$	1234	56	7 8 9 1	0003	14 🚯 16	18 19 🕼	0123	24 25 🙆	27 🕲 29 🕲	31 32 🕲
$<_2$	3265	925	8 31 D 7	0 10 14 29	12 4 15	1 18 🗊	0 16 19 23	21 26 13	22 24 32 🙆	27 1 3
	B(3) B(6)	B(8)	B(11)	B(12)	B(15)	B(17) B(20) B(23)	B(26)	B(28)	B(30) B(33)

3 < 6 < 8 < 11 < 12 < 15 < 17 < 20 < 23 < 26 < 28 < 30 < 33 is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along $<_1$ and $<_2$ contain a same element (namely, their linking arc)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

	A(3)	A(6)	A(8) = A(1)	1) A(12)	A(15) = A(17)	7) A(20)	A(23)	A(26)	A(28) $A(30)$	A(33)
$<_1$	1234	56	7 8 9 1	0003	14 🚯 16	18 19 🕼	0123	24 25 🙆	27 🕲 29 🕲	31 32 🕲
$<_2$	3265	925	8 31 D 7	0 10 14 29	12 4 15	1 18 🗊	0 16 19 23	21 26 13	22 24 32 🙆	27 1 3
	B(3) B(6)	B(8)	B(11)	B(12)	B(15)	B(17) B(20) B(23)	B(26)	B(28)	B(30) B(33)

3 < 6 < 8 < 11 < 12 < 15 < 17 < 20 < 23 < 26 < 28 < 30 < 33 is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along $<_1$ and $<_2$ contain a same element (namely, their linking arc)

Use an extra color for the transversal edges (color 2)

Recent developments

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21) A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Recent developments

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21) A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24) Pattern-free permutations are bounded products of separable permutations.

Recent developments

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21) A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24) Pattern-free permutations are bounded products of separable permutations.

As a by-product of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé '24)

There is a proper permutation class \mathcal{P} such that every class of binary structures has bounded twin-width if and only if it is a first-order transduction of \mathcal{P} .

The lens of contraction sequences

Class of bounded	FO transduction of	constr. on red graphs	efficient MC
linear rank-width	linear order	bd #edges	MSO
rank-width	tree order	bd component	MSO
twin-width	proper perm. class	bd degree	FO

The lens of contraction sequences

Class of bounded	FO transduction of	constr. on red graphs	efficient MC
linear rank-width	linear order	bd #edges	MSO
rank-width	tree order	bd component	MSO
twin-width	proper perm. class	bd degree	FO

Thank you for your attention!