Twin-width and Logic

Edouard Bonnet

ENS Lyon, LIP

November 6th, combprob2023, Leeds, UK

Graphs

Two outcomes between a pair of vertices:
edge or non-edge

Trigraphs

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to N(u)AN(v) turn red, for N(u) N N(v) red is absorbing

Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G,,, G,_1, ..., Go, G such that
G; is obtained by performing one contraction in Gj41.

Contraction sequence

e f
e
00

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., Go, G such that
G; is obtained by performing one contraction in Gj41.

Contraction sequence

0'?,3
O=0

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., Go, G such that
G; is obtained by performing one contraction in Gj41.

Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., G, Gy such that
G; is obtained by performing one contraction in Gjy1.

Contraction sequence

adg

A contraction sequence of G:
Sequence of trigraphs G = G,,, G,_1, ..., Go, Gy such that
G; is obtained by performing one contraction in Gj41.

Contraction sequence

adg

A contraction sequence of G:
Sequence of trigraphs G = G,,, G,_1, ..., Go, Gy such that
G; is obtained by performing one contraction in Gj41.

Contraction sequence

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = G,,, G,_1, ..., Go, G such that
G; is obtained by performing one contraction in Gj41.

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 0
overall maximum red degree = 0

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

e ef
e
020

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

adg

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

adg

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 0
overall maximum red degree = 2

Extension to binary structures

» Red edges appear between two vertices X, Y such that, for
some binary relation R, R(x,y) holds for some x € X and
y €Y, and R(x',y’) does not, for some x' € X and y' € Y.

» Contraction only allowed within vertices satisfying the same
unary relations.

We now contract to up to 2 remaining vertices, with h the
number of unary relations.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),
unit interval graphs,

Ki-minor free graphs,

map graphs,

subgraphs of d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,

VV VvV VYVYyVVYVYVY

strong products of two bounded twin-width classes, one with
bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),
unit interval graphs,

K¢-minor free graphs,

map graphs,

subgraphs of d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,

VV VvV VYVYyVVYVYVY

strong products of two bounded twin-width classes, one with
bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Different conditions imposed in the sequence of red graphs

NS BEN
ona.a.a’x‘c O
oea’aaa.cnc
O.Q.Onb.ﬁ.ﬁ
c’x‘o“o.o'x‘c.c

bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth

Formulas, sentences, and model checking

GrAaPH FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Formulas, sentences, and model checking

GrAaPH FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Example:

@ = IxyIxp - - - AxVx \/ X =x;V \/ E(x, x;) V E(xi, x)

1<i<k 1<i<k

GE? &

Formulas, sentences, and model checking

GrAaPH FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Example:

@ = IxyIxp - - - AxVx \/ X =x;V \/ E(x, x;) V E(xi, x)

1<i<k 1<i<k

G E ¢? & k-DOMINATING SET

Formulas, sentences, and model checking

Grara FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Example:

@ = IxqIxg - - - Ixg /\ —(xi = xj) A =E(xi, X)) A —E(x;, x;)
1<i<j<k

GEp? &

Formulas, sentences, and model checking

Grara FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Example:

@ = IxqIxg - - - Ixg /\ —(xi = xj) A =E(xi, X)) A —E(x;, x;)
1<i<j<k

G = ¢? & k-INDEPENDENT SET

Formulas, sentences, and model checking

GraPH FO/MSO MODEL CHECKING Parameter: |y
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G |= ¢?

Example:

¢ = 3X13X3X3(Vx \/ Xi(x)) AVxYy N\ (Xi(x)AXi(y) = —E(x,y))

1<i<3 1<i<3

GEp? &

Formulas, sentences, and model checking

GraPH FO/MSO MODEL CHECKING Parameter: |y
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G |= ¢?

Example:

¢ = 3X13X3X3(Vx \/ Xi(x)) AVxYy N\ (Xi(x)AXi(y) = —E(x,y))

1<i<3 1<i<3

G = ¢? & 3-COLORING

The lens of contraction sequences

Class of bounded constraint on red graphs efficient model-checking

linear rank-width bd #edges MSO
rank-width bd component MSO
twin-width bd degree ?

The lens of contraction sequences

Class of bounded constraint on red graphs efficient model-checking

linear rank-width bd #edges MSO
rank-width bd component MSO
twin-width bd degree ?

We will reprove the result in bold, and fill the ?

Courcelle’s theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics '00)

MSO model checking can be solved in time f(|¢|,d) - |V(G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle '90)

MSO model checking can be solved in time (||, t) - |V(G)| on
incidence graphs of graphs G of treewidth at most t.

Courcelle’s theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics '00)

MSO model checking can be solved in time f(|¢|,d) - |V(G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle '90)
MSO model checking can be solved in time (||, t) - |V(G)| on
incidence graphs of graphs G of treewidth at most t.
P as the incidence graph preserves bounded treewidth,
possible edge-set quantification
» linear FPT approximation for treewidth

» (polynomial) FPT approximation for clique-width

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpi(/,3 € A™) = {p(X) € LIK] : o F ¢(3)},

tpi () = {p € LIK : o |= o}

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpi (e, 3 € A™) = {p(X) € LIK] - o = ¢(3)},
tpi () = {p € LIK : o |= o}

Theorem (folklore)

For £ € {FO, MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of IxL[k]." O

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpi (e, 3 € A™) = {p(X) € LIK] - o = ¢(3)},
tpi () = {p € LIK : o |= o}

Theorem (folklore)
For £ € {FO, MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of IxL[k]." O

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

2-player game on two o-structures &, B (for us, colored graphs)

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

At each round, Spoiler picks a structure (98) and a vertex therein

FO Ehrenfeucht-Fraissé game

NN T T T

<N

Duplicator answers with a vertex in the other structure

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

After g rounds, Duplicator wishes that a; — b; is an isomorphism
between f[a1,...,ak] and B[b, ..., by]

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

After g rounds, Duplicator wishes that a; — b; is an isomorphism
between f[a1,...,ak] and B[b, ..., by]

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

When no longer possible, Spoiler wins

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

When no longer possible, Spoiler wins

FO Ehrenfeucht-Fraissé game

NN SN S N N

PR

If Duplicator can survive k rounds, we write & = —FO B
Here of =5° % and of #5°

MSO Ehrenfeucht-Fraissé game

NN T T T T

PN

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

NN T T T T

PN

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

[N ENE SN SNESNE SN S a

<N

To which Duplicator answers a set in the other structure

MSO Ehrenfeucht-Fraissé game

RSN NS SN S

PR

Again we write &/ E,'\("SO A if Duplicator can survive k rounds

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every o-structures o/ , B and logic L € {FO, MSO},

o =£ B if and only if tpE (o) = tpf(RB).

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every o-structures o/ , B and logic L € {FO, MSO},

o =£ B if and only if tpE (o) = tpf(RB).
Proof.
Induction on k.

(=) L[k + 1] formulas are Boolean combinations of Ixp or IXp
where ¢ € L[k]. Use the answer of Duplicator to x = a or X = A.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every o-structures o/ , B and logic L € {FO, MSO},

o =£ B if and only if tpE (o) = tpf(RB).
Proof.
Induction on k.

(=) L[k + 1] formulas are Boolean combinations of Ixp or IXp
where ¢ € L[k]. Use the answer of Duplicator to x = a or X = A.

(<) If tpf, 1 (A) = tpf,1(B), then the type tpf (A, a) is equal to
some tpf(B7 b). Move a can be answered by playing b. O

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;

tp}/50(G. P1, €) = {ip € MSOg ts....u,[K] : (G(C).Pi(C)) = o}

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;

tp}/50(G. P1, €) = {ip € MSOg ts....u,[K] : (G(C).Pi(C)) = o}

For each v € V(G)r tpk(Gapn, {V}) = type of Kl
tpx (G, P1,{V(G)}) = type of G

MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;
tpk *°(G. Pi, €) = {p € MSOg uy,...u,[K] : (G(C), Pi(C)) = ¢}

C3, 73

Gr/ [=

G, m

\. J

7 = tpM39(G, P;, C) based on the Tj = tpMSO(G, Piy1, G)?

MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;
tpk *°(G. Pi, €) = { € MSOg uy,...u,K] : (G(C), Pi(C)) = ¢}

(3,73

G/ = -

\. J \

C arises from Cy,...,Cq: 7= F(71,...,7q/, B, X, Y)

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Duplicator combines her strategies in the red components

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

If Spoiler plays a vertex in the component of type 71,

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Duplicator answers the corresponding winning move

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Same in the component of type

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Same in the component of type

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Same in the component of type

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Same in the component of type

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

If Spoiler plays a set, Duplicator looks at the intersection with (i,

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

If Spoiler plays a set, Duplicator looks at the intersection with (i,

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

calls her winning strategy in C{

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

same for the other components

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

same for the other components

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

same for the other components

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

and plays the union

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

that fully defines the winning strategy of Duplicator

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

that fully defines the winning strategy of Duplicator

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

that fully defines the winning strategy of Duplicator

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

that fully defines the winning strategy of Duplicator

Turning it into a uniform algorithm

Reminder:
» +non-equivalent partitioned sentences of rank k: f(d, k)
> #rank-k partitioned types bounded by g(d, k) = 2f(d:K)

For each newly observed type T,
> keep a representative (H,P), on at most (d + 1)8(¢:K) vertices
» determine the 0, 1-vector of satisfied sentences on (H,P),

» record the value of F(71,...,7q, B, X, Y) for future uses

Turning it into a uniform algorithm

Reminder:
» +non-equivalent partitioned sentences of rank k: f(d, k)
> #rank-k partitioned types bounded by g(d, k) = 2f(d:K)

For each newly observed type T,
> keep a representative (H,P), on at most (d + 1)8(¢:K) vertices
» determine the 0, 1-vector of satisfied sentences on (H,P),

» record the value of F(71,...,7q, B, X, Y) for future uses

To decide G = ¢, look at position ¢ in the 0, 1-vector of tp}'°9(G)

Back to twin-width

k-INDEPENDENT SET given a d-sequence

d-sequence: G = G, Gp_1,..., Gy, G1 = K3

Algorithm: For every connected subset D of size at most k of
the red graph of every G;, store in T[D,] one largest
independent set in G(D) intersecting every vertex of D.

k-INDEPENDENT SET given a d-sequence

d-sequence: G = G, Gp_1,..., Gy, G1 = K3

Algorithm: For every connected subset D of size at most k of
the red graph of every G;, store in T[D,] one largest
independent set in G(D) intersecting every vertex of D.

Initialization: T[{v},n] = {v}

End: T[{V(G)},1] = IS of size at least k or largest IS in G

Running time: d%n? red connected subgraphs,
actually only d?kn = 294(K) b ypdates

k-INDEPENDENT SET given a d-sequence

d-sequence: G = G, Gp_1,..., Gy, G1 = K3

Algorithm: For every connected subset D of size at most k of
the red graph of every G;, store in T[D,] one largest
independent set in G(D) intersecting every vertex of D.

Initialization: T[{v},n] = {v}
End: T[{V(G)},1] = IS of size at least k or largest IS in G

Running time: d%n? red connected subgraphs,
actually only d?kn = 294(K) b ypdates

How to compute T[D,] from all the T[D', i+ 1]?

k-INDEPENDENT SET: Update of partial solutions

Best partial solution inhabiting e?

k-INDEPENDENT SET: Update of partial solutions

3 unions of < d 4 2 red connected subgraphs to consider in Gji1
with u, or v, or both

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant '20)

FO model checking can be solved in time f(|p|,d) - |V(G)| on
graphs G given with a d-sequence.

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant '20)

FO model checking can be solved in time f(|p|,d) - |V(G)| on
graphs G given with a d-sequence.

Add Gaifman’s locality to our MSO model checking algorithm

Following [Gajarsky, Pilipczuk, Przybyszewski, Torunczyk '22]

Local tuple of parts

(P1, P2, ..., Pq) is k-local around Py in (G, P;) if...

Local tuple of parts

(P1, P2, ..., Pq) is k-local around Py in (G, P;) if...
P; is at distance at most 22 from {P1} in R(G,P;)

Local tuple of parts

(P1, P2, ..., Pq) is k-local around Py in (G, P;) if...
P; is at distance at most 22 from {P1} in R(G,P;)

Local tuple of parts

(P1, P2, ..., Pq) is k-local around Py in (G, P;) if...
Ps is at distance at most 2€=3 from {Py1, P>} in R(G,P;)

Local tuple of parts

(P1, P2, ..., Pq) is k-local around Py in (G, P;) if...
Ps is at distance at most 2€=3 from {Py1, P>} in R(G,P;)

Local tuple of parts

(P1, P2, ..., Pq) is k-local around Py in (G, P;) if...
Py is at distance at most 2k=* from {Py, P>, P3} in R(G,P;)

Local tuple of parts

(P1, P2, ..., Pq) is k-local around Py in (G, P;) if...
Py is at distance at most 2k=* from {Py, P>, P3} in R(G,P;)

Local tuple of parts

(P1, P2, ..., Pg) is k-local around Py in (G, P;) if...
P, is at distance at most 2k=9 from {P4, ..., Pq_1} in R(G,P;)

Local tuple of parts

(P1, P2, ..., Pg) is k-local around Py in (G, P;) if...
P, is at distance at most 2k=9 from {P4, ..., Pq_1} in R(G,P;)

Local tuple of parts

(P1, P2, ..., Pg) is k-local around Py in (G, P;) if...
P, is at distance at most 2k=9 from {P4, ..., Pq_1} in R(G,P;)

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G, P;) if of the
form Qx1 € X Qxa € Py ... Qxx € P 9(x1,...,xx) with

» ¢ is quantifier-free, and
» (X, Pa,...,Px) local around X in (G, P;).

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G, P;) if of the
form Qx1 € X Qxa € Py ... Qxx € P 9(x1,...,xx) with

» ¢ is quantifier-free, and
» (X, Pa,...,Px) local around X in (G, P;).

And the corresponding types:
Itp} (G, P, X) = {¢ : ar(y) < k,

¢ is partitioned local around X in (G, P;),

Partitioned local sentences/types in (G, P,) and (G, P;)

Initialization of the dynamic programming

In (G,Pn={{v}:veV(G)}): forevery ve V(G),
Qxe{v @e{v} ... Qe {v}y=¢(v,v,...,v)

Partitioned local types are easy to compute in (G, P,)

Partitioned local sentences/types in (G, P,) and (G, P;)

Initialization of the dynamic programming

In (G,Pn={{v}:veV(G)}): forevery ve V(G),
Qxg € {v} Qe {v} ... @xxe{viyv=9¢(v,v,...,v)

Partitioned local types are easy to compute in (G, P,)

Output of the dynamic programming

In (G, Py = {V(G)}):
Qx1 € V(G) Qx2 € V(G) ... Qxk € V(G) 9 = classic sentences

The partitioned local type in (G, P;) coincides with the type of G

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

\\\\\\\\\\\\\\\

Local strategies win the global game

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

\\\

Say, Spoiler plays in Py

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Duplicator answers in f(P;) following the local game around P;

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Now when Spoiler plays close to Py or f(Py)

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

If Spoiler plays too far

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Duplicator starts a new local game around that new part

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Duplicator starts a new local game around that new part

Concluding as in the MSO model checking algorithm

(G,Pit1) ~ (G,P;) : X and Y are merged in Z

Partitioned local types around P

» only needs an update if P is at distance at most 2¥~1 from Z

Concluding as in the MSO model checking algorithm

(G,Pit1) ~ (G,P;) : X and Y are merged in Z

Partitioned local types around P
» only needs an update if P is at distance at most 2¥~1 from Z

» update only involves parts at distance at most 2k~ from P

Concluding as in the MSO model checking algorithm

(G,Pit1) ~ (G,P;) : X and Y are merged in Z

Partitioned local types around P
» only needs an update if P is at distance at most 2¥~1 from Z
» update only involves parts at distance at most 2k~ from P

> hence at most d2 parts: conclude like MSO model checking

Concluding as in the MSO model checking algorithm

(G,Pit1) ~ (G,P;) : X and Y are merged in Z

Partitioned local types around P
» only needs an update if P is at distance at most 2¥~1 from Z
» update only involves parts at distance at most 2k~ from P

> hence at most d2 parts: conclude like MSO model checking

Each contraction: Oy «(1) = O(d2k) updates in Oq (1) = f(d, k)
Total time: Og k(n)

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

e(x,y) = =E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete
g—g

On®)

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete
2—g

oo

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

IR

p(x,y) = E(x,y) V(G(x) A B(y) A =3zR(2) A E(y, 2))
V(R(x) A B(y) A 3zR(z) AN E(y,z) A —3zB(z) A E(y, z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

p(x,y) = E(x,y) V(G(x) A B(y) A =3zR(2) A E(y, 2))
V(R(x) A B(y) A 3zR(z) AN E(y,z) A —3zB(z) A E(y, z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

Stable and NIP for hereditary classes

Due to [Baldwin, Shelah '85; Braunfeld, Laskowski '22]

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

g%@
="
%

O

ladder

Stable and NIP for hereditary classes

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

N
OWO
—

Bounded-degree graphs — stable

Unit interval graphs — NIP but not stable
Interval graphs — not NIP

ladder

Stable and NIP for hereditary classes

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

N
OWO
—

Bounded-degree graphs — stable

Unit interval graphs — NIP but not stable
Interval graphs — not NIP

ladder

Bounded twin-width classes — NIP, but in general not stable

Classes with known tractable FO model checking

e - ~
NIP \ stable stable

[bounded expansion
|
bounded
rank-width

[polynomial expansionj bounded

pattern [1 | d} degree
: avoidin proper minor-close

g

permuta- map
dense — tions graphs | “sparse”
classes unit interval [PlleYEr classes
\ AN v

Classes with known tractable FO model checking

NIP \ stable

bounded
rank-width

posets of
bounded
width

nowhere dense

[bou nded expansion

l

[polynomial expansionj
I

pattern

.
stable

bounded
degree

avoiding [proper mmor—closed}
cographs | (E-interval) | permuta- | || ~map
dense — tions graphs “sparse”
classes unit interval planar classes
- AN)

FO MoDEL CHECKING solvable in f(|¢|)n on bounded-degree graphs

[Seese '96]

Classes with known tractable FO model checking

NIP \ stable

bounded
rank-width

dense
classes
N\

posets of
bounded

width pattern

. avoiding
permuta-

= tions
unit interval

\

[bounded expansion
l
[polynomial expansionj bounded
1 degree

[proper minor—closed}

J

" "
graphs sparse
planar

classes
J

FO MoDEL CHECKING solvable in f(|¢|)n'™ on any nowhere dense class
[Grohe, Kreutzer, Siebertz '14]

Classes with known tractable FO model checking

p
NIP \ stable

posets of
bounded

width pattern
- avoiding
— tions

bounded
rank-width

dense
classes
N\

\

[bounded expansion
l
[polynomial expansion} bounded
1 degree

[proper minor—closed}

graphs sparse
planar
| (planar]

classes
J

End of the story for the subgraph-closed classes

tractable FO MoDEL CHECK

ING < nowhere dense < stable

Classes with known tractable FO model checking

NIP \ stable

bounded
rank-width

posets of
bounded
width

idi proper minor-closed
svoidng ||)

nowhere dense

[bou nded expansion

l

]\

[polynomial expansionj

pattern 1

permuta-

map ¥ "
dense — tions graphs i sparse
classes unit interval 0 planar classes |

New program: transductions of nowhere dense classes

.
stable

bounded
degree

Not sparse anymore but still stable

Classes with known tractable FO model checking

NIP \ stable

bounded
rank-width

dense
classes
N\

posets of
bounded
width

unit interval

pattern
avoiding
permuta-
tions

\
sabl

[bou nded expansion
l

[polynomial expansionj bounded
1 degree
[proper mmor—closed}

J

) "
graphs sparse
. “-planar
_

classes
J

MSO; MoODEL CHECKING solvable in f(|¢|, w)n on graphs of rank-width w
[Courcelle, Makowsky, Rotics '00]

Classes with known tractable FO model checking

NIP \ stable

posets of
bounded
width

bounded
rank-width

cographs -interval) [sermuta-
dense — tions
classes unit interval
N\

nowhere dense

[bou nded expansion
l

[polynomial expansionj

I
[proper minor—closed}

-
graphs

planar
\ (planar]

pattern

.
stable

bounded
degree

“sparse”
classes
J

Is o a subpermutation of 77 solvable in f(|o|)|7|

[Guillemot, Marx '14]

Classes with known tractable FO model checking

NIP \ stable

bounded
rank-width

posets of
bounded
width

nowhere dense

[bou nded expansion
l

[polynomial expansionj

pattern 1

avoiding [proper mmor—closed}
cographs | (E-interval) | permuta- | || ~map
dense — tions graphs “sparse”
classes unit interval planar classes
- AN)

.
stable

bounded
degree

FO MobEL CHECKING solvable in (||, w)n? on posets of width w

[GHLOORS '15]

Classes with known tractable FO model checking

(- s 2
NIP \ stable stable

[bou nded expansion
posets of [
bounded

bounded

| [polynomial expansionj bounded
width pattern R degree
idi [proper mmor—closed}

rank-width

. avoiding
permuta- map
dense — tions | “sparse”
classes)l classes/

FO MoDEL CHECKING solvable in f(|¢|)n®®) on map graphs
[Eickmeyer, Kawarabayashi '17]

Classes with known tractable FO model checking

posets of
bounded

width pattern

bounded
rank-width

; avoidin
permutag—
dense

NIP \ Stab|e[bounded twin—width] f

\"'[polynomial expansionj

— tions
unit interval
J

classes
N\

map y "
graphs | sparse
classes/

&

nowhere dense

[bou nded expansion
l

I
proper minor—closed}

.
stable

bounded
degree

FO MoDEL CHECKING solvable in f(|¢], d)n on graphs with a d-sequence
[B., Kim, Thomassé, Watrigant '20]

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class C of binary structures with bounded twin-width and
transduction I, the class 7 (C) has bounded twin-width.

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class C of binary structures with bounded twin-width and
transduction I, the class 7 (C) has bounded twin-width.

» Making copies does not change the twin-width
» Adding a unary relation at most doubles it

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class C of binary structures with bounded twin-width and
transduction I, the class 7 (C) has bounded twin-width.

» Making copies does not change the twin-width
» Adding a unary relation at most doubles it

» Refine parts of the partition sequence by partitioned local
1-type

Linearly ordered binary structures

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé,
Torunczyk '22)

Let G be a hereditary class of ordered graphs. The following are
equivalent.

(1) € has bounded twin-width.
(2
(3
(
(

) € is monadically dependent.
)

4) € contains 29" ordered n-vertex graphs.
)

€ is dependent.

5) € contains less than Z}(nz/gJ (54) k! ordered n-vertex graphs,
for some n.

(6) € does not include one of 25 hereditary ordered graph classes
with unbounded twin-width.

(7) FO-model checking is fixed-parameter tractable on €.

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere
dense class.

Morally: Stability coincides with structural sparsity

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere
dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth,
and now twin-width:
Theorem (Gajarsky, Pilipczuk, Torunczyk '22)

Every stable class of bounded twin-width is the FO transduction of
a class of bounded twin-width without arbitrarily large bicliques.

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere
dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth,
and now twin-width:

Theorem (Gajarsky, Pilipczuk, Torunczyk '22, Tww Il '21)
Every stable class of bounded twin-width is the FO transduction of
a class of bounded expansion.

The lens of contraction sequences

Class of bounded FO transduction of constraint on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width ? bd degree FO

Compiling bounded twin-width graphs as p-f permutations

Our next goal:

Theorem (B., NesetFil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Compiling bounded twin-width graphs as p-f permutations

Our next goal:

Theorem (B., NesetFil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

“if direction:" proper permutation classes have bounded
twin-width + FO transductions preserve bounded twin-width

We now want to show:

V class C of bounded twin-width, 3 permutation class P avoiding
one permutation and an FO transduction I such that C C 7 (P).

Twin-decomposition

SR 20 Bo
o."o‘a WOD @& D
8y vy &
&) oo ®
0~

o' ® ©

Contraction tree + transversal adjacencies (bicliques) + time 7

Reading out trigraphs from a twin-decomposition

Twin-models

Twin-model: tree edges T, transversal edges V
Example: T(3,5), V(4,c¢)

Twin-models

Twin-model: tree edges T, transversal edges V

Full twin-model: ancestor—descendant relation <, V
Example: 2 < e

Twin-models

Twin-model: tree edges T, transversal edges V

Full twin-model: ancestor—descendant relation <, V

Ordered twin-model: T, tree pre-order <, V
l1<3<b<ca<d<g<2<c<d<b<gbtge<f

Twin-models

Twin-model: tree edges T, transversal edges V

Full twin-model: ancestor—descendant relation <, V

Ordered twin-model: T, tree pre-order <, V

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model

E(x,y):=3x3y (X' <x Ay 2y A V(X,y))

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model
E(x,y) =3XFy' (X' =x Ay <y A V(X,y))

Example: E(c,f) sincec <c, 4 =<f, V(4,¢)

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model
E(x,y):=3x3y (X' <x Ay 2y A V(X,y))

but not from a mere twin-model, in general

Why ordered twin-models?

A linear order

1<3<bh<a<d<g<2<c<id<b<b<e<f

brings us closer to a permutation (= two linear orders)

Full and ordered twin-models are transduction equivalent

X<y=x<y ANVx<z<yVw T(z,w) > x<w

Full and ordered twin-models are transduction equivalent

X<y=x<y ANVx<z<yVw T(z,w) > x<w

vy is a strict descendant of x if it comes after in the pre-order, and
every neighbor w (in the tree) of any intermediate z (possibly y)
comes (non-strictly) after x

Full and ordered twin-models are transduction equivalent

To define x < y from <, mark each left child with one color,
and express that the before-last vertex on the path from x to the
least ancestor of x and y is marked (or simply x < y)

Done and left to do

graphs «—— full twin-models «— ordered twin-models
bounded twin-width

Done and left to do

graphs «—— full twin-models «— ordered twin-models

bounded twin-width ———> bounded twin-width

Mimicking a good contraction sequence on a full twin-model yields
a good contraction sequence

Done and left to do

graphs «—— full twin-models «— ordered twin-models

bounded twin-width ——> bounded twin-width

Past this point bounded twin-width is preserved by the FO
transductions, and we just need to show that:

ordered twin-models and permutations are transduction equivalent

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width and degeneracy = bounded expansion.

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Bounded twin-width and degeneracy = bounded expansion.
Theorem (Nesetfil, Ossona de Mendez '08)
Bounded expansion = bounded star chromatic number.

l.e., proper O(1)-coloring such that every two colors induce
a disjoint union of stars

Encoding: Ordered twin-models to permutations

Fix a star coloring and orient edges away from centers of stars
— bounded in-degree

colors

OOOOLOG

a] < 0 < 7

T OOOOOOOOOLOOOOOEEOOLOOOYWOOOOEWOODOD
< OOOOOOROOOOOLOOOOOOOLOOOVWOLOOOO®O®OD

Encoding: Ordered twin-models to permutations

Fix a star coloring and orient edges away from centers of stars
— bounded in-degree

colors

OOOOLOG

a] c 0 <]

T OOOOOOOOOLOOOOOEEOOLOOOYWOOOOEWOODOD
< OOOOOOROOOOOLOOOOOOOLOOOVWOLOOOO®O®OD

List in the pre-order traversal:
> <;: the incoming arcs
> <5: the outgoing arcs
where an arc is a copy of its out-vertex with color of its in-vertex

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

A@3) A6) AR) A1) A(12) A(15) A(IT) A(20) A(23) A(26) A(28) A(30) A(33)
<[201 5 @7 @y 10 a[@] 14 B @18 19 @21 22 6321 25 @27 @[20 &O[31 32 &3]
< [@]2 ®5 9 25 @3 @7 10 14 2 @[+ B[1 18 B[®]16 19 B2 @13 22 21 32 B27 DB

B(3) B(6) B() B(11) B(12) B(15) B(I7T) B(20) B(23) B(26) B(28) B(30) B(33)

3<6<8<1l<12«<15<17<20<23<26<28<30<33

is the tree pre-order (on the domain of the image)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

A@3) A6) AR) A1) A(12) A(15) A(IT) A(20) A(23) A(26) A(28) A(30) A(33)
<[201 5 @7 @y 10 a[@] 14 B @18 19 @21 22 6321 25 @27 @[20 &O[31 32 &3]
< [@]2 ®5 9 25 @3 @7 10 14 2 @[+ B[1 18 B[®]16 19 B2 @13 22 21 32 B27 DB

B(3) B(6) B(8) B(11) B(12) B(15) B(17) B(20) B(23) B(26) B(28) B(30) B(33)

3<6<8<1l<12«<15<17<20<23<26<28<30<33

is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along <1 and <, contain
a same element (namely, their linking arc)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

A@3) A6) AR) A1) A(12) A(15) A(IT) A(20) A(23) A(26) A(28) A(30) A(33)
<[201 5 @7 @y 10 a[@] 14 B @18 19 @21 22 6321 25 @27 @[20 &O[31 32 &3]
< [@]2 ®5 9 25 @3 @7 10 14 2 @[+ B[1 18 B[®]16 19 B2 @13 22 21 32 B27 DB

B(3) B(6) B(8) B(11) B(12) B(15) B(17) B(20) B(23) B(26) B(28) B(30) B(33)

3<6<8<1l<12«<15<17<20<23<26<28<30<33

is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along <1 and <, contain
a same element (namely, their linking arc)

Use an extra color for the transversal edges (color 2)

Recent developments

Theorem (B., Nesetfil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Recent developments

Theorem (B., Nesetfil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24)

Pattern-free permutations are bounded products of separable
permutations.

Recent developments

Theorem (B., Nesetfil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '24)

Pattern-free permutations are bounded products of separable
permutations.

As a by-product of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé '24)

There is a proper permutation class P such that every class of
binary structures has bounded twin-width if and only if it is
a first-order transduction of P.

The lens of contraction sequences

Class of bounded FO transduction of constr. on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width proper perm. class bd degree FO

The lens of contraction sequences

Class of bounded FO transduction of constr. on red graphs efficient MC
linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width proper perm. class bd degree FO

Thank you for your attention!

