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Find a largest collection of disks that pairwise intersect



a

Like this



a

or that



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.

ci cj

Guess two farthest disks in an optimum solution S.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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Hence, all the centers of S lie inside the bold digon.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.

ci cj

Two disks centered in the same-color region intersect.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.

ci cj

We solve Max Clique in a co-bipartite graph.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.

ci cj

We solve Max Independent Set in a bipartite graph.



Disk graphs

Inherits the NP-hardness of planar graphs.



So what is known for Max Clique on disk graphs?
I Polynomial-time 2-approximation

I For any clique there are 4 points hitting all the disks.
I Guess those points and remove the non-hit disks.
I The resulting graph is partitioned into 2 co-bipartite graphs.
I Solve exactly on both co-bipartite graphs.
I Output the best solution.

I No non-trivial exact algorithm known



And what is known about disk graphs?
I Every planar graph is a disk graph.
I Every triangle-free disk graph is planar (centers → vertices).
I So a triangle-free non-planar graph like K3,3 is not disk.
I A subdivision of a non-planar graph is not a disk graph

(more generally not a string graph).
I ...

Other ways of showing that a graph is not disk?
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Say the 4 centers encoding a K2,2 = 2K2 are in convex position.

c1

c2
c3

c4

Then the two non-edges should be diagonal.

Suppose d(c1, c3) > r1 + r3 and d(c2, c4) > r2 + r4.
But d(c1, c3) + d(c2, c4) 6 d(c1, c2) + d(c3, c4) 6 r1 + r2 + r3 + r4,
a contradiction.
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Conclusion: the 4 centers of an induced 2K2 are either
I not in convex position or
I in convex position with the non-edges being diagonal.

c1

c2
c3 c4

or

c1

c2c3

c4

Reformulation: either
I the line `(c1, c2) crosses the segment c3c4, or
I the line `(c3, c4) crosses the segment c1c2, or
I both; equivalently, the segments c1c2 and c3c4 cross.



Conclusion: the 4 centers of an induced 2K2 are either
I not in convex position or
I in convex position with the non-edges being diagonal.

c1

c2
c3 c4

or

c1

c2c3

c4

Reformulation: either
I the line `(c1, c2) crosses the segment c3c4, or
I the line `(c3, c4) crosses the segment c1c2, or
I both; equivalently, the segments c1c2 and c3c4 cross.



Assume Cs + Ct is a disk graph.
Link consecutive centers of the two disjoint cycles (non-edges).

si

For each red segment si , we denote by:
I ai the number of blue segments crossed by `(si ).
I bi the number of blue segments whose extension cross si .
I ci the number of blue segments intersecting si .

It should be that ai + bi − ci = t.
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Σ
16i6s

ai + bi − ci = st

1) ai is even:

number of intersections of a line with a closed curve.

2) Σ
16i6s

bi = Σ
16i6t

a′
i is therefore even. (a′

j , b′
j , c ′

j same for blue segments)

3) Σ
16i6s

ci is even: number of intersections of two closed curves.
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16i6s
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16i6s

ai + Σ
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a′
i − Σ

16i6s
ci is even.

Hence s and t cannot be both odd.
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The complement of two odd cycles is not a disk graph.

Are there other graphs of co-degree 2 which are not disk?



Complement of many even cycles and one odd cycle

D1

D2i+1

D2i

D′
2i+1

D′
2s+1



Can we solve Max Independent Set more efficiently if there
are no two vertex-disjoint odd cycles as an induced subgraph?

Another way to see it:
at least one edge between two vertex-disjoint odd cycles

We can get a QPTAS and an exact subexponential algorithm in
2Õ(n2/3) with win-wins and known results.
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EPTAS

VC dim of S = maximum size of a set with all intersections with S.
VCdim(G) = VC dimension of the neighborhood set-system.
α(G) = size of a maximum independent set in G .
iocp(G) = same as ocp but induced.

Theorem
Max Independent Set can be 1 + ε-approximated in time
2Õ(1/ε3)nO(1) on graphs G with

I VCdim(G) = O(1),
I α(G) = Ω(|V (G)|), and
I iocp(G) = 1.
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Classic result of Haussler and Welzl in VC dimension theory

Theorem (ε-nets)
A set-system (S,U) with VC dimension d and only sets of size at
least ε|U| has a hitting set of size O(d

ε log 1
ε ).

Furthermore, any sample of size 10d
ε log 1

ε is a hitting set w.h.p.

We will apply that result to the set-system
({N(u) ∩ I | u ∈ V (G), |N(u) ∩ I| > ε3|I|}, I).
In words, the large neighborhoods over I.
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First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)
< ε3|I|< ε|I|

We pick randomly S of Õ(1/ε3) vertices.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

S

N(S)
< ε3|I|< ε|I|

With probability f (ε) > 0, S ⊆ I.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)

< ε3|I|< ε|I|

We delete the neighborhood of S.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)
< ε3|I|

< ε|I|

The remaining vertices have few vertices in I.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)
< ε3|I|

< ε|I|

This is due to the theorem of ε-nets.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)

< ε3|I|< ε|I|

We compute a shortest odd cycle C .



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)

< ε3|I|

< ε|I|

If |C | 6 1/ε2, we delete its neighborhood.



First step: sampling
I is a fixed maximum independent set.
We can assume that |I| = Θ(n).

G

I

SN(S)

< ε3|I|< ε|I|

So, we might assume that |C | > 1/ε2.



Second step: find a small odd cycle transversal

bipartitebipartite

In column, the successive neighborhood of C , layers.
Rows indicate the closest neighbor on C , strata.
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Rows indicate the closest neighbor on C , strata.



Second step: find a small odd cycle transversal

bipartite

bipartite

Deleting a j-th neighborhood of C , leaves a bipartite to the right.

Rows indicate the closest neighbor on C , strata.



Second step: find a small odd cycle transversal

bipartite

bipartite

Deleting a j-th neighborhood of C , leaves a bipartite to the right.

Rows indicate the closest neighbor on C , strata.



Second step: find a small odd cycle transversal

bipartite

bipartite

We delete the lightest of the ≈ 1/ε first layers.

Rows indicate the closest neighbor on C , strata.



Second step: find a small odd cycle transversal

bipartitebipartite

The ≈ 1/ε consecutive layers form an odd cycle transversal.

Rows indicate the closest neighbor on C , strata.
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Second step: find a small odd cycle transversal

bipartitebipartite

The ≈ 1/ε consecutive layers form an odd cycle transversal.

Rows indicate the closest neighbor on C , strata.



Second step: find a small odd cycle transversal

bipartitebipartite

We remove the lightest block of strata.

Rows indicate the closest neighbor on C , strata.



Filled ellipses and triangles

2-subdivisions: graphs where each edge is subdivided exactly twice
co-2-subdivisions: complements of 2-subdivisions

Lemma
For some α > 1, Max Independent Set on 2-subdivisions is
not α-approximable algorithm in 2n0.99 , unless the ETH fails.

Graphs of filled ellipses or filled triangles contain all the
co-2-subdivisions.
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Filled triangles



Filled ellipses



Higher dimensions:
I unit 4D-disk graphs
I ball (3D-disk) graphs with radii arbitrary close to 1

contain all the co-2-subdivisions
(so, no approximation scheme and no subexponential algorithm)

O

P

C

π(p +(e1 ))

π(p −(e1 ))

1

P⊥
p(v1)

√
3− ε



What about unit ball graph?

Let x1, . . . , xs be the consecutive centers in R3 of a co-odd-cycle.
Consider the trace on the 2-sphere of the following vector walk.

I Start at vector
−→
ab with a = x1 and b = x2.

I move continuously a from x1 to x3 following the segment x1x3.
I move continuously b from x2 to x4 following the segment x2x4.
I and so on, until back to −−→x1x2.

As s is odd, half-way through we reach −−→x2x1.
Hence the curve drawn on the 2-sphere is antipodal.
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As two antipodal curves intersect, we have one of the following
configurations:

xi

x
y

yj xi

x
yj

y



Open questions

I Is Max Clique NP-hard on disk and unit ball graphs?
I A first step might be to show NP-hardness for Max

Independent Set with iocp 1.
I Actually what about ocp 1?
I What is the complexity of Max Independent Set on the

Moebius grid? on quadrangulations of the projective plane?

Thank you for your attention!
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