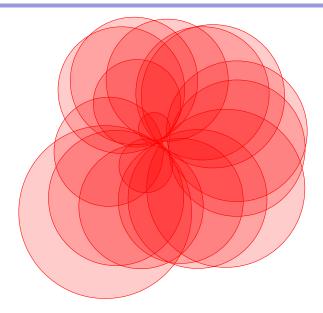
EPTAS for Maximum Clique on Disks and Unit Balls

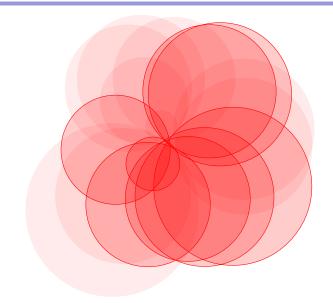
Édouard Bonnet joint work with Panos Giannopoulos, Eunjung Kim, Paweł Rzążewski, and Florian Sikora and Marthe Bonamy, Nicolas Bousquet, Pierre Chabit, and Stéphan Thomassé

LIP, ENS Lyon

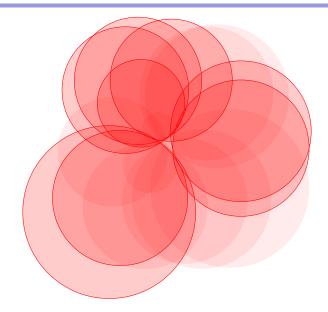
May 18th 2018, Leiden



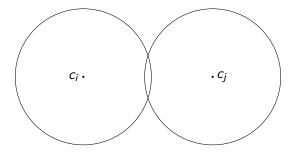
Find a largest collection of disks that pairwise intersect



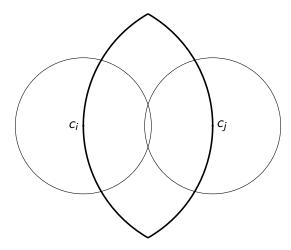
Like this



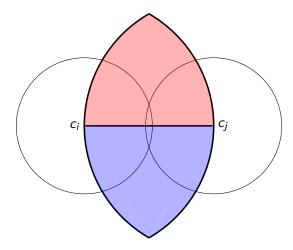
or that



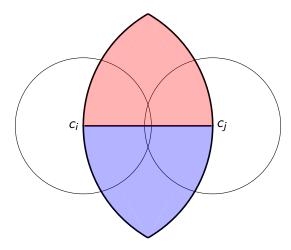
Guess two farthest disks in an optimum solution S.



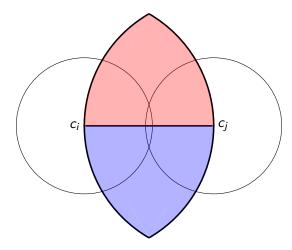
Hence, all the centers of S lie inside the bold digon.



Two disks centered in the same-color region intersect.



We solve MAX CLIQUE in a co-bipartite graph.



We solve MAX INDEPENDENT SET in a bipartite graph.

Disk graphs

Unweighted problems

3-Colourability [?]	NP-complete	[+]Details
Clique [?]	Unknown to ISGCI	[+]Details
Clique cover [?]	NP-complete	[+]Details
Colourability [?]	NP-complete	[+]Details
Domination [?]	NP-complete	[+]Details
Feedback vertex set [?]	NP-complete	[+]Details
Graph isomorphism [?]	Unknown to ISGCI	[+]Details
Hamiltonian cycle [?]	NP-complete	[+]Details
Hamiltonian path [?]	NP-complete	[+]Details
Independent dominating set [?]	NP-complete	[+]Details
Independent set [?]	NP-complete	[+]Details
Maximum bisection [?]	NP-complete	[+]Details
Maximum cut [?]	NP-complete	[+]Details
Minimum bisection [?]	NP-complete	[+]Details
Monopolarity [?]	NP-complete	[+]Details
Polarity [?]	NP-complete	[+]Details
Recognition [?]	NP-hard	[+]Details

Inherits the NP-hardness of planar graphs.

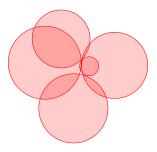
So what is known for ${\rm MAX}\ {\rm CLIQUE}$ on disk graphs?

- Polynomial-time 2-approximation
 - For any clique there are 4 points hitting all the disks.
 - Guess those points and remove the non-hit disks.
 - The resulting graph is partitioned into 2 co-bipartite graphs.
 - Solve exactly on both co-bipartite graphs.
 - Output the best solution.
- No non-trivial exact algorithm known

And what is known about disk graphs?

. . .

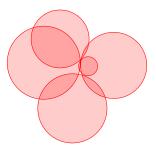
- Every planar graph is a disk graph.
- Every triangle-free disk graph is planar (centers \rightarrow vertices).
- So a triangle-free non-planar graph like $K_{3,3}$ is not disk.
- A subdivision of a non-planar graph is not a disk graph (more generally not a string graph).



And what is known about disk graphs?

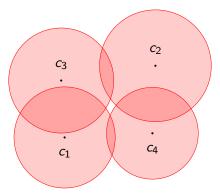
. . .

- Every planar graph is a disk graph.
- Every triangle-free disk graph is planar (centers \rightarrow vertices).
- So a triangle-free non-planar graph like $K_{3,3}$ is not disk.
- A subdivision of a non-planar graph is not a disk graph (more generally not a string graph).

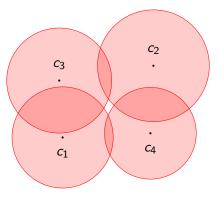


Other ways of showing that a graph is not disk?

Say the 4 centers encoding a $K_{2,2} = \overline{2K_2}$ are in convex position.

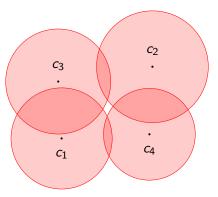


Say the 4 centers encoding a $K_{2,2} = \overline{2K_2}$ are in convex position.



Then the two non-edges should be diagonal.

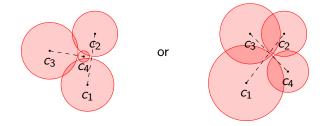
Say the 4 centers encoding a $K_{2,2} = \overline{2K_2}$ are in convex position.



Then the two non-edges should be diagonal.

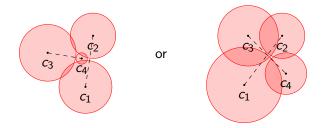
Suppose $d(c_1, c_3) > r_1 + r_3$ and $d(c_2, c_4) > r_2 + r_4$. But $d(c_1, c_3) + d(c_2, c_4) \leq d(c_1, c_2) + d(c_3, c_4) \leq r_1 + r_2 + r_3 + r_4$, a contradiction. Conclusion: the 4 centers of an induced $\overline{2K_2}$ are either

- not in convex position or
- ▶ in convex position with the non-edges being *diagonal*.



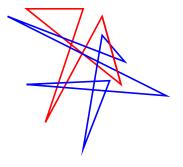
Conclusion: the 4 centers of an induced $\overline{2K_2}$ are either

- not in convex position or
- ▶ in convex position with the non-edges being *diagonal*.

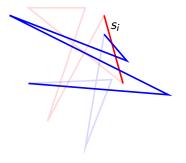


Reformulation: either

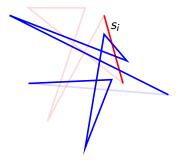
- the line $\ell(c_1, c_2)$ crosses the segment c_3c_4 , or
- the line $\ell(c_3, c_4)$ crosses the segment c_1c_2 , or
- both; equivalently, the segments c_1c_2 and c_3c_4 cross.



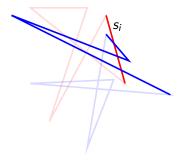
- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .



- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .



- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- ► *c_i* the number of blue segments intersecting *s_i*.



- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .



For each red segment s_i , we denote by:

- a_i the number of blue segments crossed by $\ell(s_i)$.
- b_i the number of blue segments whose extension cross s_i .
- c_i the number of blue segments intersecting s_i .

It should be that $a_i + b_i - c_i = t$.

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even:

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even: number of intersections of a line with a closed curve.

2)
$$\sum_{1 \leq i \leq s} b_i =$$

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even: number of intersections of a line with a closed curve.

- 2) $\sum_{1\leqslant i\leqslant s} b_i = \sum_{1\leqslant i\leqslant t} a_i'$ is therefore even. $(a_j', b_j', c_j'$ same for blue segments)
- 3) $\sum_{1 \leq i \leq s} c_i$ is even:

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even: number of intersections of a line with a closed curve. 2) $\sum_{1 \leq i \leq s} b_i = \sum_{1 \leq i \leq t} a'_i$ is therefore even. (a'_j, b'_j, c'_j) same for blue segments)

3) $\sum_{1 \leq i \leq s} c_i$ is even: number of intersections of two closed curves.

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=$$

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

a_i is even: number of intersections of a line with a closed curve.
∑_{1≤i≤s} b_i = ∑_{1≤i≤t} a'_i is therefore even. (a'_i, b'_i, c'_i same for blue segments)
∑_{1≤i≤s} c_i is even: number of intersections of two closed curves.

$$\sum_{1 \leqslant i \leqslant s} a_i + b_i - c_i = \sum_{1 \leqslant i \leqslant s} a_i + \sum_{1 \leqslant i \leqslant t} a'_i - \sum_{1 \leqslant i \leqslant s} c_i \text{ is even.}$$

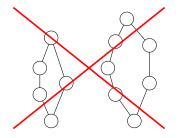
$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

a_i is even: number of intersections of a line with a closed curve.
∑_{1≤i≤s} b_i = ∑_{1≤i≤t} a'_i is therefore even. (a'_i, b'_i, c'_i same for blue segments)
∑_{1≤i≤s} c_i is even: number of intersections of two closed curves.

$$\sum_{1 \leqslant i \leqslant s} a_i + b_i - c_i = \sum_{1 \leqslant i \leqslant s} a_i + \sum_{1 \leqslant i \leqslant t} a'_i - \sum_{1 \leqslant i \leqslant s} c_i \text{ is even.}$$

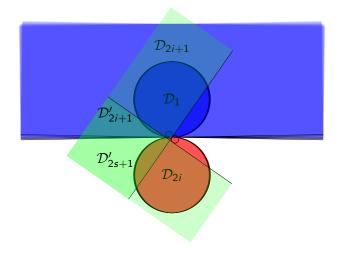
Hence *s* and *t* cannot be both odd.

The complement of two odd cycles is not a disk graph.



Are there other graphs of co-degree 2 which are not disk?

Complement of many even cycles and one odd cycle

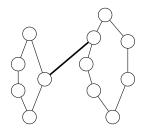


Can we solve MAX INDEPENDENT SET more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

Can we solve MAX INDEPENDENT SET more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

Another way to see it:

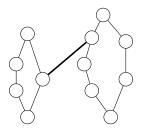
at least one edge between two vertex-disjoint odd cycles



Can we solve MAX INDEPENDENT SET more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

Another way to see it:

at least one edge between two vertex-disjoint odd cycles



We can get a QPTAS and an exact subexponential algorithm in $2^{\tilde{O}(n^{2/3})}$ with win-wins and known results.

EPTAS

VC dim of S = maximum size of a set with all intersections with S. VCdim(G) = VC dimension of the neighborhood set-system. $\alpha(G)$ = size of a maximum independent set in G. iocp(G) = same as ocp but induced.

EPTAS

VC dim of S = maximum size of a set with all intersections with S. VCdim(G) = VC dimension of the neighborhood set-system. $\alpha(G)$ = size of a maximum independent set in G. iocp(G) = same as ocp but induced.

Theorem

MAX INDEPENDENT SET can be $1 + \varepsilon$ -approximated in time $2^{\tilde{O}(1/\varepsilon^3)} n^{O(1)}$ on graphs G with

- VCdim(G) = O(1),
- $\alpha(G) = \Omega(|V(G)|)$, and
- iocp(G) = 1.

Classic result of Haussler and Welzl in VC dimension theory Theorem (ε -nets)

A set-system (S, U) with VC dimension d and only sets of size at least $\varepsilon |U|$ has a hitting set of size $O(\frac{d}{\varepsilon} \log \frac{1}{\varepsilon})$.

Furthermore, any sample of size $\frac{10d}{\varepsilon} \log \frac{1}{\varepsilon}$ is a hitting set w.h.p.

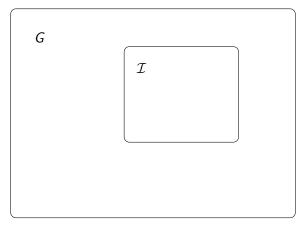
Classic result of Haussler and Welzl in VC dimension theory Theorem (ε -nets)

A set-system (S, U) with VC dimension d and only sets of size at least $\varepsilon |U|$ has a hitting set of size $O(\frac{d}{\varepsilon} \log \frac{1}{\varepsilon})$.

Furthermore, any sample of size $\frac{10d}{\varepsilon} \log \frac{1}{\varepsilon}$ is a hitting set w.h.p.

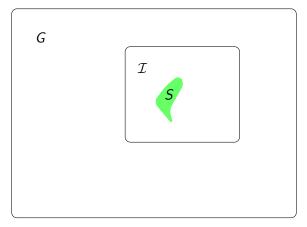
We will apply that result to the set-system $(\{N(u) \cap \mathcal{I} \mid u \in V(G), |N(u) \cap \mathcal{I}| \ge \varepsilon^3 |\mathcal{I}|\}, \mathcal{I}).$ In words, the large neighborhoods over *I*.

 $\mathcal I$ is a fixed maximum independent set. We can assume that $|\mathcal I| = \Theta(n)$.



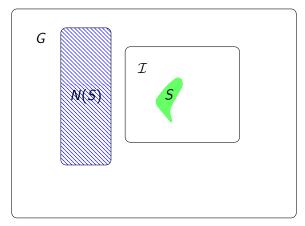
We pick randomly S of $\tilde{O}(1/\varepsilon^3)$ vertices.

 $\mathcal I$ is a fixed maximum independent set. We can assume that $|\mathcal I| = \Theta(n)$.



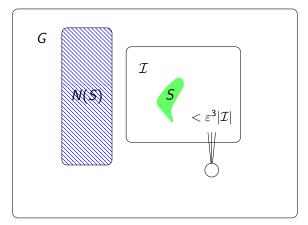
With probability $f(\varepsilon) > 0$, $S \subseteq \mathcal{I}$.

 $\mathcal I$ is a fixed maximum independent set. We can assume that $|\mathcal I| = \Theta(n)$.



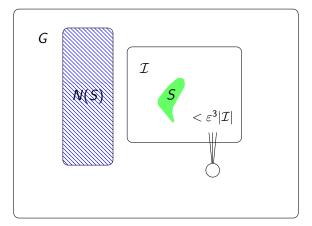
We delete the neighborhood of S.

 \mathcal{I} is a fixed maximum independent set. We can assume that $|\mathcal{I}| = \Theta(n)$.



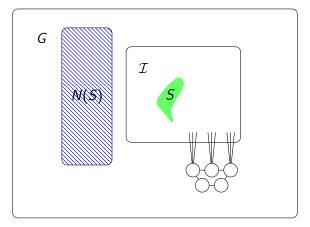
The remaining vertices have few vertices in \mathcal{I} .

 \mathcal{I} is a fixed maximum independent set. We can assume that $|\mathcal{I}| = \Theta(n)$.



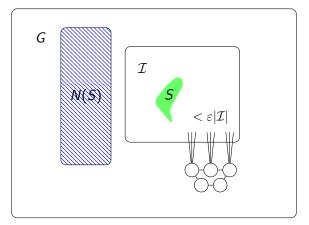
This is due to the theorem of ε -nets.

 $\mathcal I$ is a fixed maximum independent set. We can assume that $|\mathcal I| = \Theta(n)$.



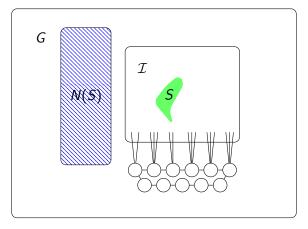
We compute a shortest odd cycle C.

 \mathcal{I} is a fixed maximum independent set. We can assume that $|\mathcal{I}| = \Theta(n)$.

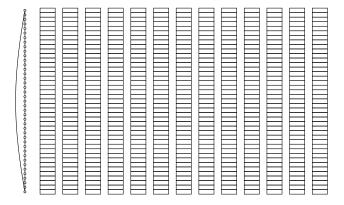


If $|C| \leq 1/\varepsilon^2$, we delete its neighborhood.

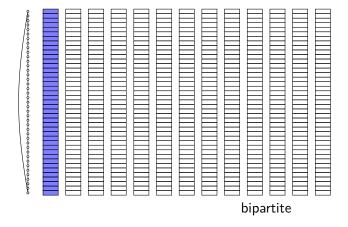
 $\mathcal I$ is a fixed maximum independent set. We can assume that $|\mathcal I| = \Theta(n)$.



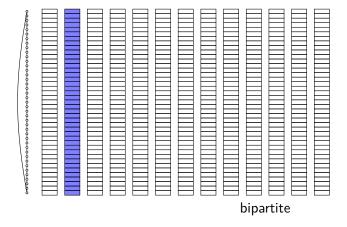
So, we might assume that $|C| > 1/\varepsilon^2$.



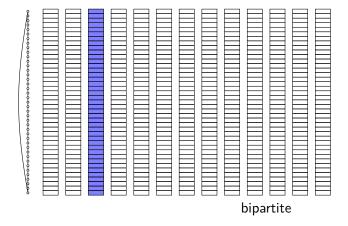
In column, the successive neighborhood of *C*, *layers*. Rows indicate the closest neighbor on *C*, *strata*.



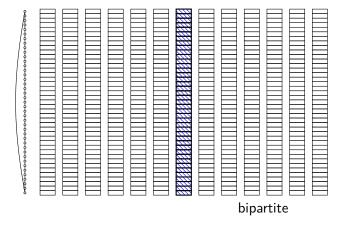
Deleting a j-th neighborhood of C, leaves a bipartite to the right.



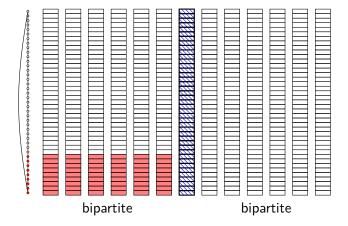
Deleting a j-th neighborhood of C, leaves a bipartite to the right.



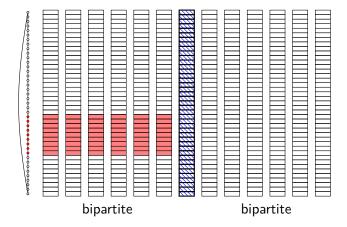
Deleting a j-th neighborhood of C, leaves a bipartite to the right.



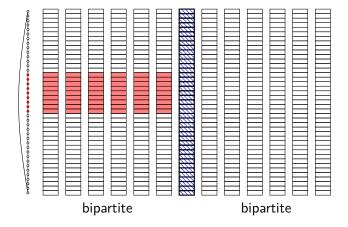
We delete the lightest of the $\approx 1/\varepsilon$ first layers.



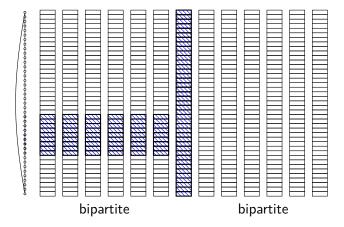
The $\approx 1/\varepsilon$ consecutive layers form an odd cycle transversal.



The $\approx 1/\varepsilon$ consecutive layers form an odd cycle transversal.



The $\approx 1/\varepsilon$ consecutive layers form an odd cycle transversal.



We remove the lightest block of strata.

Filled ellipses and triangles

2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions

Lemma

For some $\alpha > 1$, MAX INDEPENDENT SET on 2-subdivisions is not α -approximable algorithm in $2^{n^{0.99}}$, unless the ETH fails.

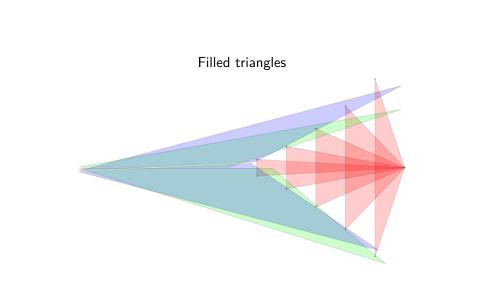
Filled ellipses and triangles

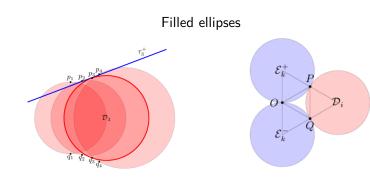
2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions

Lemma

For some $\alpha > 1$, MAX INDEPENDENT SET on 2-subdivisions is not α -approximable algorithm in $2^{n^{0.99}}$, unless the ETH fails.

Graphs of filled ellipses or filled triangles contain all the co-2-subdivisions.





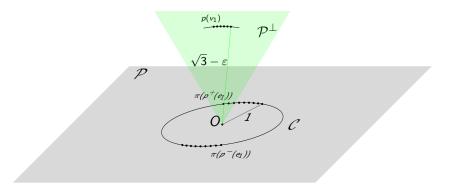
Higher dimensions:

unit 4D-disk graphs

▶ ball (3D-disk) graphs with radii arbitrary close to 1

contain all the co-2-subdivisions

(so, no approximation scheme and no subexponential algorithm)



What about unit ball graph?

Let x_1, \ldots, x_s be the consecutive centers in \mathbb{R}^3 of a co-odd-cycle. Consider the trace on the 2-sphere of the following vector walk.

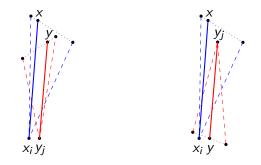
- Start at vector \overrightarrow{ab} with $a = x_1$ and $b = x_2$.
- move continuously a from x₁ to x₃ following the segment x₁x₃.
- move continuously b from x_2 to x_4 following the segment x_2x_4 .
- and so on, until back to $\overrightarrow{x_1x_2}$.

What about unit ball graph?

Let x_1, \ldots, x_s be the consecutive centers in \mathbb{R}^3 of a co-odd-cycle. Consider the trace on the 2-sphere of the following vector walk.

- Start at vector \overrightarrow{ab} with $a = x_1$ and $b = x_2$.
- move continuously a from x_1 to x_3 following the segment x_1x_3 .
- move continuously *b* from x_2 to x_4 following the segment x_2x_4 .
- and so on, until back to $\overrightarrow{x_1x_2}$.

As s is odd, half-way through we reach $\overrightarrow{x_2x_1}$. Hence the curve drawn on the 2-sphere is antipodal. As two antipodal curves intersect, we have one of the following configurations:



Open questions

- ▶ Is MAX CLIQUE NP-hard on disk and unit ball graphs?
- ► A first step might be to show NP-hardness for MAX INDEPENDENT SET with iocp 1.
- Actually what about ocp 1?
- ► What is the complexity of MAX INDEPENDENT SET on the Moebius grid? on quadrangulations of the projective plane?

Open questions

- ▶ Is MAX CLIQUE NP-hard on disk and unit ball graphs?
- ► A first step might be to show NP-hardness for MAX INDEPENDENT SET with iocp 1.
- Actually what about ocp 1?
- ► What is the complexity of MAX INDEPENDENT SET on the Moebius grid? on quadrangulations of the projective plane?

Thank you for your attention!