
Graph decompositions and their algorithms

Édouard Bonnet

ENS Lyon, LIP

May 5th, 2022, Demi-Journée du Pôle Calcul

Trees

make most NP-hard problems easy
Example of Min Weighted Dominating Set

2

3

2

6 3

5 1

3

4

4

2 9

5,⊥, 0

6, 5, 5

3,⊥, 0

1, 3, 1

4, 1, 1

8, 7, 6

Idea: keep 3 lightest dominating sets of each subtree (rooted at u)
one containing u, one not containing u, and one disregarding u

Trees make most NP-hard problems easy
Example of Min Weighted Dominating Set

2

3

2

6 3

5 1

3

4

4

2 9

5,⊥, 0

6, 5, 5

3,⊥, 0

1, 3, 1

4, 1, 1

8, 7, 6

Idea: keep 3 lightest dominating sets of each subtree (rooted at u)
one containing u, one not containing u, and one disregarding u

Trees make most NP-hard problems easy
Example of Min Weighted Dominating Set

2

3

2

6 3

5 1

3

4

4

2 9

5,⊥, 0

6, 5, 5

3,⊥, 0

1, 3, 1

4, 1, 1

8, 7, 6

Idea: keep 3 lightest dominating sets of each subtree (rooted at u)
one containing u, one not containing u, and one disregarding u

Trees make most NP-hard problems easy
Example of Min Weighted Dominating Set

2

3

2

6 3

5 1

3

4

4

2 9

5,⊥, 0

6, 5, 5

3,⊥, 0

1, 3, 1

4, 1, 1

8, 7, 6

Idea: keep 3 lightest dominating sets of each subtree (rooted at u)
one containing u, one not containing u, and one disregarding u

Trees make most NP-hard problems easy
Example of Min Weighted Dominating Set

2

3

2

6 3

5 1

3

4

4

2 9

5,⊥, 0

6, 5, 5

3,⊥, 0

1, 3, 1

4, 1, 1

8, 7, 6

Idea: keep 3 lightest dominating sets of each subtree (rooted at u)
one containing u, one not containing u, and one disregarding u

Trees make most NP-hard problems easy
Example of Min Weighted Dominating Set

2

3

2

6 3

5 1

3

4

4

2 9

5,⊥, 0

6, 5, 5

3,⊥, 0

1, 3, 1

4, 1, 1

8, 7, 6

Idea: keep 3 lightest dominating sets of each subtree (rooted at u)
one containing u, one not containing u, and one disregarding u

Trees make most NP-hard problems easy
Example of Min Weighted Dominating Set

2

3

2

6 3

5 1

3

4

4

2 9

5,⊥, 0

6, 5, 5

3,⊥, 0

1, 3, 1

4, 1, 1

8, 7, 6

Idea: keep 3 lightest dominating sets of each subtree (rooted at u)
one containing u, one not containing u, and one disregarding u

Trees make most NP-hard problems easy
Example of Min Weighted Dominating Set

2

3

2

6 3

5 1

3

4

4

2 9

5,⊥, 0

6, 5, 5

3,⊥, 0

1, 3, 1

4, 1, 1

8, 7, 6

Idea: keep 3 lightest dominating sets of each subtree (rooted at u)
one containing u, one not containing u, and one disregarding u

Tree decomposition

: solving Max Independent Set
Cover by bags mapping to a tree s.t. each vertex lies in a subtree

, 0 , 1 , 1 , 1 , 1, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3,4 ,5 ,5 ,4 ,5 ,6 ,4

Tree decomposition

: solving Max Independent Set

Cover by bags mapping to a tree s.t. each vertex lies in a subtree

, 0 , 1 , 1 , 1 , 1, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3,4 ,5 ,5 ,4 ,5 ,6 ,4

Tree decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

, 0 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3,4 ,5 ,5 ,4 ,5 ,6 ,4

Tree decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

, 0 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 2

, 1 , 2 , 2 , 2 , 3,4 ,5 ,5 ,4 ,5 ,6 ,4

Tree decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

, 0 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 2

, 1 , 2 , 2 , 2 , 3,4 ,5 ,5 ,4 ,5 ,6 ,4

Tree decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

, 0 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 2

, 1 , 2 , 2 , 2 , 3,4 ,5 ,5 ,4 ,5 ,6 ,4

Tree decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

, 0 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 2

, 1 , 2 , 2 , 2 , 3,4 ,5 ,5 ,4 ,5 ,6 ,4

Tree decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

, 0 , 1 , 1 , 1 , 1, 1 , 1 , 1 , 2

, 1 , 2 , 2 , 2 , 3

,4 ,5 ,5 ,4 ,5 ,6 ,4

Tree decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

, 0 , 1 , 1 , 1 , 1, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3

,4 ,5 ,5 ,4 ,5 ,6 ,4

Tree decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

, 0 , 1 , 1 , 1 , 1, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3

,4 ,5 ,5 ,4 ,5 ,6 ,4

Tree decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

, 0 , 1 , 1 , 1 , 1, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3

,4 ,5 ,5 ,4 ,5 ,6 ,4

Tree decomposition: solving Max Independent Set
For each trace in each bag, keep a best solution in what is below

, 0 , 1 , 1 , 1 , 1, 1 , 1 , 1 , 2, 1 , 2 , 2 , 2 , 3

,4 ,5 ,5 ,4 ,5 ,6 ,4

Treewidth

Minimum largest bag size over all tree decompositions minus 1

I rediscovered several times in the 70’s and 80’s...
I made central by Graph Minors and algorithmic graph theory
I previous slide: 2O(tw)n time with n bags

Computing a tree decomposition? NP-hard but various algorithms

width 2tw + 1 in 2O(tw)n
width 5tw + 4 in 26.76twn log n

width tw in 2O(tw3)n

width tw in 1.74n

width tw
√

log tw in nO(1)

Treewidth

Minimum largest bag size over all tree decompositions minus 1

I rediscovered several times in the 70’s and 80’s...
I made central by Graph Minors and algorithmic graph theory
I previous slide: 2O(tw)n time with n bags

Computing a tree decomposition?

NP-hard but various algorithms

width 2tw + 1 in 2O(tw)n
width 5tw + 4 in 26.76twn log n

width tw in 2O(tw3)n

width tw in 1.74n

width tw
√

log tw in nO(1)

Treewidth

Minimum largest bag size over all tree decompositions minus 1

I rediscovered several times in the 70’s and 80’s...
I made central by Graph Minors and algorithmic graph theory
I previous slide: 2O(tw)n time with n bags

Computing a tree decomposition? NP-hard but various algorithms

width 2tw + 1 in 2O(tw)n
width 5tw + 4 in 26.76twn log n

width tw in 2O(tw3)n

width tw in 1.74n

width tw
√

log tw in nO(1)

2O(
√

n) time algorithms on planar graphs via Lipton-Tarjan

Planar graphs have treewidth O(
√

n)

T (n) 6 2O(
√

n)T (2n/3) 6 . . . 6 2
O(
√

n)
∑

i

√
2/3

i

= 2O(
√

n)

2O(
√

n) time algorithms on planar graphs via Lipton-Tarjan

Equivalently O(
√

n) balanced separators, i.e., sides of size 6 2n/3

T (n) 6 2O(
√

n)T (2n/3) 6 . . . 6 2
O(
√

n)
∑

i

√
2/3

i

= 2O(
√

n)

2O(
√

n) time algorithms on planar graphs via Lipton-Tarjan

Max Independent Set, 3-Coloring, Hamiltonian Path...

T (n) 6 2O(
√

n)T (2n/3) 6 . . . 6 2
O(
√

n)
∑

i

√
2/3

i

= 2O(
√

n)

2O(
√

n) time algorithms on planar graphs via Lipton-Tarjan

Max Independent Set, 3-Coloring, Hamiltonian Path...

T (n) 6 2O(
√

n)T (2n/3) 6 . . . 6 2
O(
√

n)
∑

i

√
2/3

i

= 2O(
√

n)

2O(
√

n) time algorithms on planar graphs via Lipton-Tarjan

Max Independent Set, 3-Coloring, Hamiltonian Path...

T (n) 6 2O(
√

n)T (2n/3) 6 . . . 6 2
O(
√

n)
∑

i

√
2/3

i

= 2O(
√

n)

2O(
√

n) time algorithms on planar graphs via Lipton-Tarjan

Max Independent Set, 3-Coloring, Hamiltonian Path...

T (n) 6 2O(
√

n)T (2n/3) 6 . . . 6 2
O(
√

n)
∑

i

√
2/3

i

= 2O(
√

n)

2O(
√

n) time algorithms on planar graphs via Lipton-Tarjan

Max Independent Set, 3-Coloring, Hamiltonian Path...

Even polyspace!

2O(
√

n) time algorithms on planar graphs via Lipton-Tarjan

Max Independent Set, 3-Coloring, Hamiltonian Path...

solve the extension List 3-Coloring

2O(
√

n) time algorithms on planar graphs via Lipton-Tarjan

Max Independent Set, 3-Coloring, Hamiltonian Path...

solve the extension List 3-Coloring

2O(
√

n) time algorithms on planar graphs via Lipton-Tarjan

Max Independent Set, 3-Coloring, Hamiltonian Path...

solve the extension List 3-Coloring

Decomposition of dense graphs?
Graphs with small treewidth have linearly many edges

What about simple dense graphs?

clique
biclique

I cliquewidth defined in the 90’s
I allows faster algorithms but hard to compute itself
I rankwidth [Oum, Seymour ’05] “equivalent” and approximable

We will see another equivalent definition via contraction sequences

Decomposition of dense graphs?
Graphs with small treewidth have linearly many edges

What about simple dense graphs?

clique
biclique

I cliquewidth defined in the 90’s
I allows faster algorithms but hard to compute itself
I rankwidth [Oum, Seymour ’05] “equivalent” and approximable

We will see another equivalent definition via contraction sequences

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

A single vertex is a cograph,

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

as well as the union of two cographs,

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

and the complete join of two cographs.

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

Many NP-hard problems are polytime solvable on cographs
+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

For instance the independence number α(G) is polytime

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a disjoint union: combine the solutions
+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a complete join: pick the larger one
+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a complete join: pick the larger one

max

max +

1 + 1 max

1 1 1 1

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Is there another algorithmic scheme based on this definition?

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Is there another algorithmic scheme based on this definition?

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

We store in each vertex its inner max independent set

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5

→ 7
1

1

4

3
→ 7 4

1

1
. . .

We can find a pair of false/true twins

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3

→ 7 4
1

1
. . .

Sum them if they are false twins

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Max them if they are true twins

Trigraphs

a

b

c

d

e

f

g

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge

Red graph: trigraph minus its black edges

Trigraphs

a

b

c

d

e

f

g

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge

Red graph: trigraph minus its black edges

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing

Contraction sequence

a

b

c

d

e

f

g

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

b

c

gef

a dad

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

c

g

ad

b efbef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

c

adg

bef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

adg

bcef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Contraction sequence

a

b

c

d

e

f

g

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

partition viewpoint: Gi ! (G ,Pi), vertex ! part
G〈S〉 = G [

⋃
vertices of G contracted into a vertex of S]

Reduced parameters

A graph class has bounded reduced X if all its members admit a
contraction sequence whose red graphs have bounded X

red graphs have bounded ... characterize bounded ...

degree twin-width
component size cliquewidth (sparse: treewidth)
number of edges∗ linear cliquewidth (sparse: pathwidth)
outdegree (oriented) twin-width
degree + treewidth ?
cutwidth ?
bandwidth ?

Reduced parameters

A graph class has bounded reduced X if all its members admit a
contraction sequence whose red graphs have bounded X

red graphs have bounded ... characterize bounded ...

degree twin-width
component size cliquewidth (sparse: treewidth)
number of edges∗ linear cliquewidth (sparse: pathwidth)
outdegree (oriented) twin-width
degree + treewidth ?
cutwidth ?
bandwidth ?

Different conditions imposed in the sequence of red graphs

bd degree: defines bd twin-width
bd outdegree: defines bd oriented twin-width

bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 61 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Bd boolean-width: binary tree layout s.t. every edge cut in the tree
induces a bipartition with bd # distinct neighborhoods

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 61 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

There is a subtree on ` ∈ [d + 1, 2d] leaves, where d bounds the
number of single-vertex neighborhoods in a bipartition

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Two vertices have the same neighborhood outside of this subtree

a

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Contracting them preserves the upper bound at 2d
on the size of red connected components

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.

Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded total twin-width iff it has bounded linear
boolean-width/cliquewidth/rank-width.

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.
Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded total twin-width iff it has bounded linear
boolean-width/cliquewidth/rank-width.

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.
Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded total twin-width iff it has bounded linear
boolean-width/cliquewidth/rank-width.

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are incompatible

Is it easier to design algorithms via this characterization?
Solve 3-Coloring on a graph G with a contraction sequence s.t.

all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

Initialization: time 3n
Update: time 7d d2

Total: time 7d d2n
End: still a profile on the single vertex containing the whole graph?

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔ k-Dominating Set

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔ k-Independent Set

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔ 3-Coloring

Courcelle’s theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
graphs G of treewidth at most t.

Instead of maintaining all the possible profiles of 3-colorings,
mantain all the sentences of quantifier depth 6 q satisfied by
a red component!

Courcelle’s theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
graphs G of treewidth at most t.

Instead of maintaining all the possible profiles of 3-colorings,
mantain all the sentences of quantifier depth 6 q satisfied by
a red component!

Rank-k m-types
Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of ∃xL[k].”

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.

Rank-k m-types
Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of ∃xL[k].”

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.

Rank-k m-types
Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of ∃xL[k].”

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.

FO Ehrenfeucht-Fraissé game

A B

b1a1

a2

b2

a3

b2

a3

2-player game on two σ-structures A,B (for us, colored graphs)

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1

a1

a2

b2

a3

b2

a3

At each round, Spoiler picks a structure (B) and a vertex therein

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

Duplicator answers with a vertex in the other structure

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

After q rounds, Duplicator wishes that ai 7→ bi is an isomorphism
between A[a1, . . . , ak] and B[b1, . . . , bk]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

After q rounds, Duplicator wishes that ai 7→ bi is an isomorphism
between A[a1, . . . , ak] and B[b1, . . . , bk]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

When no longer possible, Spoiler wins

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

When no longer possible, Spoiler wins

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

If Duplicator can survive k rounds, we write A ≡FO
k B

Here A ≡FO
2 B and A 6≡FO

3 B

MSO Ehrenfeucht-Fraissé game

A B

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

A B

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

A B

To which Duplicator answers a set in the other structure

MSO Ehrenfeucht-Fraissé game

A B

Again we write A ≡MSO
k B if Duplicator can survive k rounds

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

For each v ∈ V (G), tpk(G ,Pn, {v}) = type of K1
tpk(G ,P1, {V (G)}) = type of G

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

For each v ∈ V (G), tpk(G ,Pn, {v}) = type of K1
tpk(G ,P1, {V (G)}) = type of G

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

τ = tpMSO
k (G ,Pi ,C) based on the τj = tpMSO

k (G ,Pi+1,Cj)?

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

B

X Y
C1, τ1

C2, τ2

C3, τ3

C arises from C1, . . . ,Cd ′ : τ = F (τ1, . . . , τd ′ ,B,X ,Y)

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Duplicator combines her strategies in the red components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

If Spoiler plays a vertex in the component of type τ1,

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Duplicator answers the corresponding winning move

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4

b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

If Spoiler plays a set, Duplicator looks at the intersection with C1,

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

If Spoiler plays a set, Duplicator looks at the intersection with C1,

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

calls her winning strategy in C ′1

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

same for the other components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

same for the other components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

same for the other components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and plays the union

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Turning it into a uniform algorithm

Reminder:
I #non-equivalent partitioned sentences of rank k: f (d , k)
I #rank-k partitioned types bounded by g(d , k) = 2f (d ,k)

For each newly observed type τ ,
I keep a representative (H,P)τ on at most (d + 1)g(d ,k) vertices
I determine the 0, 1-vector of satisfied sentences on (H,P)τ
I record the value of F (τ1, . . . , τd ′ ,B,X ,Y) for future uses

To decide G |= ϕ, look at position ϕ in the 0, 1-vector of tpMSO
k (G)

Turning it into a uniform algorithm

Reminder:
I #non-equivalent partitioned sentences of rank k: f (d , k)
I #rank-k partitioned types bounded by g(d , k) = 2f (d ,k)

For each newly observed type τ ,
I keep a representative (H,P)τ on at most (d + 1)g(d ,k) vertices
I determine the 0, 1-vector of satisfied sentences on (H,P)τ
I record the value of F (τ1, . . . , τd ′ ,B,X ,Y) for future uses

To decide G |= ϕ, look at position ϕ in the 0, 1-vector of tpMSO
k (G)

Twin-width is more general than the classic widths

4-sequence for planar grids, but unbounded cliquewidth

Twin-width is more general than the classic widths

4-sequence for planar grids, but unbounded cliquewidth

Twin-width is more general than the classic widths

4-sequence for planar grids, but unbounded cliquewidth

Twin-width is more general than the classic widths

4-sequence for planar grids, but unbounded cliquewidth

Twin-width is more general than the classic widths

4-sequence for planar grids, but unbounded cliquewidth

Twin-width is more general than the classic widths

4-sequence for planar grids, but unbounded cliquewidth

Twin-width is more general than the classic widths

4-sequence for planar grids, but unbounded cliquewidth

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add a red full binary tree whose leaves are the vertex set

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add a red full binary tree whose leaves are the vertex set

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Take any subdivided edge

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shorten it to the length of the path in the red tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zip the subdivided edge in the tree

(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move to the next subdivided edge also of unbounded cliquewidth

Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both

k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both

FO model checking on graphs of bounded twin-width

The previous algorithm generalizes to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Add Gaifman’s locality of FO to our MSO model checking
algorithm

Thank you for your attention!

FO model checking on graphs of bounded twin-width

The previous algorithm generalizes to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Add Gaifman’s locality of FO to our MSO model checking
algorithm

Thank you for your attention!

FO model checking on graphs of bounded twin-width

The previous algorithm generalizes to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Add Gaifman’s locality of FO to our MSO model checking
algorithm

Thank you for your attention!

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...

P2 is at distance at most 2k−2 from {P1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P2 is at distance at most 2k−2 from {P1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P2 is at distance at most 2k−2 from {P1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P3 is at distance at most 2k−3 from {P1,P2} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P3 is at distance at most 2k−3 from {P1,P2} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P4 is at distance at most 2k−4 from {P1,P2,P3} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P4 is at distance at most 2k−4 from {P1,P2,P3} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
Pq is at distance at most 2k−q from {P1, ...,Pq−1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
Pq is at distance at most 2k−q from {P1, ...,Pq−1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
Pq is at distance at most 2k−q from {P1, ...,Pq−1} in (G ,Pi)

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G ,Pi) if of the
form Qx1 ∈ X Qx2 ∈ P2 . . . Qxk ∈ Pk ψ(x1, . . . , xk) with
I ψ is quantifier-free, and
I (X ,P2, . . . ,Pk) local around X in (G ,Pi).

And the corresponding types:

ltpFO
k (G ,Pi ,X) = {ϕ : qr(ϕ) 6 k,

ϕ is partitioned local around X in (G ,Pi),

(G ,Pi) |= ϕ}.

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G ,Pi) if of the
form Qx1 ∈ X Qx2 ∈ P2 . . . Qxk ∈ Pk ψ(x1, . . . , xk) with
I ψ is quantifier-free, and
I (X ,P2, . . . ,Pk) local around X in (G ,Pi).

And the corresponding types:

ltpFO
k (G ,Pi ,X) = {ϕ : qr(ϕ) 6 k,

ϕ is partitioned local around X in (G ,Pi),

(G ,Pi) |= ϕ}.

Partitioned local sentences/types in (G ,Pn) and (G ,P1)

Initialization of the dynamic programming

In (G ,Pn = {{v} : v ∈ V (G)}): for every v ∈ V (G),
Qx1 ∈ {v} Qx2 ∈ {v} . . . Qxk ∈ {v} ψ ≡ ψ(v , v , . . . , v)

Partitioned local types are easy to compute in (G ,Pn)

Output of the dynamic programming

In (G ,P1 = {V (G)}):
Qx1 ∈ V (G) Qx2 ∈ V (G) . . . Qxk ∈ V (G) ψ ≡ classic sentences

The partitioned local type in (G ,P1) coincides with the type of G

Partitioned local sentences/types in (G ,Pn) and (G ,P1)

Initialization of the dynamic programming

In (G ,Pn = {{v} : v ∈ V (G)}): for every v ∈ V (G),
Qx1 ∈ {v} Qx2 ∈ {v} . . . Qxk ∈ {v} ψ ≡ ψ(v , v , . . . , v)

Partitioned local types are easy to compute in (G ,Pn)

Output of the dynamic programming

In (G ,P1 = {V (G)}):
Qx1 ∈ V (G) Qx2 ∈ V (G) . . . Qxk ∈ V (G) ψ ≡ classic sentences

The partitioned local type in (G ,P1) coincides with the type of G

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Local strategies win the global game

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1

P2
a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Say, Spoiler plays in P1

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1

P2
a2

P3a3

f (P1)
b1

f (P2)
b2

f (P3)
b3

f

Duplicator answers in f (P1) following the local game around P1

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1

P2
a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Now when Spoiler plays close to P1 or f (P1)

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

If Spoiler plays too far

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator starts a new local game around that new part

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator starts a new local game around that new part

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z

I update only involves parts at distance at most 2k−1 from P
I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z
I update only involves parts at distance at most 2k−1 from P

I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z
I update only involves parts at distance at most 2k−1 from P
I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z
I update only involves parts at distance at most 2k−1 from P
I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

