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Profession of faith in algorithmic graph theory

I General graphs are tough
I Real-life networks are structured
I Let us try to exploit that structure



Cographs
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A single vertex is a cograph,
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Cographs
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as well as the union of two cographs,
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Cographs

•
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+

max{α(G1), α(G2)}

and the complete join of two cographs.
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Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

Many NP-hard problems are polytime solvable on cographs
+

+ ∪

• ∪ • +

• • • •



Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

For instance the independence number α(G) is polytime
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• • • •



Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a disjoint union: combine the solutions
+

+ ∪

• ∪ • +

• • • •



Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a complete join: pick the larger one
+
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• ∪ • +

• • • •



Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a complete join: pick the larger one

max

max +

1 + 1 max

1 1 1 1



Another cograph definition

Every induced subgraph has two twins
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Is there another algorithmic scheme based on this definition?
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We store in each vertex its inner max independent set
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We can find a pair of false/true twins
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Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
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1
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1
1
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1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Max them if they are true twins



Generalizing the second cograph definition: going from
graphs...

a

b

c

d

e

f

g

Two outcomes between a pair of vertices:
edge or non-edge



...to trigraphs

a

b

c

d

e

f

g

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing



Contraction sequence

a

b

c

d

e

f

g

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Contraction sequence
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Contraction sequence
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gef

a dad

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Contraction sequence
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Contraction sequence
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Contraction sequence

a
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d
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f

g

adg

bcef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Contraction sequence

a

b

c

d

e

f

g

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

Maximum red degree = 0
overall maximum red degree = 0
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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overall maximum red degree = 2



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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adg
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Maximum red degree = 1
overall maximum red degree = 2



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

abcdefg

Maximum red degree = 0
overall maximum red degree = 2



Simple operations preserving small twin-width

I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one vertex linked arbitrarily: at most “doubles”
I substitution, lexicographic product: max of the twin-widths



Complementation

a

b

c

d

e

f

g

G

a

b

c

d

e

f

g

G

tww(G) = tww(G)



Complementation
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e
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e

f
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G
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b
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f
ef

G6

a

b

c

d

ge

f
ef

G6

tww(G) = tww(G)



Induced subgraph

a

b

c

d

e

f

g

G

a

b

c

d

e

H

tww(H) 6 tww(G)



Induced subgraph

a

b

c

d

ge

f
ef

a

b

c

d

e

H

Ignore absent vertices



Induced subgraph

b

c

gef

a dad

H

ad

b

c

e

Mimic the contractions otherwise



Induced subgraph

c
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Mimic the contractions otherwise



Induced subgraph

c

adg

bef

H

ad

be

c

Mimic the contractions otherwise



Induced subgraph

adg

bcef

H

ad

bce

Mimic the contractions otherwise



Induced subgraph

abcdefg

H

abcde

Mimic the contractions otherwise



Adding one vertex v (arbitrarily linked)

A B

v

G

Split every part into their part in A and in B until the very end

tww(G + v) 6 2 · tww(G) + 1



Adding one vertex v (arbitrarily linked)

A B

v

G

Split every part into their part in A and in B until the very end
tww(G + v) 6 2 · tww(G) + 1



Substitution and lexicographic product

G = C5



Substitution and lexicographic product

G = C5, H = P4, substitution G [v ← H]



Substitution and lexicographic product

G = C5, H = P4, lexicographic product G [H]



Substitution and lexicographic product

More generally any modular decomposition



Substitution and lexicographic product

More generally any modular decomposition



Substitution and lexicographic product

tww(G [H]) = max(tww(G), tww(H))



Classes with bounded twin-width

I cographs = twin-width 0
I trees
I grids
I . . .



Trees

If possible, contract two twin leaves



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Grids

4-sequence for planar grids



Grids

4-sequence for planar grids



Grids

4-sequence for planar grids



Grids

4-sequence for planar grids



Grids

4-sequence for planar grids



Grids

4-sequence for planar grids



Grids

4-sequence for planar grids



3-dimensional grids

Contains arbitrary large clique minors



3-dimensional grids

Contract the blue edges in any order → 12-sequence



3-dimensional grids

The d-dimensional grid has twin-width 6 4d (even 3d)



2-lifts, expanders with bounded twin-width

split each vertex in 2, replace each edge by 1 of the 2 matchings



2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6
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Iterated 2-lifts of K4 have twin-width at most 6



2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6



2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6



First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph



First example of unbounded twin-width

No pair of near twins



First example of unbounded twin-width

No pair of near twins



Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
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Universal bipartite graph
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Universal bipartite graph
No O(1)-contraction sequence:
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1
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∅
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12
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234
3

34
4



Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2
23
24

234
3

34
4



Planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction



Planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction



Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

Every mixed cell is witnessed by a 2× 2 square



Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

Every mixed cell is witnessed by a 2× 2 square = corner



Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If G admits a t-mixed free adjacency matrix, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would contradict the
structure of C



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would contradict the
structure of C



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would contradict the
structure of C



Unit interval graphs

Intersection graph of unit segments on the real line



Unit interval graphs

1

0

0

order by left endpoints



Unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3



Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Given a hamiltonian path, we would just use this order



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Contracting the 2t subpaths yields a Kt,t-minor, hence a Kt-minor



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Instead we use a specially crafted lex-DFS discovery order



Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?
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The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
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I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?



k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i ] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i ] from all the T [D′, i + 1]?
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Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i ] from all the T [D′, i + 1]?



k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i ] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i ] from all the T [D′, i + 1]?



k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both



k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both



Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔
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Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi )

G |= ϕ? ⇔
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Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?
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ϕ = ∃x1∃x2 · · · ∃xk
∧
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Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔



Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔ 3-Coloring



FO model checking on graphs of bounded twin-width

The previous algorithm generalizes to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.



χ-boundedness

C χ-bounded: ∃f , ∀G ∈ C, χ(G) 6 f (ω(G))

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Every twin-width class is χ-bounded.
More precisely, every graph G of twin-width at most d admits a
proper (d + 2)ω(G)−1-coloring.



d + 2-coloring in the triangle-free case
Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z ] NGi+1 [u, v ]

z has only red incident edges → d + 2-nd color available to v
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d + 2-coloring in the triangle-free case
Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z ] NGi+1 [u, v ]

z incident to at least one black edge → non-edge between u and v



Perhaps contraction sequences are interesting
independently of twin-width?



Different conditions imposed in the sequence of red graphs

bd degree: defines bd twin-width
bd outdegree: defines bd oriented twin-width

bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth



Reduced parameters

A graph class has bounded reduced X if all its members admit a
contraction sequence whose red graphs have bounded X

red graphs have bounded ... characterize bounded ...

degree twin-width
component size cliquewidth
number of edges∗ linear cliquewidth
outdegree (oriented) twin-width
degree + treewidth ?
cutwidth ?
bandwidth ?

?’s = strict hierarchy of classes interpolating between bounded
cliquewidth and bounded twin-width
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Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d
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For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉
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Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible
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Some tuples of the at most d + 1 profiles
corresponding to merging red components are incompatible



Is it easier to design algorithms via this characterization?
Solve 3-Coloring on a graph G with a contraction sequence s.t.

all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

Initialization: time 3n
Update: time 7d d2

Total: time 7d d2n
End: still a profile on the single vertex containing the whole graph?



Courcelle’s theorems

We can recast and prove:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

which generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
graphs G of treewidth at most t.



Concluding remarks

Contraction sequences give:
I twin-width for which first-order logic is tractable
I a new and unifying perspective on older width parameters

Main open question:
an efficient algorithm to approximate twin-width

Thank you for your attention!
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