
A gentle introduction to twin-width

Édouard Bonnet
based on joint works with Colin Geniet, Eunjung Kim, Amadeus

Reinald, Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP

January 10th, 2023, Computer Science Seminar, Liverpool

Profession of faith in algorithmic graph theory

I General graphs are tough
I Real-life networks are structured
I Let us try to exploit that structure

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

A single vertex is a cograph,

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

as well as the union of two cographs,

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

and the complete join of two cographs.

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

Many NP-hard problems are polytime solvable on cographs
+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

For instance the independence number α(G) is polytime

+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a disjoint union: combine the solutions
+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a complete join: pick the larger one
+

+ ∪

• ∪ • +

• • • •

Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a complete join: pick the larger one

max

max +

1 + 1 max

1 1 1 1

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Is there another algorithmic scheme based on this definition?

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Is there another algorithmic scheme based on this definition?

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

We store in each vertex its inner max independent set

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5

→ 7
1

1

4

3
→ 7 4

1

1
. . .

We can find a pair of false/true twins

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3

→ 7 4
1

1
. . .

Sum them if they are false twins

Another cograph definition

Every induced subgraph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Max them if they are true twins

Generalizing the second cograph definition: going from
graphs...

a

b

c

d

e

f

g

Two outcomes between a pair of vertices:
edge or non-edge

...to trigraphs

a

b

c

d

e

f

g

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing

Contraction sequence

a

b

c

d

e

f

g

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

b

c

gef

a dad

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

c

g

ad

b efbef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

c

adg

bef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

adg

bcef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

Maximum red degree = 0
overall maximum red degree = 0

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

b

c

gef

a dad

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

c

g

ad

b efbef

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

c

adg

bef

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

adg

bcef

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

abcdefg

Maximum red degree = 0
overall maximum red degree = 2

Simple operations preserving small twin-width

I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one vertex linked arbitrarily: at most “doubles”
I substitution, lexicographic product: max of the twin-widths

Complementation

a

b

c

d

e

f

g

G

a

b

c

d

e

f

g

G

tww(G) = tww(G)

Complementation

a

b

c

d

e

f

g

G

a

b

c

d

e

f

g

G

a

b

c

d

ge

f
ef

G6

a

b

c

d

ge

f
ef

G6

tww(G) = tww(G)

Induced subgraph

a

b

c

d

e

f

g

G

a

b

c

d

e

H

tww(H) 6 tww(G)

Induced subgraph

a

b

c

d

ge

f
ef

a

b

c

d

e

H

Ignore absent vertices

Induced subgraph

b

c

gef

a dad

H

ad

b

c

e

Mimic the contractions otherwise

Induced subgraph

c

g

ad

b efbef

H

ad

be

c

Mimic the contractions otherwise

Induced subgraph

c

adg

bef

H

ad

be

c

Mimic the contractions otherwise

Induced subgraph

adg

bcef

H

ad

bce

Mimic the contractions otherwise

Induced subgraph

abcdefg

H

abcde

Mimic the contractions otherwise

Adding one vertex v (arbitrarily linked)

A B

v

G

Split every part into their part in A and in B until the very end

tww(G + v) 6 2 · tww(G) + 1

Adding one vertex v (arbitrarily linked)

A B

v

G

Split every part into their part in A and in B until the very end
tww(G + v) 6 2 · tww(G) + 1

Substitution and lexicographic product

G = C5

Substitution and lexicographic product

G = C5, H = P4, substitution G [v ← H]

Substitution and lexicographic product

G = C5, H = P4, lexicographic product G [H]

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

tww(G [H]) = max(tww(G), tww(H))

Classes with bounded twin-width

I cographs = twin-width 0
I trees
I grids
I . . .

Trees

If possible, contract two twin leaves

Trees

If not, contract a deepest leaf with its parent

Trees

If not, contract a deepest leaf with its parent

Trees

If possible, contract two twin leaves

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

3-dimensional grids

Contains arbitrary large clique minors

3-dimensional grids

Contract the blue edges in any order → 12-sequence

3-dimensional grids

The d-dimensional grid has twin-width 6 4d (even 3d)

2-lifts, expanders with bounded twin-width

split each vertex in 2, replace each edge by 1 of the 2 matchings

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

No pair of near twins

First example of unbounded twin-width

No pair of near twins

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

∅
1

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

12

2

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

13

3

1
12
13
14

123
124
134

1234

2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

14

4

1
12
13
14

123
124
134

1234

2

23
24

234

3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

123

23

1
12
13
14

123
124
134

1234

2

23
24

234

3

34

4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

124

24

1
12
13
14

123
124
134

1234

2
23

24
234

3

34

4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

134

34

1
12
13
14

123
124
134

1234

2
23
24

234

3

34

4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1234

234

1
12
13
14

123
124
134

1234

2
23
24

234

3
34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2
23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2
23
24

234
3

34
4

Planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction

Planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction

Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

Every mixed cell is witnessed by a 2× 2 square

Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

Every mixed cell is witnessed by a 2× 2 square = corner

Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If G admits a t-mixed free adjacency matrix, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would contradict the
structure of C

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would contradict the
structure of C

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would contradict the
structure of C

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs

1

0

0

order by left endpoints

Unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Given a hamiltonian path, we would just use this order

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Contracting the 2t subpaths yields a Kt,t-minor, hence a Kt-minor

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Instead we use a specially crafted lex-DFS discovery order

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set given a d = O(1)-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both

k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔ k-Dominating Set

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔ k-Independent Set

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔ 3-Coloring

FO model checking on graphs of bounded twin-width

The previous algorithm generalizes to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

χ-boundedness

C χ-bounded: ∃f , ∀G ∈ C, χ(G) 6 f (ω(G))

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Every twin-width class is χ-bounded.
More precisely, every graph G of twin-width at most d admits a
proper (d + 2)ω(G)−1-coloring.

d + 2-coloring in the triangle-free case
Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z] NGi+1 [u, v]

z has only red incident edges → d + 2-nd color available to v

d + 2-coloring in the triangle-free case
Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z] NGi+1 [u, v]

z has only red incident edges → d + 2-nd color available to v

d + 2-coloring in the triangle-free case
Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z] NGi+1 [u, v]

z incident to at least one black edge → non-edge between u and v

Perhaps contraction sequences are interesting
independently of twin-width?

Different conditions imposed in the sequence of red graphs

bd degree: defines bd twin-width
bd outdegree: defines bd oriented twin-width

bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth

Reduced parameters

A graph class has bounded reduced X if all its members admit a
contraction sequence whose red graphs have bounded X

red graphs have bounded ... characterize bounded ...

degree twin-width
component size cliquewidth
number of edges∗ linear cliquewidth
outdegree (oriented) twin-width
degree + treewidth ?
cutwidth ?
bandwidth ?

?’s = strict hierarchy of classes interpolating between bounded
cliquewidth and bounded twin-width

Reduced parameters

A graph class has bounded reduced X if all its members admit a
contraction sequence whose red graphs have bounded X

red graphs have bounded ... characterize bounded ...

degree twin-width
component size cliquewidth
number of edges∗ linear cliquewidth
outdegree (oriented) twin-width
degree + treewidth ?
cutwidth ?
bandwidth ?

?’s = strict hierarchy of classes interpolating between bounded
cliquewidth and bounded twin-width

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible

Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are incompatible

Is it easier to design algorithms via this characterization?
Solve 3-Coloring on a graph G with a contraction sequence s.t.

all red graphs have components of size at most d

C1

C2

C3

1

2

2,3

2

2,3

1,3

3

1

1,2

3

all

2

2

2,3

1,3

1

3

3

1,2

all

2

all

C

Initialization: time 3n
Update: time 7d d2

Total: time 7d d2n
End: still a profile on the single vertex containing the whole graph?

Courcelle’s theorems

We can recast and prove:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

which generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
graphs G of treewidth at most t.

Concluding remarks

Contraction sequences give:
I twin-width for which first-order logic is tractable
I a new and unifying perspective on older width parameters

Main open question:
an efficient algorithm to approximate twin-width

Thank you for your attention!

Concluding remarks

Contraction sequences give:
I twin-width for which first-order logic is tractable
I a new and unifying perspective on older width parameters

Main open question:
an efficient algorithm to approximate twin-width

Thank you for your attention!

Concluding remarks

Contraction sequences give:
I twin-width for which first-order logic is tractable
I a new and unifying perspective on older width parameters

Main open question:
an efficient algorithm to approximate twin-width

Thank you for your attention!

