A gentle introduction to twin-width

Édouard Bonnet based on joint works with Colin Geniet, Eunjung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP

January 10th, 2023, Computer Science Seminar, Liverpool

Profession of faith in algorithmic graph theory

- General graphs are tough
- Real-life networks are structured
- Let us try to exploit that structure

A single vertex is a cograph,

as well as the union of two cographs,

and the complete join of two cographs.

Many NP-hard problems are polytime solvable on cographs

For instance the independence number $\alpha(G)$ is polytime

In case of a disjoint union: combine the solutions

In case of a complete join: pick the larger one

Every induced subgraph has two twins

Every induced subgraph has two twins

Is there another algorithmic scheme based on this definition?

Every induced subgraph has two twins

We store in each vertex its inner max independent set

Every induced subgraph has two twins

We can find a pair of false/true twins

Every induced subgraph has two twins

Sum them if they are false twins

Every induced subgraph has two twins

Max them if they are true twins

Generalizing the second cograph definition: going from graphs...

Two outcomes between a pair of vertices: edge or non-edge

...to trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} \mbox{Maximum red degree} = 0 \\ \mbox{overall maximum red degree} = 0 \end{array}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \end{array}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \end{array}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

$\label{eq:maximum red degree} \begin{array}{l} Maximum \ red \ degree = 0 \\ \textbf{overall maximum red degree} = 2 \end{array}$

Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"
- substitution, lexicographic product: max of the twin-widths
Complementation

 $\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)$

Complementation

 $\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)$

Η

 $\mathsf{tww}(H) \leq \mathsf{tww}(G)$

Н

Ignore absent vertices

Adding one vertex v (arbitrarily linked)

Split every part into their part in A and in B until the very end

Adding one vertex v (arbitrarily linked)

Split every part into their part in A and in B until the very end $\mathrm{tww}(G+v)\leqslant 2\cdot\mathrm{tww}(G)+1$

 $G = C_5$, $H = P_4$, substitution $G[v \leftarrow H]$

 $G = C_5$, $H = P_4$, lexicographic product G[H]

More generally any modular decomposition

More generally any modular decomposition

 $\mathsf{tww}(G[H]) = \mathsf{max}(\mathsf{tww}(G), \mathsf{tww}(H))$

Classes with bounded twin-width

- trees
- ► grids
- ▶ ...

If possible, contract two twin leaves

If not, contract a deepest leaf with its parent

If not, contract a deepest leaf with its parent

If possible, contract two twin leaves

4-sequence for planar grids
3-dimensional grids

Contains arbitrary large clique minors

3-dimensional grids

Contract the blue edges in any order ightarrow 12-sequence

3-dimensional grids

The *d*-dimensional grid has twin-width $\leq 4d$ (even 3d)

split each vertex in 2, replace each edge by 1 of the 2 matchings

Iterated 2-lifts of K_4 have twin-width at most 6

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

No pair of near twins

First example of unbounded twin-width

No pair of near twins

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

Planar graphs?

Planar graphs?

For every d, a planar trigraph without planar d-contraction

Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

Every mixed cell is witnessed by a 2×2 square = corner

Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

A matrix is said t-mixed free if it does not have a t-mixed minor

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If G admits **a** t-mixed free adjacency matrix, then $tww(G) = 2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$. Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Now to bound the twin-width of a class C:

1) Find a *good* vertex-ordering procedure

2) Argue that, in this order, a $\mathit{t}\text{-mixed}$ minor would contradict the structure of $\mathcal C$

Intersection graph of unit segments on the real line

Unit interval graphs

order by left endpoints
Unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors

Formed by **vertex deletion**, **edge deletion**, and **edge contraction** A graph *G* is *H*-minor free if *H* is not a minor of *G* A graph class is *H*-minor free if all its graphs are

Graph minors

Formed by **vertex deletion**, **edge deletion**, and **edge contraction** A graph *G* is *H*-minor free if *H* is not a minor of *G* A graph class is *H*-minor free if all its graphs are

Planar graphs are exactly the graphs without K_5 or $K_{3,3}$ as a minor

Bounded twin-width – K_t -minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width – K_t -minor free graphs

Contracting the 2t subpaths yields a $K_{t,t}$ -minor, hence a K_t -minor

Bounded twin-width – K_t -minor free graphs

Instead we use a specially crafted lex-DFS discovery order

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

k-INDEPENDENT SET given a d = O(1)-sequence

d-sequence:
$$G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$$

Algorithm: For every connected subset D of size at most k of the red graph of every G_i , store in T[D, i] one largest independent set in $G\langle D \rangle$ intersecting every vertex of D.

k-INDEPENDENT SET given a d = O(1)-sequence

d-sequence:
$$G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$$

Algorithm: For every connected subset D of size at most k of the red graph of every G_i , store in T[D, i] one largest independent set in $G\langle D \rangle$ intersecting every vertex of D.

Initialization: $T[\{v\}, n] = \{v\}$ End: $T[\{V(G)\}, 1] = IS$ of size at least k or largest IS in GRunning time: $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$ updates *k*-INDEPENDENT SET given a d = O(1)-sequence

d-sequence:
$$G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$$

Algorithm: For every connected subset D of size at most k of the red graph of every G_i , store in T[D, i] one largest independent set in $G\langle D \rangle$ intersecting every vertex of D.

Initialization: $T[\{v\}, n] = \{v\}$ End: $T[\{V(G)\}, 1] = IS$ of size at least k or largest IS in GRunning time: $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$ updates

How to compute T[D, i] from all the T[D', i+1]?

k-INDEPENDENT SET: Update of partial solutions

Best partial solution inhabiting •?

k-INDEPENDENT SET: Update of partial solutions

3 unions of $\leqslant d + 2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi$? \Leftrightarrow *k*-Dominating Set

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi$? \Leftrightarrow k-Independent Set

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists X_1 \exists X_2 \exists X_3 (\forall x \bigvee_{1 \leqslant i \leqslant 3} X_i(x)) \land \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3} (X_i(x) \land X_i(y) \to \neg E(x,y))$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO/MSO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order/monadic second-order sentence $\varphi \in FO/MSO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists X_1 \exists X_2 \exists X_3 (\forall x \bigvee_{1 \leqslant i \leqslant 3} X_i(x)) \land \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3} (X_i(x) \land X_i(y) \to \neg E(x,y))$$

 $G \models \varphi$? \Leftrightarrow 3-Coloring

FO model checking on graphs of bounded twin-width

The previous algorithm generalizes to:

Theorem (B., Kim, Thomassé, Watrigant '20) FO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ on graphs G given with a d-sequence.

χ -boundedness

 \mathcal{C} χ -bounded: $\exists f, \forall G \in \mathcal{C}, \chi(G) \leq f(\omega(G))$

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Every twin-width class is χ -bounded. More precisely, every graph G of twin-width at most d admits a proper $(d+2)^{\omega(G)-1}$ -coloring.

d + 2-coloring in the triangle-free case

Algorithm: Start from $G_1 = K_1$, color its unique vertex 1, and rewind the *d*-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

d + 2-coloring in the triangle-free case

Algorithm: Start from $G_1 = K_1$, color its unique vertex 1, and rewind the *d*-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

z has only red incident edges $\rightarrow d+2$ -nd color available to v

d + 2-coloring in the triangle-free case

Algorithm: Start from $G_1 = K_1$, color its unique vertex 1, and rewind the *d*-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

z incident to at least one black edge ightarrow non-edge between u and v

Perhaps contraction sequences are interesting independently of twin-width?

Different conditions imposed in the sequence of red graphs

bd degree: defines bd twin-width

bd component: redefines bd cliquewidth

bd outdegree: defines bd oriented twin-width

bd #edges: redefines bd linear cliquewidth

Reduced parameters

A graph class has bounded reduced X if all its members admit a contraction sequence whose red graphs have bounded X $% \left(X_{1}^{2}\right) =0$

Reduced parameters

A graph class has bounded reduced X if all its members admit a contraction sequence whose red graphs have bounded X $% \left(X_{1}^{2}\right) =0$

red graphs have bounded	characterize bounded
degree	twin-width
component size	cliquewidth
number of edges*	linear cliquewidth
outdegree	(oriented) twin-width
degree + treewidth	?
cutwidth	?
bandwidth	?

?'s = strict hierarchy of classes interpolating between bounded cliquewidth and bounded twin-width

Solve 3-COLORING on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

Solve 3-COLORING on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

For every red component *C* keep every profile $V(C) \rightarrow 2^{\{1,2,3\}} \setminus \{\emptyset\}$ realizable by a proper 3-coloring of G(C)

Solve 3-COLORING on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

For every red component *C* keep every profile $V(C) \rightarrow 2^{\{1,2,3\}} \setminus \{\emptyset\}$ realizable by a proper 3-coloring of G(C)

Solve 3-COLORING on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

For every red component *C* keep every profile $V(C) \rightarrow 2^{\{1,2,3\}} \setminus \{\emptyset\}$ realizable by a proper 3-coloring of G(C)

Solve 3-COLORING on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

Some tuples of the at most d + 1 profiles corresponding to merging red components are compatible

Solve 3-COLORING on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

Some tuples of the at most d + 1 profiles corresponding to merging red components are compatible

Solve 3-COLORING on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

Some tuples of the at most d + 1 profiles corresponding to merging red components are incompatible
Is it easier to design algorithms via this characterization?

Solve 3-COLORING on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

Initialization: time 3nUpdate: time $7^d d^2$ Total: time $7^d d^2 n$ End: still a profile on the single vertex *containing* the whole graph?

Courcelle's theorems

We can recast and prove:

Theorem (Courcelle, Makowsky, Rotics '00)

MSO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ given a witness that the clique-width/component twin-width of the input G is at most d.

which generalizes

Theorem (Courcelle '90)

MSO model checking can be solved in time $f(|\varphi|, t) \cdot |V(G)|$ on graphs G of treewidth at most t.

Concluding remarks

Contraction sequences give:

- twin-width for which first-order logic is tractable
- > a new and unifying perspective on older width parameters

Concluding remarks

Contraction sequences give:

- twin-width for which first-order logic is tractable
- > a new and unifying perspective on older width parameters

Main open question: an efficient algorithm to approximate twin-width

Concluding remarks

Contraction sequences give:

- twin-width for which first-order logic is tractable
- > a new and unifying perspective on older width parameters

Main open question: an efficient algorithm to approximate twin-width

Thank you for your attention!