# A gentle introduction to twin-width 

Édouard Bonnet<br>based on joint works with Colin Geniet, Eunjung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP
January 10th, 2023, Computer Science Seminar, Liverpool

## Profession of faith in algorithmic graph theory

- General graphs are tough
- Real-life networks are structured
- Let us try to exploit that structure


## Cographs



A single vertex is a cograph,

## Cographs


as well as the union of two cographs,

## Cographs


and the complete join of two cographs.

## Cographs



Many NP-hard problems are polytime solvable on cographs


## Cographs



For instance the independence number $\alpha(G)$ is polytime


## Cographs



In case of a disjoint union: combine the solutions


## Cographs



In case of a complete join: pick the larger one


## Cographs



## Another cograph definition

Every induced subgraph has two twins

## Another cograph definition

Every induced subgraph has two twins


Is there another algorithmic scheme based on this definition?

## Another cograph definition

Every induced subgraph has two twins
(1) (1) (1) (1)
(1) (1) (1) (1)
(1) (1) (1) (1)
(1) (1) (1) (1)

We store in each vertex its inner max independent set

## Another cograph definition

Every induced subgraph has two twins


We can find a pair of false/true twins

## Another cograph definition

Every induced subgraph has two twins


Sum them if they are false twins

## Another cograph definition

Every induced subgraph has two twins


Max them if they are true twins

Generalizing the second cograph definition: going from graphs...


Two outcomes between a pair of vertices: edge or non-edge

## ...to trigraphs



Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

## Contractions in trigraphs



Identification of two non-necessarily adjacent vertices

## Contractions in trigraphs



Identification of two non-necessarily adjacent vertices

## Contractions in trigraphs


edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of $G$ :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of $G$ :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Contraction sequence



A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=0$ overall maximum red degree $=0$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=2$ overall maximum red degree $=2$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=2$ overall maximum red degree $=2$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=2$ overall maximum red degree $=2$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=1$ overall maximum red degree $=2$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=1$ overall maximum red degree $=2$

## Twin-width

$\operatorname{tww}(G)$ : Least integer $d$ such that $G$ admits a contraction sequence where all trigraphs have maximum red degree at most $d$.


Maximum red degree $=0$ overall maximum red degree $=2$

## Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"
- substitution, lexicographic product: max of the twin-widths


## Complementation


$\bar{G}$


G

$$
\operatorname{tww}(\bar{G})=\operatorname{tww}(G)
$$

## Complementation


$\overline{G_{6}}$

$G_{6}$

$$
\operatorname{tww}(\bar{G})=\operatorname{tww}(G)
$$

## Induced subgraph



H


G

$$
\operatorname{tww}(H) \leqslant \operatorname{tww}(G)
$$

## Induced subgraph



Ignore absent vertices

## Induced subgraph



Mimic the contractions otherwise

## Adding one vertex $v$ (arbitrarily linked)



Split every part into their part in $A$ and in $B$ until the very end

## Adding one vertex $v$ (arbitrarily linked)



Split every part into their part in $A$ and in $B$ until the very end $\operatorname{tww}(G+v) \leqslant 2 \cdot \operatorname{tww}(G)+1$

## Substitution and lexicographic product



$$
G=C_{5}
$$

## Substitution and lexicographic product


$G=C_{5}, H=P_{4}, \quad$ substitution $G[v \leftarrow H]$

## Substitution and lexicographic product


$G=C_{5}, H=P_{4}, \quad$ lexicographic product $G[H]$

## Substitution and lexicographic product



More generally any modular decomposition

## Substitution and lexicographic product



More generally any modular decomposition

## Substitution and lexicographic product



## Classes with bounded twin-width

- cographs $=$ twin-width 0
- trees
- grids
- ...


## Trees



If possible, contract two twin leaves

## Trees



If not, contract a deepest leaf with its parent

## Trees



If not, contract a deepest leaf with its parent

## Trees



If possible, contract two twin leaves

## Trees



Cannot create a red degree-3 vertex

Grids


Grids


Grids


Grids


Grids


Grids


## Grids



4-sequence for planar grids

## 3-dimensional grids



Contains arbitrary large clique minors

## 3-dimensional grids



Contract the blue edges in any order $\rightarrow 12$-sequence

## 3-dimensional grids



The $d$-dimensional grid has twin-width $\leqslant 4 d$ (even $3 d$ )

## 2-lifts, expanders with bounded twin-width


split each vertex in 2 , replace each edge by 1 of the 2 matchings

## 2-lifts, expanders with bounded twin-width



Iterated 2-lifts of $K_{4}$ have twin-width at most 6

## 2-lifts, expanders with bounded twin-width



Iterated 2-lifts of $K_{4}$ have twin-width at most 6

## 2-lifts, expanders with bounded twin-width



Iterated 2-lifts of $K_{4}$ have twin-width at most 6

## 2-lifts, expanders with bounded twin-width



Iterated 2-lifts of $K_{4}$ have twin-width at most 6

## 2-lifts, expanders with bounded twin-width



Iterated 2-lifts of $K_{4}$ have twin-width at most 6

## First example of unbounded twin-width



Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width


No pair of near twins

First example of unbounded twin-width


No pair of near twins

## Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


## Universal bipartite graph

No $O(1)$-contraction sequence: twin-width is not an iterated identification of near twins.


Planar graphs?

## Planar graphs?



For every $d$, a planar trigraph without planar $d$-contraction

## Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

## Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hdashline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
10 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Every mixed cell is witnessed by a $2 \times 2$ square $=$ corner

## Mixed minor

Mixed cell: at least two distinct rows and two distinct columns

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A matrix is said $t$-mixed free if it does not have a $t$-mixed minor

## Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $G$ admits a $t$-mixed free adjacency matrix, then $\operatorname{tww}(G)=2^{2^{0(t)}}$.

## Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is $t$-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

## Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is $t$-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Now to bound the twin-width of a class $\mathcal{C}$ :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a $t$-mixed minor would contradict the structure of $\mathcal{C}$

## Unit interval graphs

Intersection graph of unit segments on the real line


## Unit interval graphs


order by left endpoints

## Unit interval graphs



No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

## Graph minors

Formed by vertex deletion, edge deletion, and edge contraction
A graph $G$ is $H$-minor free if $H$ is not a minor of $G$
A graph class is H -minor free if all its graphs are

## Graph minors

Formed by vertex deletion, edge deletion, and edge contraction
A graph $G$ is $H$-minor free if $H$ is not a minor of $G$
A graph class is H -minor free if all its graphs are
Planar graphs are exactly the graphs without $K_{5}$ or $K_{3,3}$ as a minor

$K_{5}$

$K_{3,3}$

## Bounded twin-width $-K_{t}$-minor free graphs



Given a hamiltonian path, we would just use this order

## Bounded twin-width $-K_{t}$-minor free graphs



Contracting the $2 t$ subpaths yields a $K_{t, t}$-minor, hence a $K_{t}$-minor

## Bounded twin-width $-K_{t}$-minor free graphs



Instead we use a specially crafted lex-DFS discovery order

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 \& '21)
The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- $K_{t}$-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- $K_{t}$-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the $n$-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from $K_{4}$,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 \& '21)
The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- $K_{t}$-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- $K_{t}$-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the $n$-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from $K_{4}$,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an $O(1)$-sequence?

## $k$-Independent Set given a $d=O(1)$-sequence

$d$-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: For every connected subset $D$ of size at most $k$ of the red graph of every $G_{i}$, store in $T[D, i]$ one largest independent set in $G\langle D\rangle$ intersecting every vertex of $D$.

## $k$-Independent Set given a $d=O(1)$-sequence

$d$-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: For every connected subset $D$ of size at most $k$ of the red graph of every $G_{i}$, store in $T[D, i]$ one largest independent set in $G\langle D\rangle$ intersecting every vertex of $D$.

Initialization: $T[\{v\}, n]=\{v\}$
End: $T[\{V(G)\}, 1]=$ IS of size at least $k$ or largest IS in $G$
Running time: $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$ updates

## $k$-Independent Set given a $d=O(1)$-sequence

$d$-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: For every connected subset $D$ of size at most $k$ of the red graph of every $G_{i}$, store in $T[D, i]$ one largest independent set in $G\langle D\rangle$ intersecting every vertex of $D$.

Initialization: $T[\{v\}, n]=\{v\}$
End: $T[\{V(G)\}, 1]=$ IS of size at least $k$ or largest IS in $G$
Running time: $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$ updates

How to compute $T[D, i]$ from all the $T\left[D^{\prime}, i+1\right]$ ?
k-Independent Set: Update of partial solutions


Best partial solution inhabiting •?
k-Independent Set: Update of partial solutions


3 unions of $\leqslant d+2$ red connected subgraphs to consider in $G_{i+1}$ with $u$, or $v$, or both

## Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph $G$ and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$ ?

## Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph $G$ and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$ ?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow$

## Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph $G$ and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$ ?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Dominating Set

## Formulas, sentences, and model checking

```
Graph FO/MSO Model Checking Parameter: |\varphi|
Input: A graph G and a first-order/monadic second-order sen-
tence }\varphi\inFO/MSO({E}
Question: G}\models\varphi\mathrm{ ?
```

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow$

## Formulas, sentences, and model checking

```
Graph FO/MSO Model Checking Parameter: |\varphi|
Input: A graph G and a first-order/monadic second-order sen-
tence }\varphi\inFO/MSO({E}
Question: G}\models\varphi\mathrm{ ?
```

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Independent $\operatorname{Set}$

## Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph $G$ and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$ ?

Example:
$\varphi=\exists X_{1} \exists X_{2} \exists X_{3}\left(\forall x \bigvee_{1 \leqslant i \leqslant 3} X_{i}(x)\right) \wedge \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3}\left(X_{i}(x) \wedge X_{i}(y) \rightarrow \neg E(x, y)\right)$
$G \models \varphi ? \Leftrightarrow$

## Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: $|\varphi|$
Input: A graph $G$ and a first-order/monadic second-order sentence $\varphi \in F O / M S O(\{E\})$
Question: $G \models \varphi$ ?

Example:
$\varphi=\exists X_{1} \exists X_{2} \exists X_{3}\left(\forall x \bigvee_{1 \leqslant i \leqslant 3} X_{i}(x)\right) \wedge \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3}\left(X_{i}(x) \wedge X_{i}(y) \rightarrow \neg E(x, y)\right)$
$G \models \varphi$ ? $\Leftrightarrow 3$-Coloring

## FO model checking on graphs of bounded twin-width

The previous algorithm generalizes to:
Theorem (B., Kim, Thomassé, Watrigant '20)
FO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ on graphs $G$ given with a d-sequence.

## $\chi$-boundedness

$\mathcal{C} \chi$-bounded: $\exists f, \forall G \in \mathcal{C}, \chi(G) \leqslant f(\omega(G))$
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Every twin-width class is $\chi$-bounded.
More precisely, every graph $G$ of twin-width at most $d$ admits a proper $(d+2)^{\omega(G)-1}$-coloring.

## $d+2$-coloring in the triangle-free case

Algorithm: Start from $G_{1}=K_{1}$, color its unique vertex 1 , and rewind the $d$-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

## $d+2$-coloring in the triangle-free case

Algorithm: Start from $G_{1}=K_{1}$, color its unique vertex 1 , and rewind the $d$-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

$z$ has only red incident edges $\rightarrow d+2$-nd color available to $v$

## $d+2$-coloring in the triangle-free case

Algorithm: Start from $G_{1}=K_{1}$, color its unique vertex 1 , and rewind the $d$-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

$z$ incident to at least one black edge $\rightarrow$ non-edge between $u$ and $v$

Perhaps contraction sequences are interesting independently of twin-width?

Different conditions imposed in the sequence of red graphs

bd degree: defines bd twin-width

bd component: redefines bd cliquewidth

bd outdegree: defines bd oriented twin-width

bd \#edges: redefines bd linear cliquewidth

## Reduced parameters

A graph class has bounded reduced $X$ if all its members admit a contraction sequence whose red graphs have bounded $X$

## Reduced parameters

A graph class has bounded reduced $X$ if all its members admit a contraction sequence whose red graphs have bounded $X$

| red graphs have bounded $\ldots$ | characterize bounded ... |
| :--- | :--- |
| degree | twin-width |
| component size | cliquewidth |
| number of edges* | linear cliquewidth |
| outdegree | (oriented) twin-width |
| degree + treewidth | $?$ |
| cutwidth | $?$ |
| bandwidth | $?$ |

?'s = strict hierarchy of classes interpolating between bounded cliquewidth and bounded twin-width

## Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph $G$ with a contraction sequence s.t. all red graphs have components of size at most $d$

## Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph $G$ with a contraction sequence s.t. all red graphs have components of size at most $d$


For every red component $C$ keep every profile $V(C) \rightarrow 2^{\{1,2,3\}} \backslash\{\emptyset\}$ realizable by a proper 3-coloring of $G\langle C\rangle$

## Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph $G$ with a contraction sequence s.t. all red graphs have components of size at most $d$


For every red component $C$ keep every profile $V(C) \rightarrow 2^{\{1,2,3\}} \backslash\{\emptyset\}$ realizable by a proper 3-coloring of $G\langle C\rangle$

## Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph $G$ with a contraction sequence s.t. all red graphs have components of size at most $d$


For every red component $C$ keep every profile $V(C) \rightarrow 2^{\{1,2,3\}} \backslash\{\emptyset\}$ realizable by a proper 3-coloring of $G\langle C\rangle$

## Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph $G$ with a contraction sequence s.t. all red graphs have components of size at most $d$


Some tuples of the at most $d+1$ profiles corresponding to merging red components are compatible

## Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph $G$ with a contraction sequence s.t. all red graphs have components of size at most $d$


Some tuples of the at most $d+1$ profiles corresponding to merging red components are compatible

## Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph $G$ with a contraction sequence s.t. all red graphs have components of size at most $d$


Some tuples of the at most $d+1$ profiles corresponding to merging red components are incompatible

## Is it easier to design algorithms via this characterization?

Solve 3-Coloring on a graph $G$ with a contraction sequence s.t. all red graphs have components of size at most $d$


Initialization: time $3 n$
Update: time $7^{d} d^{2}$
Total: time $7^{d} d^{2} n$
End: still a profile on the single vertex containing the whole graph?

## Courcelle's theorems

We can recast and prove:
Theorem (Courcelle, Makowsky, Rotics '00)
MSO model checking can be solved in time $f(|\varphi|, d) \cdot|V(G)|$ given a witness that the clique-width/component twin-width of the input $G$ is at most $d$.
which generalizes
Theorem (Courcelle '90)
MSO model checking can be solved in time $f(|\varphi|, t) \cdot|V(G)|$ on graphs $G$ of treewidth at most $t$.

## Concluding remarks

Contraction sequences give:

- twin-width for which first-order logic is tractable
- a new and unifying perspective on older width parameters


## Concluding remarks

Contraction sequences give:

- twin-width for which first-order logic is tractable
- a new and unifying perspective on older width parameters

Main open question:
an efficient algorithm to approximate twin-width

## Concluding remarks

Contraction sequences give:

- twin-width for which first-order logic is tractable
- a new and unifying perspective on older width parameters

Main open question:
an efficient algorithm to approximate twin-width

Thank you for your attention!

