Maximum Matchings in Geometric Intersection Graphs

Édouard Bonnet ENS Lyon, LIP

Sergio Cabello U. of Ljubljana & IMFM, Slovenia Wolfgang Mulzer FU Berlin, Germany

STACS 2020

Disk intersection graphs

Unit disk intersection graphs

Fat object intersection graphs

Not necessarily pseudo-disks, but constant description complexity

STACS 2020

Maximum matching for geometric intersection graphs

- Build the graph explicitly, run max matching algorithm
 - $O(\sqrt{nm})$ [Micali and Vazirani '80] • $O(n^{\omega})$ [Mucha and Sankowski '04]

Maximum matching for geometric intersection graphs

- Build the graph explicitly, run max matching algorithm
 - $O(\sqrt{nm})$ [Micali and Vazirani '80] • $O(n^{\omega})$ [Mucha and Sankowski '04]
- Use geometry to speed up
 - Use geometric data structures (← previous work)
 - Use the structure of the graph (← our focus)

Previous works

▶ maximum matching bicolored (unit) disk graph in $\tilde{O}(n^{3/2})$ time [Efrat, Itai, Katz '01]

- ▶ improving the Õ(n^{3/2}) for bicolored case would be great; remains open, even for unit squares
- max matching (unit) disk graph nothing specialized known

Our work I - Low density case

- ▶ each point of the plane covered by $\leq \rho$ disks $\Rightarrow O(\rho n)$ edges
- $\rho = O(1)$ particularly relevant

Our work I - Low density case

- each point of the plane covered by $\leq \rho$ disks $\Rightarrow O(\rho n)$ edges
- $\rho = O(1)$ particularly relevant

- maximum matching in $O(\rho^{3\omega/2}n^{\omega/2}) = O(\rho^{3.56}n^{1.19})$
 - improvement when $\rho = O(n^{0.113})$
- bicolored, unicolored; actually any given subgraph
- works for fat shapes or low-density scenarios

Our work II - Sparsification

 for unit disks, maximum matching reduces to the case of bounded depth

Our work II - Sparsification

 for unit disks, maximum matching reduces to the case of bounded depth

- O(n polylog n) time reduction
- using semi-dynamic data structures for nearest neighbors
- only works for unicolored *full* intersection graph
- works for fat shapes of comparable sizes

Our work III - Putting things together

• A maximum matching in unit disk graphs in time $O(n^{\omega/2})$ whp

Our work III - Putting things together

• A maximum matching in unit disk graphs in time $O(n^{\omega/2})$ whp

Same ideas (sparsification + bounded depth case), other data structures

- disks of radius in $[1, \Psi]$ in time $O(\Psi^6 n \operatorname{polylog} n + \Psi^{12\omega} n^{\omega/2})$ whp
- translates of O(1) convex shapes in \mathbb{R}^2 in time $O(n^{\omega/2})$ whp

Low density case – Outline

- ▶ adapt [Mucha, Sankowski '06] for planar graphs in $O(n^{\omega/2})$
- ▶ adapt [Yuster, Zwick '07] for *H*-minor-free $O(n^{3\omega/(\omega+3)})$
- rank of an "incidence" matrix [Lovász '79, Rabin, Vazirani '89]
- Gaussian elimination, nested dissection [Lipton, Rose, Tarjan '79]
- geometric small balanced separators [Har-Peled, Quanrud '17]
- get explicit dependency on ρ .

The algebraic approach to Max Matching (1)

Skew-symmetric matrix or Tutte matrix:

$$\tilde{A}(G)_{i,j} = \begin{cases} x_{i,j} & \text{if } v_i v_j \in E(G) \text{ and } i < j \\ -x_{i,j} & \text{if } v_i v_j \in E(G) \text{ and } i > j \\ 0 & \text{if } v_i v_j \notin E(G) \end{cases}$$

Theorem (Tutte '47)

The determinant of $\tilde{A}(G)$ is non-zero iff G admits a perfect matching.

The algebraic approach to Max Matching (1)

Theorem (Tutte '47)

The determinant of $\tilde{A}(G)$ is non-zero iff G admits a perfect matching.

Theorem (Lovász '79)

The rank of $\tilde{A}(G)$ is twice the size of a maximum matching in G.

A(G) = replace every entry $x_{i,j}$ of $\tilde{A}(G)$ by a random element of \mathbb{Z}_p

By DeMillo-Lipton-Zippel-Schwartz lemma, $det(A(G)) \neq 0 \Leftrightarrow det(\tilde{A}(G)) \neq 0 \text{ wp} \ge 1 - n/p$

 \rightarrow randomized $\mathit{O}(\mathit{n}^\omega)\text{-algorithm}$ to decide a perfect matching

The algebraic approach to Max Matching (2)

Lovász generalizes it to computing the **size** of a max matching in randomized $O(n^{\omega})$.

How actually computing a perfect matching? a maximum matching?

The algebraic approach to Max Matching (2)

Lovász generalizes it to computing the **size** of a max matching in randomized $O(n^{\omega})$.

How actually computing a perfect matching? a maximum matching?

Theorem (Rabin and Vazirani '89)

Reduction of maximum matching to perfect matching in $O(n^{\omega})$, whp

Gaussian elimination without pivoting, remove indices with diagonal 0

The algebraic approach to Max Matching (2)

Lovász generalizes it to computing the **size** of a max matching in randomized $O(n^{\omega})$.

How actually computing a perfect matching?

Theorem (Rabin and Vazirani '89) $A_{i,j}^{-1} \neq 0 \Leftrightarrow G - \{v_i, v_j\}$ has a perfect matching, whp If $v_i v_j \in E(G)$, it is allowed as being extendible to a perfect matching

Theorem (Mucha and Sankowski '04) Find a maximum matching in $O(n^{\omega})$, whp Batching allowed edges and lazy elimination

Small balanced separators

 α -balanced separator: S such that G - S is disconnected and all connected components have size at most $\alpha |V(G)|$

- Algorithmic revolution of the 80's and 90's: approximation, faster exact algorithms
- Tied to treewidth

Small balanced separators

 α -balanced separator: S such that G - S is disconnected and all connected components have size at most $\alpha |V(G)|$

- Algorithmic revolution of the 80's and 90's: approximation, faster exact algorithms
- Tied to treewidth
- example: planar graphs, *H*-minor free graphs, etc.

Small balanced separators

 α -balanced separator: S such that G - S is disconnected and all connected components have size at most $\alpha |V(G)|$

- Algorithmic revolution of the 80's and 90's: approximation, faster exact algorithms
- Tied to treewidth
- example: planar graphs, *H*-minor free graphs, etc.

 (γ, β, α) -separator tree: T_G rooted at an α -balanced separator Z of size $\leq \gamma |V(G)|^{\beta}$, sep. X from Y, with children $T_{G[X]}$ and $T_{G[Y]}$

Nested dissection

Gaussian elimination on a sparse matrix

$$\begin{pmatrix} d_1 & v_1^T \\ v_1 & B_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ v_1/d_1 & I_{n-1} \end{pmatrix} \begin{pmatrix} d_1 & 0 \\ 0 & B_1 - \mathbf{v_1}\mathbf{v_1}^T/d_1 \end{pmatrix} \begin{pmatrix} 1 & v_1^T/d_1 \\ 0 & I_{n-1} \end{pmatrix}$$

Interpreting the matrix as a graph with an edge ij iff $A_{i,j} \neq 0$, the red term brings new non-zero entries called *fill-in*

Nested dissection

Gaussian elimination on a sparse matrix

$$\begin{pmatrix} d_1 & v_1^T \\ v_1 & B_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ v_1/d_1 & I_{n-1} \end{pmatrix} \begin{pmatrix} d_1 & 0 \\ 0 & B_1 - \mathbf{v_1}\mathbf{v_1}^T/d_1 \end{pmatrix} \begin{pmatrix} 1 & v_1^T/d_1 \\ 0 & I_{n-1} \end{pmatrix}$$

Interpreting the matrix as a graph with an edge ij iff $A_{i,j} \neq 0$, the red term brings new non-zero entries called *fill-in*

A post-order traversal of a separator-tree gives a low fill-in

Vertex splits preserve max matchings

Vertex splits preserve max matchings

Vertex splits preserve max matchings

In both cases, the max matching size increases by exactly 1

Reduction to constant degree

Processing the input (1)

Lemma

The edges of n objects with density ρ in \mathbb{R}^2 are $O(\rho n)$ many, and can be computed in $O(\rho n \log n)$.

 $\label{eq:plane sweep for boundary intersections + trapezoidal decomposition for inclusions$

Processing the input (1)

Lemma

The edges of n objects with density ρ in \mathbb{R}^2 are $O(\rho n)$ many, and can be computed in $O(\rho n \log n)$.

 $\label{eq:plane sweep for boundary intersections + trapezoidal decomposition for inclusions$

Lemma (Smith and Wormald '98, Har-Peled and Quanrud '17) A set of *n* objects with density ρ in \mathbb{R}^2 admits an α -balanced separator of size $O(\sqrt{\rho n})$.

Take the vertices intersected by a randomly scaled "balanced" circle

Processing the input (2)

 $\mathbb{G}_{\rho}=\mathsf{class}$ of the subgraphs of intersection graphs with density ρ

Lemma

For every $G \in \mathbb{G}_{\rho}$, we can compute in expected $O(\rho n \log n)$ a pair (G', T') s.t.

- ► G' is obtained from G by a series of vertex-splits
- G' has degree 4 and O(ρn) vertices and edges
- T' is a (O(ρ), 1/2, α)-separator tree of G'

Follow [Yuster and Zwick '07] tracking the dependency in ho

Input processing step

1. Separator tree; $|Z| = O(\sqrt{
ho n})$

Input processing step

- 1. Separator tree; $|Z| = O(\sqrt{
 ho n})$
- 2. Equivalent instance with bounded degree & separator tree; new instance subgraph of geometric intersection graph;

 Z^* may have larger density but only $O(\rho^{3/2}n^{1/2})$ vertices

1. Set symbolic matrix $\tilde{A}(G')$ with variables $x_{i,j}$

STACS 2020

1. Set symbolic matrix $\tilde{A}(G')$ with variables $x_{i,j}$

- 2. $A \rightarrow$ choose random values in \mathbb{Z}_{n^4} for the $x_{i,j}$
- 3. rank(A) = 2 · (size max matching(G')), whp

$$A =$$

	10		-7	16	
-10		14		3	
	-14				0
7					
-16	-3				-14
		0		14	

A =

- 1. Set symbolic matrix $\tilde{A}(G')$ with variables $x_{i,j}$
- 2. $A \rightarrow$ choose random values in \mathbb{Z}_{n^4} for the $x_{i,j}$
- 3. rank(A) = 2 · (size max matching(G')), whp
- 4. $B := AA^T$ is symmetric and has same rank as A
- 5. Gaussian elimination in B without pivoting, whp

	10		-7	16	
-10		14		3	
	-14				0
7					
-16	-3				-14
		0		14	

- 1. Set symbolic matrix $\tilde{A}(G')$ with variables $x_{i,j}$
- 2. $A \rightarrow$ choose random values in \mathbb{Z}_{n^4} for the $x_{i,j}$
- 3. rank(A) = 2 · (size max matching(G')), whp
- 4. $B := AA^T$ is symmetric and has same rank as A
- 5. Gaussian elimination in B without pivoting, whp
- 6. G'^2 also has nice tree separator because of bounded degree

	10		-7	16	
-10		14		3	
	-14				0
7					
-16	-3				-14
		0		14	

Balanced Separators/Nested dissection come in

- ► Gaussian elimination in B = AA^T in O(ρ^{3ω/2}n^{ω/2}) time using nested dissection & separator tree
 - as for planar graphs, but with parameter ρ
- This gives size of max matching

Balanced Separators/Nested dissection come in

- ► Gaussian elimination in B = AA^T in O(ρ^{3ω/2}n^{ω/2}) time using nested dissection & separator tree
 - as for planar graphs, but with parameter ho
- This gives size of max matching
- Also useful for identifying vertices in maximum matching
 - searching max matching \rightarrow searching perfect matching

Balanced Separators/Nested dissection come in

- ► Gaussian elimination in B = AA^T in O(ρ^{3ω/2}n^{ω/2}) time using nested dissection & separator tree
 - as for planar graphs, but with parameter ho
- This gives size of max matching
- Also useful for identifying vertices in maximum matching
 - searching max matching \rightarrow searching perfect matching
- ► For the separator Z*, use O(1) Gaussian eliminations to find partial matching
 - included in a perfect matching of G', and
 - spanning all the vertices of Z^*

Consider the case of unit disks

STACS 2020

Consider the case of unit disks

▶ a grid *P* of points; cluster the disks into cliques $\{D_p \mid p \in P\}$

Consider the case of unit disks

▶ a grid *P* of points; cluster the disks into cliques $\{D_p \mid p \in P\}$

Consider the case of unit disks

▶ a grid *P* of points; cluster the disks into cliques $\{D_p \mid p \in P\}$

Consider the case of unit disks

- ▶ a grid *P* of points; cluster the disks into cliques $\{D_p \mid p \in P\}$
- each \mathcal{D}_p interacts with O(1) different clusters \mathcal{D}_q

Consider the case of unit disks

- ▶ a grid *P* of points; cluster the disks into cliques $\{D_p \mid p \in P\}$
- each \mathcal{D}_p interacts with O(1) different clusters \mathcal{D}_q
- maximum matching with ≤ 1 edge in $\mathcal{D}_{p} \times \mathcal{D}_{q}$

Consider the case of unit disks

- ▶ a grid *P* of points; cluster the disks into cliques $\{D_p \mid p \in P\}$
- each \mathcal{D}_p interacts with O(1) different clusters \mathcal{D}_q
- maximum matching with $\leqslant 1$ edge in $\mathcal{D}_{p} imes \mathcal{D}_{q}$
- in each D_p, keep ∪_q(min{maximal, O(1)} matching in D_p × D_q) to keep enough candidates
- data structures (shape dependent) for maximal matching

Conclusion

- Combination of graphs, geometry, algebra, algorithms
- State for unit disks/squares:
 - $O(n^{1.19})$ for general
 - $O(n^{1.5})$ for bicolored case
- near-linear?
- or deciding existence of perfect matching
- bicolored unit square perfect matching relevant for persistence diagrams
- Computer Algebra for Computational Geometry vs. Algebraic Methods for Discrete Geometry

Conclusion

- Combination of graphs, geometry, algebra, algorithms
- State for unit disks/squares:
 - $O(n^{1.19})$ for general
 - $O(n^{1.5})$ for bicolored case
- near-linear?
- or deciding existence of perfect matching
- bicolored unit square perfect matching relevant for persistence diagrams
- Computer Algebra for Computational Geometry vs. Algebraic Methods for Discrete Geometry

Thank you for your attention!