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Disk intersection graphs

disk graphs

Not necessarily pseudo-disks, but constant description complexity
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Unit disk intersection graphs

unit disk graphs

Not necessarily pseudo-disks, but constant description complexity
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Fat object intersection graphs

Not necessarily pseudo-disks, but constant description complexity
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Maximum matching
for geometric intersection graphs

I Build the graph explicitly, run max matching algorithm
• O(

√
nm) [Micali and Vazirani ’80]

• O(nω) [Mucha and Sankowski ’04]

I Use geometry to speed up
• Use geometric data structures (←− previous work)
• Use the structure of the graph (←− our focus)
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Previous works

I maximum matching bicolored (unit) disk graph in Õ(n3/2) time
[Efrat, Itai, Katz ’01]

I improving the Õ(n3/2) for bicolored case would be great;
remains open, even for unit squares

I max matching (unit) disk graph – nothing specialized known
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Our work I - Low density case

I each point of the plane covered by ¬ ρ disks ⇒ O(ρn) edges
I ρ = O(1) particularly relevant

I maximum matching in O(ρ3ω/2nω/2) = O(ρ3.56n1.19)

• improvement when ρ = O(n0.113)

I bicolored, unicolored; actually any given subgraph
I works for fat shapes or low-density scenarios
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Our work II - Sparsification

I for unit disks, maximum matching reduces to the case of
bounded depth

I O(n polylog n) time reduction
I using semi-dynamic data structures for nearest neighbors
I only works for unicolored full intersection graph
I works for fat shapes of comparable sizes
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Our work III - Putting things together

I A maximum matching in unit disk graphs in time O(nω/2) whp

Same ideas (sparsification + bounded depth case), other data
structures

I disks of radius in [1,Ψ] in time O(Ψ6n polylog n+ Ψ12ωnω/2) whp
I translates of O(1) convex shapes in R2 in time O(nω/2) whp
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Low density case – Outline

I adapt [Mucha, Sankowski ’06] for planar graphs in O(nω/2)

I adapt [Yuster, Zwick ’07] for H-minor-free O(n3ω/(ω+3))

I rank of an “incidence” matrix [Lovász ’79, Rabin, Vazirani ’89]
I Gaussian elimination, nested dissection [Lipton, Rose, Tarjan ’79]
I geometric small balanced separators [Har-Peled, Quanrud ’17]
I get explicit dependency on ρ.
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The algebraic approach to Max Matching (1)
Skew-symmetric matrix or Tutte matrix:

Ã(G )i ,j =


xi ,j if vivj ∈ E (G ) and i < j
−xi ,j if vivj ∈ E (G ) and i > j
0 if vivj /∈ E (G )

Theorem (Tutte ’47)
The determinant of Ã(G ) is non-zero iff G admits a perfect matching.

Theorem (Lovász ’79)
The rank of Ã(G ) is twice the size of a maximum matching in G .

A(G ) = replace every entry xi ,j of Ã(G ) by a random element of Zp

By DeMillo-Lipton-Zippel-Schwartz lemma,
det(A(G )) 6= 0⇔ det(Ã(G )) 6= 0 wp > 1− n/p

→ randomized O(nω)-algorithm to decide a perfect matching
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The algebraic approach to Max Matching (2)

Lovász generalizes it to computing the size
of a max matching in randomized O(nω).

How actually computing a perfect matching? a maximum matching?

Theorem (Rabin and Vazirani ’89)
Reduction of maximum matching to perfect matching in O(nω), whp

Gaussian elimination without pivoting, remove indices with diagonal 0
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The algebraic approach to Max Matching (2)

Lovász generalizes it to computing the size
of a max matching in randomized O(nω).

How actually computing a perfect matching?

Theorem (Rabin and Vazirani ’89)
A−1
i ,j 6= 0⇔ G − {vi , vj} has a perfect matching, whp

If vivj ∈ E (G ), it is allowed as being extendible to a perfect matching

Theorem (Mucha and Sankowski ’04)
Find a maximum matching in O(nω), whp

Batching allowed edges and lazy elimination
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Small balanced separators
α-balanced separator: S such that G − S is disconnected and
all connected components have size at most α|V (G )|

I Algorithmic revolution of the 80’s and 90’s:
approximation, faster exact algorithms

I Tied to treewidth

I example: planar graphs, H-minor free graphs, etc.

(γ, β, α)-separator tree: TG rooted at an α-balanced separator Z of
size 6 γ|V (G )|β, sep. X from Y , with children TG [X ] and TG [Y ]

YX

Z

Z

TG[X ] TG[Y ]

TG
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Édouard Bonnet STACS 2020



Nested dissection

Gaussian elimination on a sparse matrix

(
d1 vT1
v1 B1

)
=

(
1 0

v1/d1 In−1

)(
d1 0
0 B1 − v1v

T
1 /d1

)(
1 vT1 /d1

0 In−1

)

Interpreting the matrix as a graph with an edge ij iff Ai ,j 6= 0,
the red term brings new non-zero entries called fill-in

A post-order traversal of a separator-tree gives a low fill-in
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Vertex splits preserve max matchings

uv
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In both cases, the max matching size increases by exactly 1

Reduction to constant degree
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Processing the input (1)

Lemma
The edges of n objects with density ρ in R2 are O(ρn) many, and can
be computed in O(ρn log n).

Plane sweep for boundary intersections + trapezoidal decomposition
for inclusions

Lemma (Smith and Wormald ’98, Har-Peled and Quanrud ’17)
A set of n objects with density ρ in R2 admits an α-balanced
separator of size O(

√
ρn).

Take the vertices intersected by a randomly scaled ”balanced” circle

Édouard Bonnet STACS 2020



Processing the input (1)

Lemma
The edges of n objects with density ρ in R2 are O(ρn) many, and can
be computed in O(ρn log n).

Plane sweep for boundary intersections + trapezoidal decomposition
for inclusions

Lemma (Smith and Wormald ’98, Har-Peled and Quanrud ’17)
A set of n objects with density ρ in R2 admits an α-balanced
separator of size O(

√
ρn).

Take the vertices intersected by a randomly scaled ”balanced” circle

Édouard Bonnet STACS 2020



Processing the input (2)

Gρ = class of the subgraphs of intersection graphs with density ρ

Lemma
For every G ∈ Gρ, we can compute in expected O(ρn log n) a pair
(G ′,T ′) s.t.

I G ′ is obtained from G by a series of vertex-splits
I G ′ has degree 4 and O(ρn) vertices and edges
I T ′ is a (O(ρ), 1/2, α)-separator tree of G ′

Follow [Yuster and Zwick ’07] tracking the dependency in ρ
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Input processing step

1. Separator tree; |Z | = O(
√
ρn)

2. Equivalent instance with bounded degree & separator tree;
new instance subgraph of geometric intersection graph;

Z ∗ may have larger density but only O(ρ3/2n1/2) vertices

YX

Z

Z

TG[X ] TG[Y ]

TG
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Input processing step

1. Separator tree; |Z | = O(
√
ρn)

2. Equivalent instance with bounded degree & separator tree;
new instance subgraph of geometric intersection graph;

Z ∗ may have larger density but only O(ρ3/2n1/2) vertices

YX

Z

X ∗

vy

Z∗

Y ∗

u2 u3 u4u1

NG∗(vy)∩ Y ∗

vx

NG∗(vx)∩ X ∗
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Setting up matrix B

1. Set symbolic matrix Ã(G ′) with variables xi ,j

2. A→ choose random values in Zn4 for the xi ,j
3. rank(A) = 2 · (size max matching(G ′)), whp
4. B := AAT is symmetric and has same rank as A

5. Gaussian elimination in B without pivoting, whp
6. G ′2 also has nice tree separator because of bounded degree
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Balanced Separators/Nested dissection come in

I Gaussian elimination in B = AAT in O(ρ3ω/2nω/2) time
using nested dissection & separator tree
• as for planar graphs, but with parameter ρ

I This gives size of max matching

I Also useful for identifying vertices in maximum matching
• searching max matching → searching perfect matching

I For the separator Z ∗, use O(1) Gaussian eliminations to find
partial matching
• included in a perfect matching of G ′, and
• spanning all the vertices of Z ∗
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Sparsification – How?
Consider the case of unit disks

I a grid P of points; cluster the disks into cliques {Dp | p ∈ P}
I each Dp interacts with O(1) different clusters Dq

I maximum matching with ¬ 1 edge in Dp ×Dq

I in each Dp, keep
⋃

q

(
min{maximal,O(1)} matching in Dp×Dq

)
to keep enough candidates

I data structures (shape dependent) for maximal matching
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Conclusion

I Combination of graphs, geometry, algebra, algorithms
I State for unit disks/squares:

• O(n1.19) for general
• O(n1.5) for bicolored case

I near-linear?
I or deciding existence of perfect matching
I bicolored unit square perfect matching

relevant for persistence diagrams
I Computer Algebra for Computational Geometry vs.

Algebraic Methods for Discrete Geometry

Thank you for your attention!
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