Maximum Matchings
in Geometric Intersection Graphs

Edouard Bonnet
ENS Lyon, LIP

Sergio Cabello Wolfgang Mulzer
U. of Ljubljana & IMFM, Slovenia FU Berlin, Germany

Edouard Bonnet STACS 2020




Disk intersection graphs

disk graphs

Edouard Bonnet STACS 2020



Unit disk intersection graphs

unit disk graphs

Edouard Bonnet STACS 2020



Fat object intersection graphs

Not necessarily pseudo-disks, but constant description complexity
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Maximum matching
for geometric intersection graphs

» Build the graph explicitly, run max matching algorithm

« O(y/nm) [Micali and Vazirani '80]
« O(n*) [Mucha and Sankowski '04]
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Maximum matching
for geometric intersection graphs

» Build the graph explicitly, run max matching algorithm

« O(y/nm) [Micali and Vazirani '80]
« O(n¥) [Mucha and Sankowski '04]

» Use geometry to speed up

+ Use geometric data structures («— previous work)
+ Use the structure of the graph («— our focus)
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Previous works

» maximum matching bicolored (unit) disk graph in O(n%/?) time
[Efrat, Itai, Katz '01]

» improving the O(n%/?) for bicolored case would be great;
remains open, even for unit squares

» max matching (unit) disk graph — nothing specialized known
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Our work | - Low density case

» each point of the plane covered by < p disks = O(pn) edges
» p = O(1) particularly relevant
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Our work | - Low density case

» each point of the plane covered by < p disks = O(pn) edges
» p= O(1) particularly relevant

» maximum matching in O(p3w/2nw/2) _ O(p3'56n1'19)
« improvement when p = O(n%113)

» bicolored, unicolored; actually any given subgraph

» works for fat shapes or low-density scenarios
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Our work Il - Sparsification

» for unit disks, maximum matching reduces to the case of
bounded depth
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Our work Il - Sparsification

» for unit disks, maximum matching reduces to the case of
bounded depth

» O(npolylog n) time reduction
» using semi-dynamic data structures for nearest neighbors
» only works for unicolored full intersection graph

» works for fat shapes of comparable sizes
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Our work 11l - Putting things together

» A maximum matching in unit disk graphs in time O(n*/?) whp
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Our work 11l - Putting things together

> A maximum matching in unit disk graphs in time O(n“/?) whp

Same ideas (sparsification + bounded depth case), other data
structures

> disks of radius in [1, V] in time O(W®n polylog n+ W12 n~/2) whp

> translates of O(1) convex shapes in R? in time O(n*/2) whp
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Low density case — Qutline

> adapt [Mucha, Sankowski '06] for planar graphs in O(n“/?)

> adapt [Yuster, Zwick '07] for H-minor-free O(n3</(«+3))

» rank of an “incidence” matrix [Lovdsz '79, Rabin, Vazirani '89]
» Gaussian elimination, nested dissection [Lipton, Rose, Tarjan '79]
» geometric small balanced separators  [Har-Peled, Quanrud '17]

» get explicit dependency on p.
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The algebraic approach to Max Matching (1)

Skew-symmetric matrix or Tutte matrix:
Xij if V,'V_,'GE(G) and i <jJ
AG)ij={ —xj ifvivyy€E(G)andi>j
0 if viv; ¢ E(G)

Theorem (Tutte '47)
The determinant of A(G) is non-zero iff G admits a perfect matching.
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The algebraic approach to Max Matching (1)

Theorem (Tutte '47)

The determinant of A(G) is non-zero iff G admits a perfect matching.

Theorem (Lovész '79)

The rank of A(G) is twice the size of a maximum matching in G.

A(G) = replace every entry x;; of A(G) by a random element of Z,

By DeMillo-Lipton-Zippel-Schwartz lemma,

det(A(G)) # 0 < det(A(G)) #0wp >1—n/p

— randomized O(n*)-algorithm to decide a perfect matching
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The algebraic approach to Max Matching (2)

Lovéasz generalizes it to computing the size
of a max matching in randomized O(n“).

How actually computing a perfect matching? a maximum matching?
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The algebraic approach to Max Matching (2)

Lovéasz generalizes it to computing the size
of a max matching in randomized O(n*).

How actually computing a perfect matching? a maximum matching?

Theorem (Rabin and Vazirani '89)

Reduction of maximum matching to perfect matching in O(n*), whp

Gaussian elimination without pivoting, remove indices with diagonal 0
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The algebraic approach to Max Matching (2)

Lovdsz generalizes it to computing the size
of a max matching in randomized O(n®).

How actually computing a perfect matching?

Theorem (Rabin and Vazirani '89)
A,-_J1 # 0« G —{vj, v} has a perfect matching, whp
If vivi € E(G), it is allowed as being extendible to a perfect matching

Theorem (Mucha and Sankowski '04)
Find a maximum matching in O(n*), whp

Batching allowed edges and lazy elimination
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Small balanced separators

a-balanced separator: S such that G — S is disconnected and
all connected components have size at most «|V/(G)|

» Algorithmic revolution of the 80's and 90's:
approximation, faster exact algorithms

» Tied to treewidth
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a-balanced separator: S such that G — S is disconnected and
all connected components have size at most «|V/(G)|

» Algorithmic revolution of the 80's and 90's:
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Small balanced separators

a-balanced separator: S such that G — S is disconnected and
all connected components have size at most «|V/(G)|

» Algorithmic revolution of the 80's and 90's:
approximation, faster exact algorithms

» Tied to treewidth
» example: planar graphs, H-minor free graphs, etc.

(7, B, a)-separator tree: T rooted at an a-balanced separator Z of
size < v|V(G)|?, sep. X from Y, with children Terx) and Tgpy
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Nested dissection

Gaussian elimination on a sparse matrix

v\ [ 1 0 dy 0 1 v /dy
vi Bi) \wi/di 1 0 Bi—wvivy/di)\0O I,1

Interpreting the matrix as a graph with an edge ij iff A;; # 0,
the red term brings new non-zero entries called fill-in
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Nested dissection
Gaussian elimination on a sparse matrix

v\ [ 1 0 dy 0 1 v /dy
Vi Bl o V1/d1 In—l 0 Bl—vlvlT/dl 0 /n—l

Interpreting the matrix as a graph with an edge ij iff A;; # 0,
the red term brings new non-zero entries called fill-in

A post-order traversal of a separator-tree gives a low fill-in
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Vertex splits preserve max matchings

@00 ®° Y

VW—u—2 VW—)-O—@&—2
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Vertex splits preserve max matchings

@00 ®° Y

VW—u—2 VW—)-O—~—2)
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Vertex splits preserve max matchings

In both cases, the max matching size increases by exactly 1

TN S T7UNS

Reduction to constant degree
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Processing the input (1)

Lemma
The edges of n objects with density p in R? are O(pn) many, and can

be computed in O(pnlog n).

Plane sweep for boundary intersections + trapezoidal decomposition

for inclusions
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Processing the input (1)

Lemma
The edges of n objects with density p in R? are O(pn) many, and can

be computed in O(pnlog n).

Plane sweep for boundary intersections + trapezoidal decomposition
for inclusions

Lemma (Smith and Wormald '98, Har-Peled and Quanrud '17)

A set of n objects with density p in R? admits an a-balanced
separator of size O(,/pn).

Take the vertices intersected by a randomly scaled " balanced” circle
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Processing the input (2)

G, = class of the subgraphs of intersection graphs with density p

Lemma

For every G € G, we can compute in expected O(pnlogn) a pair
(G', T s.t.

» G’ is obtained from G by a series of vertex-splits
» G’ has degree 4 and O(pn) vertices and edges
» T'isa (O(p),1/2,«)-separator tree of G’

Follow [Yuster and Zwick '07] tracking the dependency in p
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Input processing step

1. Separator tree; |Z| = O(y/pn)
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Input processing step

1. Separator tree; |Z| = O(y/pn)

2. Equivalent instance with bounded degree & separator tree;
new instance subgraph of geometric intersection graph;

Z* may have larger density but only O(p3/2n1/2) vertices

X AN / \\Y*
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Setting up matrix B

1. Set symbolic matrix A(G’) with variables x; ;

Edouard Bonnet
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A[X] =

X1,2 X1,4 | X1,5
—X1,2 X2,3 X2,5
—X2,3 X3,6
—X1,4
—X1,57X2,5 X5,6
—X3,6] —X5,6|




Setting up matrix B

1. Set symbolic matrix A(G’) with variables x; ;

2. A — choose random values in Z4 for the x; ;

3. rank(A) = 2 - (size max matching(G’)), whp
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Setting up matrix B

Set symbolic matrix A(G') with variables x; ;

A — choose random values in Z 4 for the x; ;
rank(A) = 2 - (size max matching(G")), whp

B := AAT is symmetric and has same rank as A
Gaussian elimination in B without pivoting, whp

AR .
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Setting up matrix B

Set symbolic matrix A(G') with variables x; ;

A — choose random values in Z 4 for the x; ;

rank(A) = 2 - (size max matching(G")), whp

B := AAT is symmetric and has same rank as A

Gaussian elimination in B without pivoting, whp

G'? also has nice tree separator because of bounded degree

ok wh =
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Balanced Separators/Nested dissection come in

> Gaussian elimination in B = AAT in O(p3*/?2n*/?) time
using nested dissection & separator tree
« as for planar graphs, but with parameter p

» This gives size of max matching
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Balanced Separators/Nested dissection come in

> Gaussian elimination in B = AAT in O(p3*/?2n*/?) time
using nested dissection & separator tree
« as for planar graphs, but with parameter p
» This gives size of max matching
» Also useful for identifying vertices in maximum matching
 searching max matching — searching perfect matching
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Balanced Separators/Nested dissection come in

> Gaussian elimination in B = AAT in O(p3/2n*/?) time
using nested dissection & separator tree
« as for planar graphs, but with parameter p
» This gives size of max matching
» Also useful for identifying vertices in maximum matching
 searching max matching — searching perfect matching

» For the separator Z*, use O(1) Gaussian eliminations to find
partial matching

« included in a perfect matching of G’, and
» spanning all the vertices of Z*
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Sparsification — How?

Consider the case of unit disks
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Sparsification — How?

Consider the case of unit disks
» a grid P of points; cluster the disks into cliques {D, | p € P}

Edouard Bonnet STACS 2020



Sparsification — How?

Consider the case of unit disks
» a grid P of points; cluster the disks into cliques {D, | p € P}

Edouard Bonnet STACS 2020



Sparsification — How?

Consider the case of unit disks
» a grid P of points; cluster the disks into cliques {D, | p € P}

Edouard Bonnet STACS 2020



Sparsification — How?

Consider the case of unit disks
» a grid P of points; cluster the disks into cliques {D, | p € P}
» each D, interacts with O(1) different clusters D,

Edouard Bonnet STACS 2020
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Sparsification — How?

Consider the case of unit disks
» a grid P of points; cluster the disks into cliques {D, | p € P}
» each D, interacts with O(1) different clusters D,
» maximum matching with <1 edge in D, x Dy

in each Dy, keep U, (min{maximal, O(1)} matching in Dy x Dq>
to keep enough candidates
data structures (shape dependent) for maximal matching

v

v
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Conclusion

» Combination of graphs, geometry, algebra, algorithms
» State for unit disks/squares:

« O(n'1) for general
+ O(n') for bicolored case

» near-linear?
» or deciding existence of perfect matching

» bicolored unit square perfect matching
relevant for persistence diagrams

» Computer Algebra for Computational Geometry vs.
Algebraic Methods for Discrete Geometry
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Conclusion

» Combination of graphs, geometry, algebra, algorithms
» State for unit disks/squares:

« O(n'1) for general
+ O(n') for bicolored case

» near-linear?
» or deciding existence of perfect matching

» bicolored unit square perfect matching
relevant for persistence diagrams

» Computer Algebra for Computational Geometry vs.
Algebraic Methods for Discrete Geometry

Thank you for your attention!
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