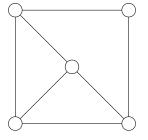
Maximum Independent Set in H-Free Graphs

<u>Édouard Bonnet</u>, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant

Séminaire GALaC, LRI, Paris-Sud, October 5th, 2018

INDEPENDENT SET

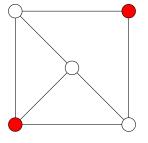
Problem: Given a graph



and an integer k: Is there an independent set of size at least k?

INDEPENDENT SET

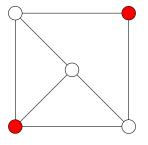
Problem: Given a graph



and an integer k: Is there an independent set of size at least k?

INDEPENDENT SET

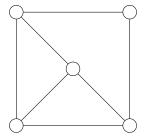
Problem: Given a graph

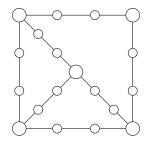


and an integer k: Is there an independent set of size at least k?

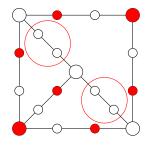
NP-complete even in graphs with maximum degree 3.

What about on graphs excluding an induced subgraph H? (called H-free graphs)

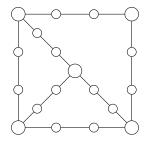




Subdivide every edge twice



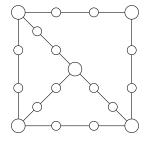
Subdivide every edge twice



Subdivide every edge any fixed even number of times

This reduction + NP-hardness on graphs of degree $3 \Rightarrow$

NP-hardness for graphs of degree 3, with arbitrarily large girth and distance between two vertices with degree 3 (*branching vertices*).



This reduction + NP-hardness on graphs of degree $3 \Rightarrow$

NP-hardness for graphs of degree 3, with arbitrarily large girth and distance between two vertices with degree 3 (*branching vertices*).

The constructed graph is H-free except if H is...

P/NP-complete status of MIS on H-free graphs

For H connected:

- ▶ NP-complete, if H is not a path or a subdivided claw $(K_{1,3})$
- in P, if H is a path on up to 6 vertices
- in P, if H is a claw with one edge subdivided once
- ► For other H, the problem is open

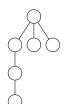
P/NP-complete status of MIS on H-free graphs

For H connected:

- ▶ NP-complete, if H is not a path or a subdivided claw $(K_{1,3})$
- ▶ in P, if H is a path on up to 6 vertices
- ▶ in P, if H is a claw with one edge subdivided once
- ► For other H, the problem is open

Minimal open cases:





Other dichotomies

The polynomial algorithms for P_5 -free and then P_6 -free graphs use tools that cannot generalize to P_8 -free graphs and beyond.

Understanding P_t -free graphs is a challenge

Other dichotomies

The polynomial algorithms for P_5 -free and then P_6 -free graphs use tools that cannot generalize to P_8 -free graphs and beyond.

Understanding P_t -free graphs is a challenge

there are other goodies/baddies partition:

- ▶ PTAS/APX-hard
- SUBEXP/ETH-hard
- ► FPT/W[1]-hard

Parameterized complexity

Fixed-Parameter Tractable (FPT) algorithm: in time $f(k)n^{O(1)}$ with

- n, the size of the instance,
- ▶ k, a parameter such as the solution size, and
- ▶ f, any computable function.

Parameterized complexity

Fixed-Parameter Tractable (FPT) algorithm: in time $f(k)n^{O(1)}$ with

- n, the size of the instance,
- k, a parameter such as the solution size, and
- ▶ f, any computable function.

Example:

- ▶ VERTEX COVER has a simple $2^k n^{O(1)}$ -algorithm
- ► INDEPENDENT SET is W[1]-hard (hence unlikely FPT)

Convenient definition of W[1]-hard for our purpose: As hard as INDEPENDENT SET for FPT reductions

Reduction from (Π, k) to (Π', k') taking FPT time and such that $\mathbf{k}' \leq \mathbf{g}(\mathbf{k})$ for a computable function \mathbf{g} .

Reduction from (Π, k) to (Π', k') taking FPT time and such that $\mathbf{k}' \leq \mathbf{g}(\mathbf{k})$ for a computable function \mathbf{g} .

- ► The "subdividing the edges twice" trick that we saw?
- ► Complementing the graph, from MIS to CLIQUE?
- ▶ $(G, k) \mapsto (G, n k)$, from MIS to Vertex Cover?

Reduction from (Π, k) to (Π', k') taking FPT time and such that $\mathbf{k}' \leq \mathbf{g}(\mathbf{k})$ for a computable function \mathbf{g} .

- ► The "subdividing the edges twice" trick that we saw? No
- ► Complementing the graph, from MIS to CLIQUE?
- ▶ $(G, k) \mapsto (G, n k)$, from MIS to Vertex Cover?

Reduction from (Π, k) to (Π', k') taking FPT time and such that $\mathbf{k}' \leq \mathbf{g}(\mathbf{k})$ for a computable function \mathbf{g} .

- ► The "subdividing the edges twice" trick that we saw? No
- ► Complementing the graph, from MIS to CLIQUE? Yes
- ▶ $(G, k) \mapsto (G, n k)$, from MIS to VERTEX COVER?

Reduction from (Π, k) to (Π', k') taking FPT time and such that $\mathbf{k}' \leq \mathbf{g}(\mathbf{k})$ for a computable function \mathbf{g} .

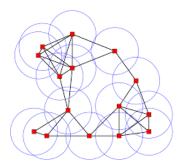
- ► The "subdividing the edges twice" trick that we saw? No
- ► Complementing the graph, from MIS to CLIQUE? Yes
- ▶ $(G, k) \mapsto (G, n k)$, from MIS to Vertex Cover? No

Why MIS and why forbidden induced subgraphs?

- \blacktriangleright some hard problems like $\operatorname{Dominating}$ Set are almost indifferent to forbidding induced subgraphs
- for subgraphs or minors, the dichotomy would be trivial
- can shed light on other hereditary classes

Why MIS and why forbidden induced subgraphs?

- some hard problems like DOMINATING SET are almost indifferent to forbidding induced subgraphs
- for subgraphs or minors, the dichotomy would be trivial
- can shed light on other hereditary classes



Known results

- ▶ FPT for H on at most 4 vertices but C_4 [Dabrowski et al. '12]
- ▶ MIS is W[1]-hard in $K_{1,4}$ -free graphs [Hermelin et al. '14]

Why is MIS FPT in K_r -free graphs?¹

¹This is why the question is not interesting for subgraphs and minors

Known results

- ► FPT for H on at most 4 vertices but C₄ [Dabrowski et al. '12]
- ▶ MIS is W[1]-hard in $K_{1,4}$ -free graphs [Hermelin et al. '14]

Why is MIS FPT in K_r -free graphs?¹

Every K_r -free graphs has either:

- ▶ at most Ramsey(k,r) $\approx k^{r-1}$ vertices \rightarrow brute-force is FPT
- ▶ an independent set of size $k \rightarrow$ answer YES

¹This is why the question is not interesting for subgraphs and minors

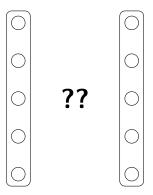
Our current goal

Let's try to remove the C_4 s with an FPT reduction

k-Multicolored Independent Set is W[1]-hard Instances whose vertex-set is partitioned into k cliques

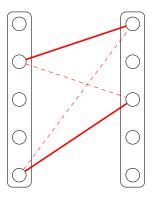
k-Multicolored Independent Set is W[1]-hard Instances whose vertex-set is partitioned into k cliques

What should we avoid between the cliques?



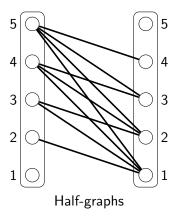
k-Multicolored Independent Set is W[1]-hard Instances whose vertex-set is partitioned into k cliques

What should we avoid between the cliques? $2K_2$

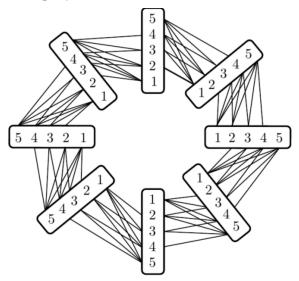


k-Multicolored Independent Set is W[1]-hard Instances whose vertex-set is partitioned into k cliques

What should we avoid between the cliques? $2K_2$



"Cycle" of half graphs



Two inequalities enforce the equality

Grid Tiling

Input: $k \times k$ grid of cells containing pairs over $[n]^2$

(1,1)	(5,1)	(1,1)		(1,1)	(5,1)	(1,1)
(3,1)	(1,4)	(2,4)		(3,1)	(1,4)	(2,4)
(2,4)	(5,3)	(3,3)		(2,4)	(5,3)	(3,3)
(2,2)	(3,1)	(2,2)	⇒	(2,2)	(3,1)	(2,2)
(1,4)	(1,2)	(2,3)		(1,4)	(1,2)	(2,3)
(1,3) (2,3) (3,3)	(1,1) (1,3)	(2,3) (5,3)		(1,3) (2,3) (3,3)	(1,1) (1,3)	(2,3) (5,3)

Example with k = 3 cliques/color classes and n = 5

Grid Tiling

Input: $k \times k$ grid of cells containing pairs over $[n]^2$

(1,1)	(5,1)	(1,1)		(1,1)	(5,1)	(1,1)
(3,1)	(1,4)	(2,4)		(3,1)	(1,4)	(2,4)
(2,4)	(5,3)	(3,3)		(2,4)	(5,3)	(3,3)
(2,2)	(3,1)	(2,2)	⇒	(2,2)	(3,1)	(2,2)
(1,4)	(1,2)	(2,3)		(1,4)	(1,2)	(2,3)
(1,3) (2,3) (3,3)	(1,1) (1,3)	(2,3) (5,3)		(1,3) (2,3) (3,3)	(1,1) (1,3)	(2,3) (5,3)

Example with k = 3 cliques/color classes and n = 5

Output: select one pair per cell so that

- columns agree on the first coordinate
- rows agree on the second coordinate

Grid Tiling w.r.t the number of cells is W[1]-hard

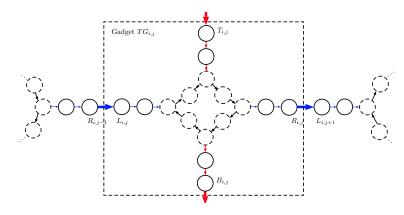
			(v_j,\cdot)	
(\cdot, v_i)	(v_i,v_i)	(\cdot, v_i)	(v_j, v_i)	(\cdot, v_i)
			(v_j,\cdot)	
			(v_j, v_j)	
			(v_j,\cdot)	

Grid Tiling w.r.t the number of cells is W[1]-hard

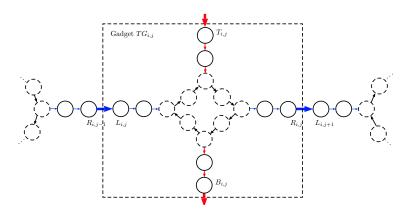
			(v_j,\cdot)	
(\cdot, v_i)	(v_i, v_i)	(\cdot, v_i)	(v_j, v_i)	(\cdot, v_i)
			(v_j,\cdot)	
			(v_j, v_j)	
			(v_j,\cdot)	

The same with inequalities has the same lower bound Useful for geometric problems such as Packing Unit Disks

Avoiding C_4 with half graphs everywhere



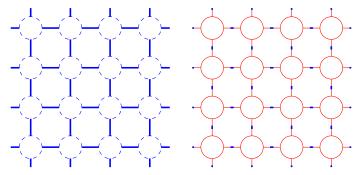
Avoiding C_4 with half graphs everywhere



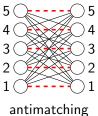
Simultaneously avoiding:

- $ightharpoonup C_4, C_5, \dots, C_s$
- ▶ no *K*_{1.4}
- ▶ no tree with two branching vertices at distance $\leq s/4$

Two variants of the reduction



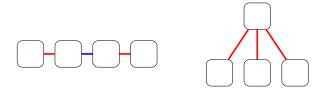
Variants with half-graphs in blue and antimatchings in red



FPT candidates

H should be chordal and

- either a path of cliques with simple connections between adjacent cliques
- or a subdivided claw of cliques with very simple connections between adjacent cliques



bipartite complete except possibly one edge

---- half-graph

What about algorithms now?

Modular FPT reduction which traps many hard cases.

Generic algorithmic technique for the remaining cases?

What about algorithms now?

Modular FPT reduction which traps many hard cases.

Generic algorithmic technique for the remaining cases?

So far, we did not get something very unified.

- Many H-specific arguments
- A handful of transversal tricks/ideas

What about algorithms now?

Modular FPT reduction which traps many hard cases.

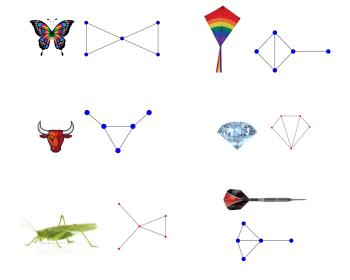
Generic algorithmic technique for the remaining cases?

So far, we did not get something very unified.

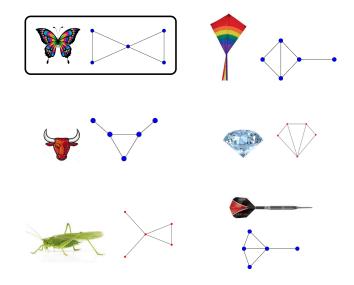
- Many H-specific arguments
- ► A handful of transversal tricks/ideas

Maybe not so surprising: notably open for P_t -free graphs entire papers have been dedicated to **-free graphs

Some candidates on 5 vertices



Some candidates on 5 vertices

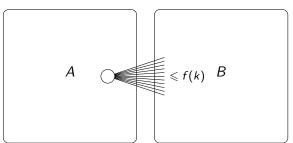


Trick 1: we can guess the solution on any subset of f(k) vertices

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: We can progress if we have the following

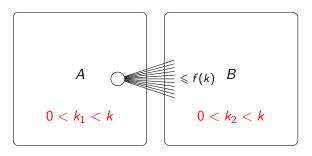


with

- ► A and B intersecting the solution
- ▶ all the vertices in A have at most f(k) neighbors in B

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

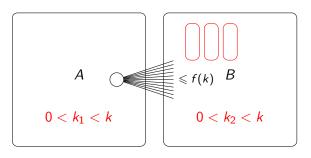
Trick 2: We can progress if we have the following



We guess how many vertices a solution contains in A and B

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

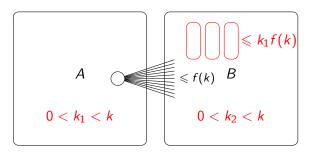
Trick 2: We can progress if we have the following



We extract independent sets of size k_2 in G[B]

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

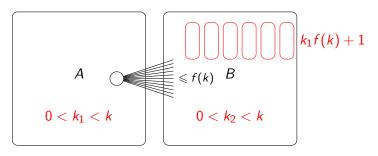
Trick 2: We can progress if we have the following



If this stops before $k_1 f(k) + 1$ are extracted, use Trick 1

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

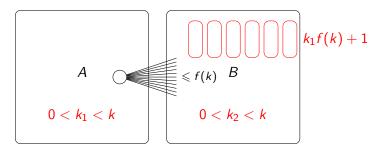
Trick 2: We can progress if we have the following



If we can extract $k_1 f(k) + 1$ of them, we stop there

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

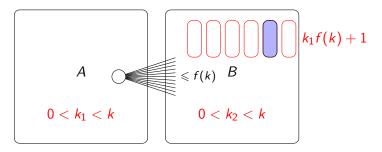
Trick 2: We can progress if we have the following



What does this achieve?

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: We can progress if we have the following



Any independent set of size k_1 in G[A] can be completed

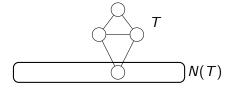


Let us consider a triangle and its neighbors

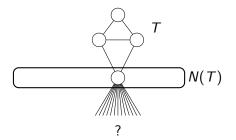
Can there be very many vertices attached to a single vertex?

Less than k. Otherwise: easy solution or butterfly

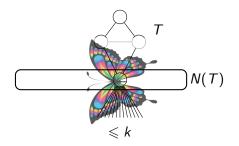
We use Trick 1 to get rid of those particular neighbors



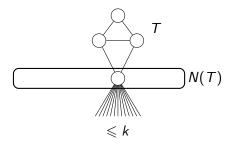
Now, all the vertices in N(T) have at least two neighbors in T



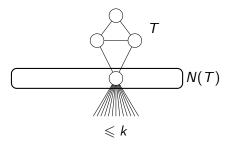
Can they have many neighbors in the rest of the graph?



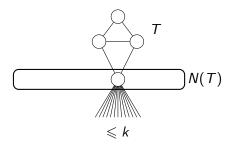
No, less than k; otherwise easy solution or butterfly



A solution intersects $T \cap N(T)$ (why?)



Either it also intersects $\overline{T \cap N(T)}$, and we conclude with Trick 2



Or not. And we solve $G[T \cap N(T)]$ since it is $4K_2$ -free (Alekseev)

Results and perspectives

FPT algorithms when

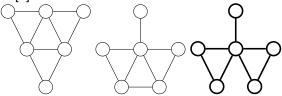
- ► H is a clique minus a bipartite complete graph (can be seen as a P₃ of cliques, generalizes the butterfly)
- ► H is the union of cliques (parameterized version of Alekseev)
- ▶ H is a clique minus a triangle $(K_r \setminus K_4 \text{ contrains a } K_{1,4})$
- ▶ H, candidate on 5 vertices: crown, gem, kite, \overline{P} , dart, cricket

Results and perspectives

FPT algorithms when

- ► H is a clique minus a bipartite complete graph (can be seen as a P₃ of cliques, generalizes the butterfly)
- ► H is the union of cliques (parameterized version of Alekseev)
- ▶ H is a clique minus a triangle $(K_r \setminus K_4 \text{ contrains a } K_{1,4})$
- ▶ H, candidate on 5 vertices: crown, gem, kite, \overline{P} , dart, cricket

W[1]-hardness cases with a third reduction:

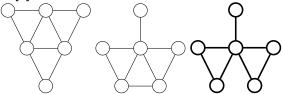


Results and perspectives

FPT algorithms when

- ► H is a clique minus a bipartite complete graph (can be seen as a P₃ of cliques, generalizes the butterfly)
- ► H is the union of cliques (parameterized version of Alekseev)
- ▶ H is a clique minus a triangle $(K_r \setminus K_4 \text{ contrains a } K_{1,4})$
- ▶ H, candidate on 5 vertices: crown, gem, kite, \overline{P} , dart, cricket

W[1]-hardness cases with a third reduction:



Mainly left with "path of cliques"