Maximum Independent Set in H-Free Graphs

<u>Édouard Bonnet,</u> Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant

Séminaire Graphes et Optimisation, LaBRI, Bordeaux, September 21st, 2018

INDEPENDENT SET

Problem: Given a graph

and an integer k: Is there an independent set of size at least k?

INDEPENDENT SET

Problem: Given a graph

and an integer k: Is there an independent set of size at least k?

INDEPENDENT SET

Problem: Given a graph

and an integer k: Is there an independent set of size at least k?

NP-complete even in graphs with maximum degree 3.

What about on graphs excluding an induced subgraph H? (called H-free graphs)

Subdivide every edge twice

Subdivide every edge twice

Subdivide every edge any fixed even number of times

This reduction + NP-hardness on graphs of degree 3 \Rightarrow

NP-hardness for graphs of degree 3, with arbitrarily large girth and distance between two vertices with degree 3 (*branching vertices*).

This reduction + NP-hardness on graphs of degree 3 \Rightarrow

NP-hardness for graphs of degree 3, with arbitrarily large girth and distance between two vertices with degree 3 (*branching vertices*).

The constructed graph is H-free except if H is...

P/NP-complete status of MIS on H-free graphs

For H connected:

- ▶ NP-complete, if H is not a path or a subdivided claw $(K_{1,3})$
- in P, if H is a path on up to 6 vertices
- ▶ in P, if H is a claw with one edge subdivided once
- For other H, the problem is open

P/NP-complete status of MIS on H-free graphs

For H connected:

- ▶ NP-complete, if H is not a path or a subdivided claw $(K_{1,3})$
- in P, if H is a path on up to 6 vertices
- ▶ in P, if H is a claw with one edge subdivided once
- For other H, the problem is open

Minimal open cases:

Other dichotomies

The polynomial algorithms for P_5 -free and then P_6 -free graphs use tools that cannot generalize to P_8 -free graphs and beyond.

Understanding *P_t*-free graphs is a challenge

Other dichotomies

The polynomial algorithms for P_5 -free and then P_6 -free graphs use tools that cannot generalize to P_8 -free graphs and beyond.

Understanding P_t -free graphs is a challenge

there are other goodies/baddies partition:

- PTAS/APX-hard
- SUBEXP/ETH-hard
- FPT/W[1]-hard

Parameterized complexity

Fixed-Parameter Tractable (FPT) algorithm: in time $f(k)n^{O(1)}$ with

- n, the size of the instance,
- ▶ k, a parameter such as the solution size, and
- ► *f*, any computable function.

Parameterized complexity

Fixed-Parameter Tractable (FPT) algorithm: in time $f(k)n^{O(1)}$ with

- n, the size of the instance,
- k, a parameter such as the solution size, and
- ► *f*, any computable function.

Example:

- ▶ VERTEX COVER has a simple 2^k n^{O(1)}-algorithm
- ▶ INDEPENDENT SET is W[1]-hard (hence unlikely FPT)

Convenient definition of W[1]-hard for our purpose: As hard as INDEPENDENT SET for FPT reductions

Reduction from (Π, k) to (Π', k') taking FPT time and such that $\mathbf{k}' = \mathbf{g}(\mathbf{k})$ for a computable function \mathbf{g} .

Reduction from (Π, k) to (Π', k') taking FPT time and such that $\mathbf{k}' = \mathbf{g}(\mathbf{k})$ for a computable function \mathbf{g} .

- The "subdividing the edges twice" trick that we saw?
- ► Complementing the graph, from MIS to CLIQUE?
- $(G, k) \mapsto (G, n k)$, from MIS to VERTEX COVER?

Reduction from (Π, k) to (Π', k') taking FPT time and such that $\mathbf{k}' = \mathbf{g}(\mathbf{k})$ for a computable function \mathbf{g} .

- The "subdividing the edges twice" trick that we saw? No
- ► Complementing the graph, from MIS to CLIQUE?
- $(G, k) \mapsto (G, n k)$, from MIS to VERTEX COVER?

Reduction from (Π, k) to (Π', k') taking FPT time and such that $\mathbf{k}' = \mathbf{g}(\mathbf{k})$ for a computable function \mathbf{g} .

- The "subdividing the edges twice" trick that we saw? No
- ► Complementing the graph, from MIS to CLIQUE? Yes
- $(G, k) \mapsto (G, n k)$, from MIS to VERTEX COVER?

Reduction from (Π, k) to (Π', k') taking FPT time and such that $\mathbf{k}' = \mathbf{g}(\mathbf{k})$ for a computable function \mathbf{g} .

- The "subdividing the edges twice" trick that we saw? No
- ► Complementing the graph, from MIS to CLIQUE? Yes
- $(G, k) \mapsto (G, n k)$, from MIS to VERTEX COVER? No

Why MIS and why forbidden induced subgraphs?

- some hard problems like DOMINATING SET are almost indifferent to forbidding induced subgraphs
- for subgraphs or minors, the dichotomy would be trivial
- can shed light on other hereditary classes

Why MIS and why forbidden induced subgraphs?

- some hard problems like DOMINATING SET are almost indifferent to forbidding induced subgraphs
- for subgraphs or minors, the dichotomy would be trivial
- can shed light on other hereditary classes

Known results

- ▶ FPT for H on at most 4 vertices but C₄ [Dabrowski et al. '12]
- MIS is W[1]-hard in $K_{1,4}$ -free graphs [Hermelin et al. '14]

Why is MIS FPT in K_r -free graphs?¹

 $^{^1\}mbox{This}$ is why the question is not interesting for subgraphs and minors

Known results

- ▶ FPT for H on at most 4 vertices but C₄ [Dabrowski et al. '12]
- MIS is W[1]-hard in $K_{1,4}$ -free graphs [Hermelin et al. '14]

Why is MIS FPT in K_r -free graphs?¹

Every K_r -free graphs has either:

- ▶ at most Ramsey(k,r) $\approx k^{r-1}$ vertices \rightarrow brute-force is FPT
- an independent set of size $k \rightarrow \text{answer YES}$

¹This is why the question is not interesting for subgraphs and minors

Let's try to remove the C_4 s with an FPT reduction

k-Multicolored Independent Set is W[1]-hard

Instances whose vertex-set is partitioned into k cliques

k-Multicolored Independent Set is W[1]-hard

Instances whose vertex-set is partitioned into k cliques

What should we avoid between the cliques?

k-Multicolored Independent Set is W[1]-hard

Instances whose vertex-set is partitioned into k cliques

What should we avoid between the cliques? $2K_2$

k-Multicolored Independent Set is W[1]-hard

Instances whose vertex-set is partitioned into k cliques

What should we avoid between the cliques? $2K_2$

Two inequalities enforce the equality

Grid Tiling

Input: $k \times k$ grid of cells containing pairs over $[n]^2$

$(1,1) \\ (3,1) \\ (2,4)$	(5,1) (1,4) (5,3)	(1,1) (2,4) (3,3)		(1,1) (3,1) (2,4)	(5,1) (1,4) (5,3)	(1,1) (2,4) (3,3)
(2,2) (1,4)	(3,1) (1,2)	(2,2) (2,3)	-	<mark>(2,2)</mark> (1,4)	(3,1) (1,2)	<mark>(2,2)</mark> (2,3)
(1,3) (2,3) (3,3)	(1,1) (1,3)	(2,3) (5,3)		(1,3) (2,3) (3,3)	(1,1) (1,3)	<mark>(2,3)</mark> (5,3)

Example with k = 3 cliques/color classes and n = 5

Grid Tiling

Input: $k \times k$ grid of cells containing pairs over $[n]^2$

(1,1)	(5,1)	(1,1)		(1,1)	(5,1)	(1,1)
(3,1)	(1,4)	(2,4)		(3,1)	(1,4)	(2,4)
(2,4)	(5,3)	(3,3)		(2,4)	(5,3)	(3,3)
(2,2)	(3,1)	(2,2)	⇒	<mark>(2,2)</mark>	(3,1)	<mark>(2,2)</mark>
(1,4)	(1,2)	(2,3)		(1,4)	(1,2)	(2,3)
(1,3) (2,3) (3,3)	(1,1) (1,3)	(2,3) (5,3)		(1,3) (2,3) (3,3)	(1,1) (1,3)	<mark>(2,3)</mark> (5,3)

Example with k = 3 cliques/color classes and n = 5

Output: select one pair per cell so that

- columns agree on the first coordinate
- rows agree on the second coordinate

Grid Tiling w.r.t the number of cells is W[1]-hard

Grid Tiling w.r.t the number of cells is W[1]-hard

The same with inequalities has the same lower bound Useful for geometric problems such as Packing Unit Disks

Avoiding C_4 with half graphs everywhere

Avoiding C_4 with half graphs everywhere

Simultaneously:

- ▶ no *C*₄, *C*₅, ..., *C*_s
- ▶ no K_{1,4}
- no tree with two branching vertices

Two variants of the reduction

Variants with half-graphs in blue and antimatchings in red

antimatching

FPT candidates

H should be chordal and

- either a path of cliques with simple connections between adjacent cliques
- or a subdivided claw of cliques with very simple connections between adjacent cliques

bipartite complete except possibly one edge

half-graph

Modular FPT reduction which traps many hard cases.

Generic algorithmic technique for the remaining cases?

So far, we did not get something very unified.

- Many H-specific arguments
- A handful of transversal tricks/ideas

Modular FPT reduction which traps many hard cases.

Generic algorithmic technique for the remaining cases?

So far, we did not get something very unified.

- Many H-specific arguments
- A handful of transversal tricks/ideas

Maybe not so surprising: notably open for P_t -free graphs entire papers have been dedicated to $\forall f$ -free graphs

Some candidates on 5 vertices

Some candidates on 5 vertices

Trick 1: we can guess the solution on any subset of f(k) vertices

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: We can progress if we have the following

with

- A and B intersecting the solution
- all the vertices in A have at most f(k) neighbors in B

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: We can progress if we have the following

We guess how many vertices a solution contains in A and B

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: We can progress if we have the following

We extract independent sets of size k_2 in G[B]

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: We can progress if we have the following

If this stops before $k_1 f(k) + 1$ are extracted, use Trick 1

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: We can progress if we have the following

If we can extract $k_1 f(k) + 1$ of them, we stop there

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: We can progress if we have the following

What does this achieve?

Trick 1: we can guess the solution on any subset of f(k) vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: We can progress if we have the following

Any independent set of size k_1 in G[A] can be completed

Let us consider a triangle and its neighbors

Can there be very many vertices attached to a single vertex?

Less than k. Otherwise: easy solution or butterfly

We use Trick 1 to get rid of those particular neighbors

Now, all the vertices in N(T) have at least two neighbors in T

Can they have many neighbors in the rest of the graph?

No, less than k; otherwise easy solution or butterfly

A solution intersects $T \cap N(T)$ (why?)

Either it also intersects $\overline{T \cap N(T)}$, and we conclude with Trick 2

Or not. And we solve $G[T \cap N(T)]$ since it is $4K_2$ -free (Alekseev)

Results and perspectives

- FPT algorithms when
 - H is a clique minus a bipartite complete graph (can be seen as a P₃ of cliques, generalizes the butterfly)
 - H is the union of cliques (parameterized version of Alekseev)
 - H is a clique minus a triangle $(K_r \setminus K_4 \text{ contrains a } K_{1,4})$
 - H, candidate on 5 vertices: crown, gem, kite, \overline{P} , dart, cricket

Results and perspectives

- FPT algorithms when
 - H is a clique minus a bipartite complete graph (can be seen as a P₃ of cliques, generalizes the butterfly)
 - H is the union of cliques (parameterized version of Alekseev)
 - H is a clique minus a triangle $(K_r \setminus K_4 \text{ contrains a } K_{1,4})$
 - H, candidate on 5 vertices: crown, gem, kite, \overline{P} , dart, cricket

W[1]-hardness cases with a third reduction:

Results and perspectives

- FPT algorithms when
 - H is a clique minus a bipartite complete graph (can be seen as a P₃ of cliques, generalizes the butterfly)
 - H is the union of cliques (parameterized version of Alekseev)
 - H is a clique minus a triangle $(K_r \setminus K_4 \text{ contrains a } K_{1,4})$
 - H, candidate on 5 vertices: crown, gem, kite, \overline{P} , dart, cricket

W[1]-hardness cases with a third reduction:

Mainly left with "path of cliques"