
Maximum Independent Set in H-Free Graphs

Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan
Thomassé, and Rémi Watrigant

Séminaire Graphes et Optimisation, LaBRI, Bordeaux,
September 21st, 2018



Independent Set

Problem: Given a graph

and an integer k : Is there an independent set of size at least k?

NP-complete even in graphs with maximum degree 3.

What about on graphs excluding an induced subgraph H?
(called H-free graphs)



Independent Set

Problem: Given a graph

and an integer k : Is there an independent set of size at least k?

NP-complete even in graphs with maximum degree 3.

What about on graphs excluding an induced subgraph H?
(called H-free graphs)



Independent Set

Problem: Given a graph

and an integer k : Is there an independent set of size at least k?

NP-complete even in graphs with maximum degree 3.

What about on graphs excluding an induced subgraph H?
(called H-free graphs)



NP-hardness cases [Alekseev ’82]

Subdivide every edge twice

This reduction + NP-hardness on graphs of degree 3 ⇒
NP-hardness for graphs of degree 3, with arbitrarily large girth and
distance between two vertices with degree 3 (branching vertices).

The constructed graph is H-free except if H is...



NP-hardness cases [Alekseev ’82]

Subdivide every edge twice

This reduction + NP-hardness on graphs of degree 3 ⇒
NP-hardness for graphs of degree 3, with arbitrarily large girth and
distance between two vertices with degree 3 (branching vertices).

The constructed graph is H-free except if H is...



NP-hardness cases [Alekseev ’82]

Subdivide every edge twice

This reduction + NP-hardness on graphs of degree 3 ⇒
NP-hardness for graphs of degree 3, with arbitrarily large girth and
distance between two vertices with degree 3 (branching vertices).

The constructed graph is H-free except if H is...



NP-hardness cases [Alekseev ’82]

Subdivide every edge any fixed even number of times

This reduction + NP-hardness on graphs of degree 3 ⇒
NP-hardness for graphs of degree 3, with arbitrarily large girth and
distance between two vertices with degree 3 (branching vertices).

The constructed graph is H-free except if H is...



NP-hardness cases [Alekseev ’82]

This reduction + NP-hardness on graphs of degree 3 ⇒
NP-hardness for graphs of degree 3, with arbitrarily large girth and
distance between two vertices with degree 3 (branching vertices).

The constructed graph is H-free except if H is...



P/NP-complete status of MIS on H-free graphs

For H connected:

I NP-complete, if H is not a path or a subdivided claw (K1,3)

I in P, if H is a path on up to 6 vertices

I in P, if H is a claw with one edge subdivided once

I For other H, the problem is open

Minimal open cases:



P/NP-complete status of MIS on H-free graphs

For H connected:

I NP-complete, if H is not a path or a subdivided claw (K1,3)

I in P, if H is a path on up to 6 vertices

I in P, if H is a claw with one edge subdivided once

I For other H, the problem is open

Minimal open cases:



Other dichotomies

The polynomial algorithms for P5-free and then P6-free graphs
use tools that cannot generalize to P8-free graphs and beyond.

Understanding Pt-free graphs is a challenge

there are other goodies/baddies partition:

I PTAS/APX-hard

I SUBEXP/ETH-hard

I FPT/W[1]-hard



Other dichotomies

The polynomial algorithms for P5-free and then P6-free graphs
use tools that cannot generalize to P8-free graphs and beyond.

Understanding Pt-free graphs is a challenge

there are other goodies/baddies partition:

I PTAS/APX-hard

I SUBEXP/ETH-hard

I FPT/W[1]-hard



Parameterized complexity

Fixed-Parameter Tractable (FPT) algorithm:
in time f (k)nO(1) with

I n, the size of the instance,

I k, a parameter such as the solution size, and

I f , any computable function.

Example:

I Vertex Cover has a simple 2knO(1)-algorithm

I Independent Set is W[1]-hard (hence unlikely FPT)

Convenient definition of W[1]-hard for our purpose:
As hard as Independent Set for FPT reductions



Parameterized complexity

Fixed-Parameter Tractable (FPT) algorithm:
in time f (k)nO(1) with

I n, the size of the instance,

I k, a parameter such as the solution size, and

I f , any computable function.

Example:

I Vertex Cover has a simple 2knO(1)-algorithm

I Independent Set is W[1]-hard (hence unlikely FPT)

Convenient definition of W[1]-hard for our purpose:
As hard as Independent Set for FPT reductions



FPT reductions

Reduction from (Π, k) to (Π′, k ′) taking FPT time and such that
k′ = g(k) for a computable function g.

Are the following FPT-reductions?

I The ”subdividing the edges twice” trick that we saw?

No

I Complementing the graph, from MIS to Clique?

Yes

I (G , k) 7→ (G , n − k), from MIS to Vertex Cover?

No



FPT reductions

Reduction from (Π, k) to (Π′, k ′) taking FPT time and such that
k′ = g(k) for a computable function g.

Are the following FPT-reductions?

I The ”subdividing the edges twice” trick that we saw?

No

I Complementing the graph, from MIS to Clique?

Yes

I (G , k) 7→ (G , n − k), from MIS to Vertex Cover?

No



FPT reductions

Reduction from (Π, k) to (Π′, k ′) taking FPT time and such that
k′ = g(k) for a computable function g.

Are the following FPT-reductions?

I The ”subdividing the edges twice” trick that we saw? No

I Complementing the graph, from MIS to Clique?

Yes

I (G , k) 7→ (G , n − k), from MIS to Vertex Cover?

No



FPT reductions

Reduction from (Π, k) to (Π′, k ′) taking FPT time and such that
k′ = g(k) for a computable function g.

Are the following FPT-reductions?

I The ”subdividing the edges twice” trick that we saw? No

I Complementing the graph, from MIS to Clique? Yes

I (G , k) 7→ (G , n − k), from MIS to Vertex Cover?

No



FPT reductions

Reduction from (Π, k) to (Π′, k ′) taking FPT time and such that
k′ = g(k) for a computable function g.

Are the following FPT-reductions?

I The ”subdividing the edges twice” trick that we saw? No

I Complementing the graph, from MIS to Clique? Yes

I (G , k) 7→ (G , n − k), from MIS to Vertex Cover? No



Why MIS and why forbidden induced subgraphs?

I some hard problems like Dominating Set are almost
indifferent to forbidding induced subgraphs

I for subgraphs or minors, the dichotomy would be trivial

I can shed light on other hereditary classes



Why MIS and why forbidden induced subgraphs?

I some hard problems like Dominating Set are almost
indifferent to forbidding induced subgraphs

I for subgraphs or minors, the dichotomy would be trivial

I can shed light on other hereditary classes



Known results

I FPT for H on at most 4 vertices but C4 [Dabrowski et al. ’12]

I MIS is W[1]-hard in K1,4-free graphs [Hermelin et al. ’14]

Why is MIS FPT in Kr -free graphs?1

Every Kr -free graphs has either:

I at most Ramsey(k,r) ≈ k r−1 vertices → brute-force is FPT

I an independent set of size k → answer YES

1This is why the question is not interesting for subgraphs and minors



Known results

I FPT for H on at most 4 vertices but C4 [Dabrowski et al. ’12]

I MIS is W[1]-hard in K1,4-free graphs [Hermelin et al. ’14]

Why is MIS FPT in Kr -free graphs?1

Every Kr -free graphs has either:

I at most Ramsey(k,r) ≈ k r−1 vertices → brute-force is FPT

I an independent set of size k → answer YES

1This is why the question is not interesting for subgraphs and minors



Our current goal

Let’s try to remove the C4s with an FPT reduction



First thoughts
k-Multicolored Independent Set is W[1]-hard
Instances whose vertex-set is partitioned into k cliques

What should we avoid between the cliques?

2K2

Half-graphs



First thoughts
k-Multicolored Independent Set is W[1]-hard
Instances whose vertex-set is partitioned into k cliques

What should we avoid between the cliques?

2K2

??

Half-graphs



First thoughts
k-Multicolored Independent Set is W[1]-hard
Instances whose vertex-set is partitioned into k cliques

What should we avoid between the cliques? 2K2

Half-graphs



First thoughts
k-Multicolored Independent Set is W[1]-hard
Instances whose vertex-set is partitioned into k cliques

What should we avoid between the cliques? 2K2

1 1

2 2

3 3

4 4

5 5

Half-graphs



”Cycle” of half graphs

Two inequalities enforce the equality



Grid Tiling
Input: k × k grid of cells containing pairs over [n]2

Example with k = 3 cliques/color classes and n = 5

Output: select one pair per cell so that

I columns agree on the first coordinate

I rows agree on the second coordinate



Grid Tiling
Input: k × k grid of cells containing pairs over [n]2

Example with k = 3 cliques/color classes and n = 5

Output: select one pair per cell so that

I columns agree on the first coordinate

I rows agree on the second coordinate



Grid Tiling w.r.t the number of cells is W[1]-hard

(vj , ·)

(·, vi ) (vi , vi ) (·, vi ) (vj , vi ) (·, vi )

(vj , ·)

(vj , vj)

(vj , ·)

The same with inequalities has the same lower bound
Useful for geometric problems such as Packing Unit Disks



Grid Tiling w.r.t the number of cells is W[1]-hard

(vj , ·)

(·, vi ) (vi , vi ) (·, vi ) (vj , vi ) (·, vi )

(vj , ·)

(vj , vj)

(vj , ·)

The same with inequalities has the same lower bound
Useful for geometric problems such as Packing Unit Disks



Avoiding C4 with half graphs everywhere

Ti,j

Ri,jLi,j

Bi,j

Gadget TGi,j

Li,j+1Ri,j−1

Simultaneously:

I no C4,C5, . . . ,Cs

I no K1,4

I no tree with two branching vertices



Avoiding C4 with half graphs everywhere

Ti,j

Ri,jLi,j

Bi,j

Gadget TGi,j

Li,j+1Ri,j−1

Simultaneously:

I no C4,C5, . . . ,Cs

I no K1,4

I no tree with two branching vertices



Two variants of the reduction

Variants with half-graphs in blue and antimatchings in red

1 1

2 2

3 3

4 4

5 5

antimatching



FPT candidates
H should be chordal and

I either a path of cliques with simple connections between
adjacent cliques

I or a subdivided claw of cliques with very simple connections
between adjacent cliques

bipartite complete except possibly one edge

half-graph



What about algorithms now?

Modular FPT reduction which traps many hard cases.

Generic algorithmic technique for the remaining cases?

So far, we did not get something very unified.

I Many H-specific arguments
I A handful of transversal tricks/ideas

Maybe not so surprising:
notably open for Pt-free graphs

entire papers have been dedicated to -free graphs



What about algorithms now?

Modular FPT reduction which traps many hard cases.

Generic algorithmic technique for the remaining cases?

So far, we did not get something very unified.

I Many H-specific arguments
I A handful of transversal tricks/ideas

Maybe not so surprising:
notably open for Pt-free graphs

entire papers have been dedicated to -free graphs



What about algorithms now?

Modular FPT reduction which traps many hard cases.

Generic algorithmic technique for the remaining cases?

So far, we did not get something very unified.

I Many H-specific arguments
I A handful of transversal tricks/ideas

Maybe not so surprising:
notably open for Pt-free graphs

entire papers have been dedicated to -free graphs



Some candidates on 5 vertices



Some candidates on 5 vertices



Two tricks to catch the butterfly
Trick 1: we can guess the solution on any subset of f (k) vertices

We just try all the 2f (k) possibilities

Trick 2: We can progress if we have the following

A 6 f (k) B

0 < k1 < k 0 < k2 < k

k1f (k) + 1

with
I A and B intersecting the solution
I all the vertices in A have at most f (k) neighbors in B



Two tricks to catch the butterfly
Trick 1: we can guess the solution on any subset of f (k) vertices
We just try all the 2f (k) possibilities

Trick 2: We can progress if we have the following

A 6 f (k) B

0 < k1 < k 0 < k2 < k

k1f (k) + 1

with
I A and B intersecting the solution
I all the vertices in A have at most f (k) neighbors in B



Two tricks to catch the butterfly
Trick 1: we can guess the solution on any subset of f (k) vertices
We just try all the 2f (k) possibilities

Trick 2: We can progress if we have the following

A 6 f (k) B

0 < k1 < k 0 < k2 < k

k1f (k) + 1

with
I A and B intersecting the solution
I all the vertices in A have at most f (k) neighbors in B



Two tricks to catch the butterfly

Trick 1: we can guess the solution on any subset of f (k) vertices
We just try all the 2f (k) possibilities

Trick 2: We can progress if we have the following

A 6 f (k) B

0 < k1 < k 0 < k2 < k

k1f (k) + 1

We guess how many vertices a solution contains in A and B



Two tricks to catch the butterfly

Trick 1: we can guess the solution on any subset of f (k) vertices
We just try all the 2f (k) possibilities

Trick 2: We can progress if we have the following

A 6 f (k) B

0 < k1 < k 0 < k2 < k

k1f (k) + 1

We extract independent sets of size k2 in G [B]



Two tricks to catch the butterfly

Trick 1: we can guess the solution on any subset of f (k) vertices
We just try all the 2f (k) possibilities

Trick 2: We can progress if we have the following

A 6 f (k) B

0 < k1 < k 0 < k2 < k

6 k1f (k)

k1f (k) + 1

If this stops before k1f (k) + 1 are extracted, use Trick 1



Two tricks to catch the butterfly

Trick 1: we can guess the solution on any subset of f (k) vertices
We just try all the 2f (k) possibilities

Trick 2: We can progress if we have the following

A 6 f (k) B

0 < k1 < k 0 < k2 < k

k1f (k) + 1

If we can extract k1f (k) + 1 of them, we stop there



Two tricks to catch the butterfly

Trick 1: we can guess the solution on any subset of f (k) vertices
We just try all the 2f (k) possibilities

Trick 2: We can progress if we have the following

A 6 f (k) B

0 < k1 < k 0 < k2 < k

k1f (k) + 1

What does this achieve?



Two tricks to catch the butterfly

Trick 1: we can guess the solution on any subset of f (k) vertices
We just try all the 2f (k) possibilities

Trick 2: We can progress if we have the following

A 6 f (k) B

0 < k1 < k 0 < k2 < k

k1f (k) + 1

Any independent set of size k1 in G [A] can be completed



FPT algorithm in butterfly-free graph

?

T

N(T )

?

T

N(T )

6 k

T

N(T )

6 k

Let us consider a triangle and its neighbors



FPT algorithm in butterfly-free graph

?

T

N(T )

?

T

N(T )

6 k

T

N(T )

6 k

Can there be very many vertices attached to a single vertex?



FPT algorithm in butterfly-free graph

?

T

N(T )

?

T

N(T )

6 k

T

N(T )

6 k

Less than k . Otherwise: easy solution or butterfly



FPT algorithm in butterfly-free graph

?

T

N(T )

?

T

N(T )

6 k

T

N(T )

6 k

We use Trick 1 to get rid of those particular neighbors



FPT algorithm in butterfly-free graph

?

T

N(T )

?

T

N(T )

6 k

T

N(T )

6 k

Now, all the vertices in N(T ) have at least two neighbors in T



FPT algorithm in butterfly-free graph

?

T

N(T )

?

T

N(T )

6 k

T

N(T )

6 k

Can they have many neighbors in the rest of the graph?



FPT algorithm in butterfly-free graph

?

T

N(T )

?

T

N(T )

6 k

T

N(T )

6 k

No, less than k ; otherwise easy solution or butterfly



FPT algorithm in butterfly-free graph

?

T

N(T )

?

T

N(T )

6 k

T

N(T )

6 k

A solution intersects T ∩ N(T ) (why?)



FPT algorithm in butterfly-free graph

?

T

N(T )

?

T

N(T )

6 k

T

N(T )

6 k

Either it also intersects T ∩ N(T ), and we conclude with Trick 2



FPT algorithm in butterfly-free graph

?

T

N(T )

?

T

N(T )

6 k

T

N(T )

6 k

Or not. And we solve G [T ∩ N(T )] since it is 4K2-free (Alekseev)



Results and perspectives

FPT algorithms when

I H is a clique minus a bipartite complete graph
(can be seen as a P3 of cliques, generalizes the butterfly)

I H is the union of cliques (parameterized version of Alekseev)

I H is a clique minus a triangle (Kr \ K4 contrains a K1,4)

I H, candidate on 5 vertices: crown, gem, kite, P, dart, cricket

W[1]-hardness cases with a third reduction:

Mainly left with ”path of cliques”



Results and perspectives

FPT algorithms when

I H is a clique minus a bipartite complete graph
(can be seen as a P3 of cliques, generalizes the butterfly)

I H is the union of cliques (parameterized version of Alekseev)

I H is a clique minus a triangle (Kr \ K4 contrains a K1,4)

I H, candidate on 5 vertices: crown, gem, kite, P, dart, cricket

W[1]-hardness cases with a third reduction:

Mainly left with ”path of cliques”



Results and perspectives

FPT algorithms when

I H is a clique minus a bipartite complete graph
(can be seen as a P3 of cliques, generalizes the butterfly)

I H is the union of cliques (parameterized version of Alekseev)

I H is a clique minus a triangle (Kr \ K4 contrains a K1,4)

I H, candidate on 5 vertices: crown, gem, kite, P, dart, cricket

W[1]-hardness cases with a third reduction:

Mainly left with ”path of cliques”


