When Maximum Stable Set can be solved in FPT time

Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant

Montpellier, March 12th 2020

Independent Set

Problem: Given a graph

and an integer k : Is there an independent set of size at least k ?

Independent Set

Problem: Given a graph

and an integer k : Is there an independent set of size at least k ?

Independent Set

Problem: Given a graph

and an integer k : Is there an independent set of size at least k ?
NP-complete even in subcubic graphs

What about on graphs excluding an induced subgraph H ? (called H-free graphs)

NP-hard cases [Alekseev '82, Poljak '73]

NP-hard cases [Alekseev '82, Poljak '73]

Subdivide every edge twice

NP-hard cases [Alekseev '82, Poljak '73]

Subdivide every edge twice

NP-hard cases [Alekseev '82, Poljak '73]

Subdivide every edge any even number of times
This reduction + NP-hardness on subcubic graphs \Rightarrow NP-hardness for subcubic graphs, with arbitrarily large

- girth, and
- distance between two vertices with degree at least 3 .

NP-hard cases [Alekseev '82, Poljak '73]

Subdivide every edge any even number of times
This reduction + NP-hardness on subcubic graphs \Rightarrow NP-hardness for subcubic graphs, with arbitrarily large

- girth, and
- distance between two vertices with degree at least 3 .

The constructed graph is H -free except if H is...

P/NP-hard dichotomy

For H connected:

- NP-hard, if H is not a path or a subdivided claw $\left(K_{1,3}\right)$
- in P , if H is a path on up to 6 vertices
- in P , if H is a claw with one edge subdivided once
- For other H , the problem is open

P/NP-hard dichotomy

For H connected:

- NP-hard, if H is not a path or a subdivided claw $\left(K_{1,3}\right)$
- in P , if H is a path on up to 6 vertices
- in P , if H is a claw with one edge subdivided once
- For other H , the problem is open

Minimal open cases:

Other dichotomies

There are other goodies/baddies partition:

- PTAS/APX-hard
- SUBEXP/ETH-hard
- FPT/W[1]-hard

Parameterized complexity

Fixed-Parameter Tractable (FPT) algorithm: in time $f(k) n^{O(1)}$ with

- n, the size of the instance,
- k, a parameter such as the solution size, and
- f, any computable function.

Parameterized complexity

Fixed-Parameter Tractable (FPT) algorithm:
in time $f(k) n^{O(1)}$ with

- n, the size of the instance,
- k, a parameter such as the solution size, and
- f, any computable function.

Example:

- Vertex Cover has a simple $2^{k} n^{O(1)}$-algorithm
- Independent Set is W[1]-hard (hence unlikely FPT)

Convenient definition of W[1]-hard for our purpose:
As hard as Independent Set for FPT reductions

Ultimate goal: Dichotomy classification

For every H ,

- if easy (H) then Independent Set is FPT on H-free graphs,
- otherwise it is W[1]-hard.

Ultimate goal: Dichotomy classification

For every H ,

- if easy (H) then Independent Set is FPT on H-free graphs,
- otherwise it is W[1]-hard.

For the P/NP-hard dichotomy, we have at least a natural candidate for the criterion easy (H)...

Known results before 2018

Why is Independent Set FPT in K_{r}-free graphs? ${ }^{1}$

${ }^{1}$ This is why the question is not interesting for subgraphs and minors

Known results before 2018

Why is Independent Set FPT in K_{r}-free graphs? ${ }^{1}$
Every K_{r}-free graphs has either:

- at most Ramsey $(\mathrm{k}, \mathrm{r}) \approx k^{r-1}$ vertices \rightarrow brute-force is FPT
- an independent set of size $k \rightarrow$ answer YES
${ }^{1}$ This is why the question is not interesting for subgraphs and minors

Known results before 2018

Why is Independent Set FPT in K_{r}-free graphs? ${ }^{1}$

Every K_{r}-free graphs has either:

- at most Ramsey $(\mathrm{k}, \mathrm{r}) \approx k^{r-1}$ vertices \rightarrow brute-force is FPT
- an independent set of size $k \rightarrow$ answer YES
- FPT for H on at most 4 vertices but C_{4} [Dabrowski et al. '12]
- FPT for bull-free graphs [Thomassé et al. '14]
- W[1]-hard in $K_{1,4}$-free graphs [Hermelin et al. '14]
${ }^{1}$ This is why the question is not interesting for subgraphs and minors

BBCTW '18: W[1]-hardness reduction

Simultaneously avoiding as induced subgraph:
$-C_{4}, C_{5}, \ldots, C_{s}$

- $K_{1,4}$
- any tree with two degree-3+ vertices at distance at most s

Candidates on 5 vertices

Candidates on 5 vertices

\bar{P}

Other W[1]-hard cases due to a variant of the reduction

Other W[1]-hard cases due to a variant of the reduction

Mainly left with "path of cliques"

Other W[1]-hard cases due to a variant of the reduction

Mainly left with "path of cliques"
$P\left(a_{1}, a_{2}, \ldots, a_{s}\right)=$ graph obtained from P_{s} by replacing the i-th vertex by a clique of size a_{i}.

Ambitious conjecture

Conjecture: Independent SEt is FPT in $P(t, t, \ldots, t)$-free.

Ambitious conjecture

Conjecture: Independent SEt is FPT in $P(t, t, \ldots, t)$-free.

- Proved for $P(t, t, t)$ [BBCTW '18].
- No easy argument for $P(1,1,1,1,1)$ and P_{7} is open.

Ambitious conjecture

Conjecture: Independent SEt is FPT in $P(t, t, \ldots, t)$-free.

- Proved for $P(t, t, t)$ [BBCTW '18].
- No easy argument for $P(1,1,1,1,1)$ and P_{7} is open.

Theorem
Independent Set admits an FPT algorithm in $P(1, t, t, t)$-free.
Main ingredient: introducing co-graphs with parameterized noise, and associated FPT subroutines

Co-graphs with parameterized noise

Sparse case

Dense case

Tripartition (A, B, R) of the graph, where R is small, and:

- Sparse case: the degree to the other side is small
- Dense case: the co-degree to the other side is small

Co-graphs with parameterized noise

Sparse case

Dense case

Tripartition (A, B, R), where R is small, and:

- Sparse case: no large transversal biclique
- Dense case: the co-degree to the other side is small

Co-graphs with parameterized noise

Dense case

Tripartition (A, B, R), where R is small, and:

- Sparse case: no large transversal biclique
- Dense case: the co-degree to the other side is small

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$ Trick 1: we can guess the solution on any subset of $f(k)$ vertices

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$ Trick 1: we can guess the solution on any subset of $f(k)$ vertices We just try all the $2^{f(k)}$ possibilities

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$

Trick 1: we can guess the solution on any subset of $f(k)$ vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: Excavating a sequence of solutions

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$

Trick 1: we can guess the solution on any subset of $f(k)$ vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: Excavating a sequence of solutions

We guess how many vertices a solution contains in A and B

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$

Trick 1: we can guess the solution on any subset of $f(k)$ vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: Excavating a sequence of solutions

We extract independent sets of size k_{1} in $G[A]$

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$

Trick 1: we can guess the solution on any subset of $f(k)$ vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: Excavating a sequence of solutions

We extract independent sets of size k_{1} in $G[A]$

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$

Trick 1: we can guess the solution on any subset of $f(k)$ vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: Excavating a sequence of solutions

If this process stops quickly, use Trick 1

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$

Trick 1: we can guess the solution on any subset of $f(k)$ vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: Excavating a sequence of solutions

If it goes on, we stop after $s \gg k, d$ steps

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$
Trick 1: we can guess the solution on any subset of $f(k)$ vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: Excavating a sequence of solutions

We do the same with independent sets of size k_{2} in $G[B]$

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$
Trick 1: we can guess the solution on any subset of $f(k)$ vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: Excavating a sequence of solutions

Solution! Except if there is at least one edge between each pair

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$
Trick 1: we can guess the solution on any subset of $f(k)$ vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: Excavating a sequence of solutions

That would be s^{2} edges on $s k$ vertices

An FPT subroutine for the sparse case: no $K_{d, d}$ in $G[A, B]$
Trick 1: we can guess the solution on any subset of $f(k)$ vertices We just try all the $2^{f(k)}$ possibilities

Trick 2: Excavating a sequence of solutions

By Kővari-Sós-Turán: less than $d(s k)^{2-1 / d}<s^{2}$ edges

General roadmap for $P(1, t, t, t)$-free graphs

- Build \mathcal{C} : a maximal collection of independent cliques
- Partition the graph in classes with the same neighborhood in \mathcal{C}
- Show: large classes are attached to the cliques laminarly

General roadmap for $P(1, t, t, t)$-free graphs

- Build \mathcal{C} : a maximal collection of independent cliques
- Partition the graph in classes with the same neighborhood in \mathcal{C}
- Show: large classes are attached to the cliques laminarly

This, the ubiquity of cliques, the $P(1, t, t, t)$-freeness imply

- a sparse tripartition: conclude with previous slide, or
- a dense tripartition: another lemma

Remaining candidates on 5 vertices

Remaining candidates on 5 vertices

Remaining candidates on 5 vertices

Open questions

- FPT algorithm for $P(t, t, t, t)$-free graphs.
- "easy" FPT algorithm for P_{5}-free graphs.
- FPT algorithm for P_{7}-free graphs.
- derandomized algorithms for the cricket and the dart.

Open questions

- FPT algorithm for $P(t, t, t, t)$-free graphs.
- "easy" FPT algorithm for P_{5}-free graphs.
- FPT algorithm for P_{7}-free graphs.
- derandomized algorithms for the cricket and the dart.

Thank you for your attention!

