# Parameterized Hardness of Art Gallery Problems

#### Édouard Bonnet, Till(mann) Miltzow

Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest

1st April 2016, EuroCG, Lugano

The ART GALLERY problems: Input: a polygon  $\mathcal{P}$  with *n* vertices, a positive integer *k*. Point Guard: find a set of at most *k* **points** guarding  $\mathcal{P}$ . Vertex Guard: find a set of at most *k* **vertices** guarding  $\mathcal{P}$ . The ART GALLERY problems: Input: a polygon  $\mathcal{P}$  with *n* vertices, a positive integer *k*. Point Guard: find a set of at most *k* **points** guarding  $\mathcal{P}$ . Vertex Guard: find a set of at most *k* **vertices** guarding  $\mathcal{P}$ .

Allowing holes make them as hard as Set Cover:

- For parameterized complexity: unlikely to be solvable in  $n^{o(k)}$ .
- ▶ For approximation: very unlikely to be *o*(log *n*)-approximable.

## Parameterized hardness on simple polygons

Simple polygon: no holes and not self-crossing. The problems are known to remain NP-hard (even APX-hard).

#### Theorem (B., Miltzow)

Unless the ETH fails, they cannot be solved in time  $n^{o(k/\log k)}$ .

ETH:  $\operatorname{3-Sat}$  cannot be solved in subexponential time.

## Parameterized hardness on simple polygons

Simple polygon: no holes and not self-crossing. The problems are known to remain NP-hard (even APX-hard).

#### Theorem (B., Miltzow)

Unless the ETH fails, they cannot be solved in time  $n^{o(k/\log k)}$ .

ETH: 3-SAT cannot be solved in subexponential time.

Near tightness: Both are solvable in  $n^{O(k)}$ Vertex Guard for an obvious reason Point Guard for an algebraic reason

#### Structured 2-Track Hitting Set

2-elements:  $\forall i \in [t], \forall j \in [k] (a_i^j, b_i^j)$ Total orderings of the *a*-elements and the *b*-elements Sets: *A*-intervals and *B*-intervals Find *k* 2-elements thats hits all the sets



#### Structured 2-Track Hitting Set



#### Theorem (B., Miltzow)

Unless the ETH fails, STRUCTURED 2-TRACK HITTING SET cannot be solved in time  $n^{o(k/\log k)}$ .

# Interval gadget



## Puzzle<sup>1</sup> for you

Find 2 orderings of  $\{1, \overline{1}, 2, \overline{2}, \dots, n, \overline{n}\}$  and a set-system over those elements such that:

- every set is an *interval* for one of the orders
- the minimum hitting sets are all the pairs  $\{i, \overline{i}\}$

<sup>&</sup>lt;sup>1</sup>No guarantee of fun

## Puzzle<sup>1</sup> for you

Find 2 orderings of  $\{1, \overline{1}, 2, \overline{2}, \dots, n, \overline{n}\}$  and a set-system over those elements such that:

- every set is an *interval* for one of the orders
- the minimum hitting sets are all the pairs  $\{i, \overline{i}\}$

Order 1:  $1, 2, \ldots, n, \overline{1}, \overline{2}, \ldots, \overline{n}$ Order 2:  $\overline{1}, \overline{2}, \ldots, \overline{n}, 1, 2, \ldots, n$ 

<sup>1</sup>No guarantee of fun

## Puzzle<sup>1</sup> for you

Find 2 orderings of  $\{1, \overline{1}, 2, \overline{2}, \dots, n, \overline{n}\}$  and a set-system over those elements such that:

- every set is an *interval* for one of the orders
- the minimum hitting sets are all the pairs  $\{i, \overline{i}\}$

Order 1:  $1, 2, \ldots, n, \overline{1}, \overline{2}, \ldots, \overline{n}$ Order 2:  $\overline{1}, \overline{2}, \ldots, \overline{n}, 1, 2, \ldots, n$ 

Set-system:  $\forall i, \{i, i+1, \dots, n, \overline{1}, \overline{2}, \dots, \overline{i-1}\}$  $\forall i, \{\overline{i}, \overline{i+1}, \dots, \overline{n}, 1, 2, \dots, \overline{i-1}\}$ 

<sup>1</sup>No guarantee of fun

#### Weak point linker



# Weak point linker



# Point linker (triangle of weak linkers)



#### The big picture



The STRUCTURED 2-TRACK HITTING SET instance is satifiable iff one can guard the polygon with 3*k* points.











#### Filter





Thank you for attention!