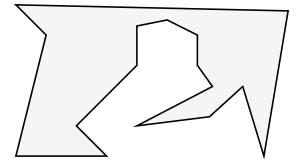
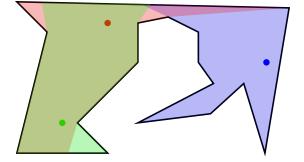
Parameterized Hardness of Art Gallery Problems

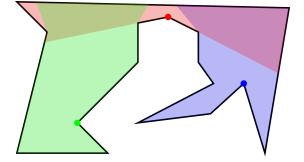

Édouard Bonnet, Till(mann) Miltzow

Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest

August 22, 2016, ESA, Aarhus



Art Gallery Problem


Polygon with n vertices.

Art Gallery Problem

Polygon with n vertices. Guard the gallery with k **points**.

Art Gallery Problem

Polygon with n vertices. Guard the gallery with k **vertices**.

The ART GALLERY problems:

Input: a polygon \mathcal{P} with n vertices, a positive integer k.

Point Guard: find a set of at most k **points** guarding \mathcal{P} .

Vertex Guard: find a set of at most k **vertices** guarding \mathcal{P} .

The ART GALLERY problems:

Input: a polygon P with n vertices, a positive integer k.

Point Guard: find a set of at most k **points** guarding \mathcal{P} .

Vertex Guard: find a set of at most k **vertices** guarding \mathcal{P} .

Holes make them as hard as Set Cover [Eidenbenz et al. '01]:

- ▶ For parameterized complexity: unlikely to be solvable in $n^{o(k)}$.
- ▶ For approximation: very unlikely to be $o(\log n)$ -approximable.

Parameterized hardness on simple polygons¹

The problems are known to remain NP-hard; even APX-hard.

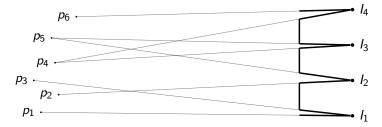
Both are solvable in $n^{O(k)}$: VERTEX GUARD for an obvious reason POINT GUARD for an algebraic reason

¹No holes and not self-crossing

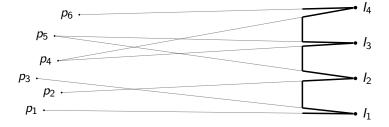
Parameterized hardness on simple polygons¹

The problems are known to remain NP-hard; even APX-hard.

Both are solvable in $n^{O(k)}$: VERTEX GUARD for an obvious reason POINT GUARD for an algebraic reason


Theorem (B., Miltzow)

Unless the ETH fails, they cannot be solved in time $f(k)n^{o(k/\log k)}$.


ETH: 3-SAT cannot be solved in subexponential time.

¹No holes and not self-crossing

Interval gadget

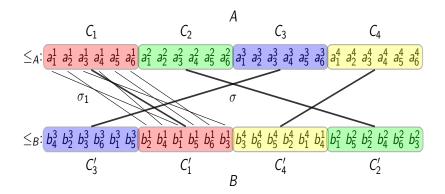
Interval gadget

Okay, but hitting intervals is easy.

2-track intervals

We should ensure that placing a guard at one point/vertex *forces* you to place another guard at its colleague point/vertex.

Structured 2-Track Hitting Set


2-elements: $\forall i \in [t], \forall j \in [k] \ (a_i^j, b_i^j)$

Total orderings of the a-elements and the b-elements

Sets: A-intervals and B-intervals

Goal: Find *k* 2-elements thats hits all the sets

Structured 2-Track Hitting Set

Theorem (B., Miltzow)

Unless the ETH fails, STRUCTURED 2-TRACK HITTING SET cannot be solved in time $n^{o(k/\log k)}$.

Puzzle for you

Find 2 orderings of $\{1, \overline{1}, 2, \overline{2}, \dots, n, \overline{n}\}$ and a set-system over those elements such that:

- every set is an interval for one of the orders
- ▶ the minimum hitting sets are all the pairs $\{i, \bar{i}\}$

Puzzle for you

Find 2 orderings of $\{1, \overline{1}, 2, \overline{2}, \dots, n, \overline{n}\}$ and a set-system over those elements such that:

- every set is an interval for one of the orders
- ▶ the minimum hitting sets are all the pairs $\{i, \bar{i}\}$

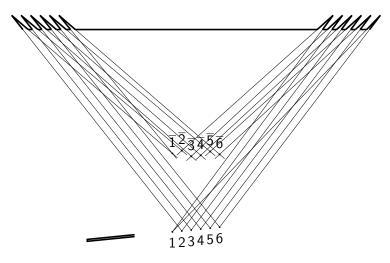
Order 1:
$$1, 2, ..., n, \overline{1}, \overline{2}, ..., \overline{n}$$

Order 2: $\overline{1}, \overline{2}, ..., \overline{n}, 1, 2, ..., n$

Puzzle for you

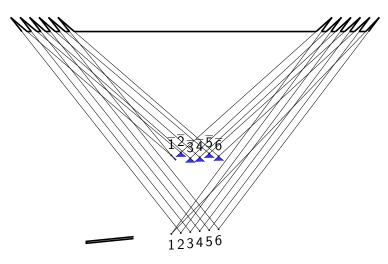
Find 2 orderings of $\{1, \overline{1}, 2, \overline{2}, \dots, n, \overline{n}\}$ and a set-system over those elements such that:

- every set is an interval for one of the orders
- ▶ the minimum hitting sets are all the pairs $\{i, \bar{i}\}$

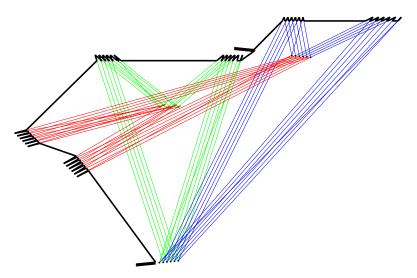

Order 1:
$$1, 2, \ldots, n, \overline{1}, \overline{2}, \ldots, \overline{n}$$

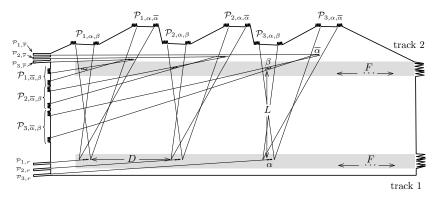
Order 2: $\overline{1}, \overline{2}, \ldots, \overline{n}, 1, 2, \ldots, n$

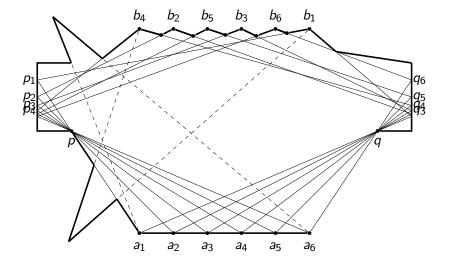
Set-system:

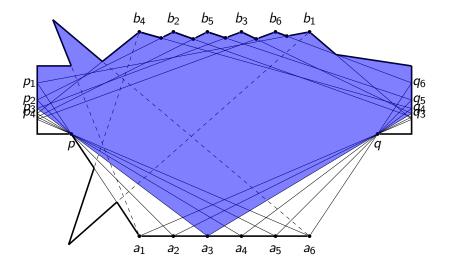

$$\forall i, \{i, i+1, \ldots, n, \overline{1}, \overline{2}, \ldots, \overline{i-1}\}\ \forall i, \{\overline{i}, \overline{i+1}, \ldots, \overline{n}, 1, 2, \ldots, i-1\}$$

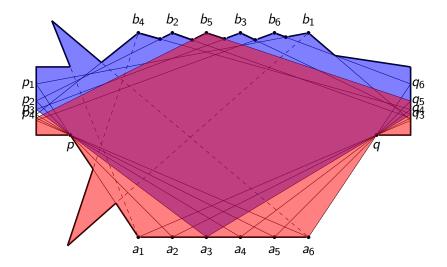
Point Guard

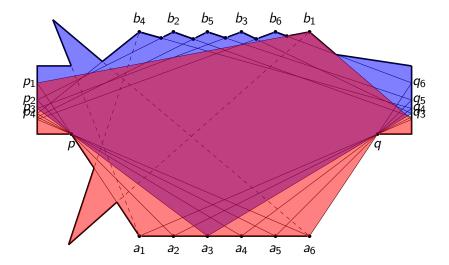

Weak point linker

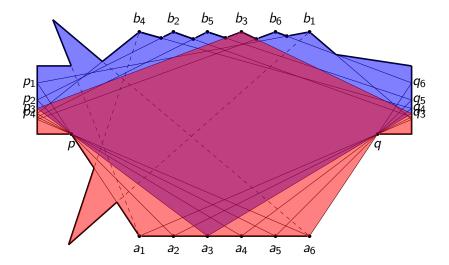

Weak point linker

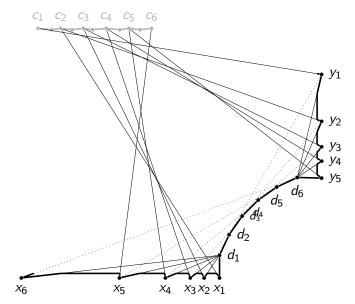

Point linker (triangle of weak linkers)

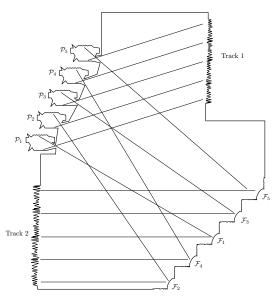



The big picture




The STRUCTURED 2-TRACK HITTING SET instance is satisfiable iff one can guard the polygon with 3k points.





Filter

The big picture

Thank you for attention!