Introduction 0 0000	Positive Results 00000 0	Negative Results 000	Perspectives 0

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

<u>Édouard Bonnet,</u> Bruno Escoffier, Vangelis Th. Paschos, Florian Sikora, Georgios Stamoulis, Rémi Watrigant

June 6, 2014

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Introduction

Cardinality-Constraint Graph Problems Known Results

Positive Results

Max k-Vertex Cover Max (k, n - k)-Cut

Negative Results Negative Results

Perspectives Perspectives

Introduction	Positive Results	Negative Results	Perspectives	
0000	0	000	0	

Cardinality-Constraint Graph Problems

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Introduction • •	Positive Results 00000 0	Negative Results	Perspectives O	
Cardinality-Constraint Graph Problems				

G, k = 7(, p)

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Introduction • •	Positive Results 00000 0	Negative Results	Perspectives O	
Cardinality-Constraint Graph Problems				

Max/Min k-Vertex Cover

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Introduction • •	Positive Results 00000 0	Negative Results	Perspectives O	
Cardinality-Constraint Graph Problems				

k-Densest/k-Sparsest

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Introduction • •	Positive Results 00000 0	Negative Results	Perspectives O	
Cardinality-Constraint Graph Problems				

Max/Min (k, n-k)-Cut

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Introduction • •	Positive Results 00000 0	Negative Results	Perspectives O	
Cardinality-Constraint Graph Problems				

Max/Min k-Dominating Set

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Introduction • • • • • • • • • • • •	Positive Results 00000 0	Negative Results 000	Perspectives 0
Known Results			

Classical Complexity

All the eight problems are NP-complete in general, and:

Introduction ○ ●○○○	Positive Results 00000 0	Negative Results 000	Perspectives 0
Known Results			

Classical Complexity

All the eight problems are NP-complete in general, and:

Theorem (Corneil and Perl '84)

k-Densest (hence, Min *k*-Vertex Cover) is NP-complete in bipartite graphs.

Introduction ○ ●○○○	Positive Results 00000 0	Negative Results 000	Perspectives 0
Known Results			

Classical Complexity

All the eight problems are NP-complete in general, and:

Theorem (Corneil and Perl '84)

k-Densest (hence, Min *k*-Vertex Cover) is NP-complete in bipartite graphs.

Theorem (Joret and Vetta '12, Caskurlu and Subramani '13, Apollonio and Simeone '14)

Max k-Vertex Cover (hence, k-Sparsest) is NP-complete in bipartite graphs.

Parameterized Complexity

Theorem (Cai '08) $Max/Min \ k$ -Vertex Cover, k-Densest, k-Sparsest, Max/Min (k, n - k)-Cut are W[1]-complete.

Parameterized Complexity

Theorem (Cai '08) $Max/Min \ k$ -Vertex Cover, k-Densest, k-Sparsest, Max/Min (k, n - k)-Cut are W[1]-complete.

Theorem (Corneil and Perl '84)

Max k-Densest is W[1]-complete in bipartite graphs.

Parameterized Complexity

Theorem (Cai '08) $Max/Min \ k$ -Vertex Cover, k-Densest, k-Sparsest, Max/Min (k, n - k)-Cut are W[1]-complete.

Theorem (Corneil and Perl '84) Max k-Densest is W[1]-complete in bipartite graphs.

Theorem (Raman and Saurabh '08)

Max k-Dominating Set is W[2]-complete in bipartite graphs.

Parameterized Complexity (2)

Theorem (Bläser '03)

Max k-Vertex Cover is FPT parameterized by p.

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Parameterized Complexity (2)

Theorem (Bläser '03)

Max k-Vertex Cover is FPT parameterized by p.

Theorem (Cygan, Lokshtanov, Pilipczuk, Pilipczuk and Saurabh '14)

Min (k, n - k)-cut is FPT parameterized by p.

Parameterized Complexity (3)

Theorem (Cai, Chan and Chan '06) LGPPs are solvable in time $O^*(2^{(\Delta+1)k}((\Delta+1)k)^{O(\log((\Delta+1)k))})$.

Parameterized Complexity (3)

Theorem (Cai, Chan and Chan '06) *LGPPs are solvable in time* $O^*(2^{(\Delta+1)k}((\Delta+1)k)^{O(\log((\Delta+1)k))})$. Theorem (B., Escoffier, Paschos, and Tourniaire '13) *Degrading LGPPs are solvable in time* $O^*((\Delta+1)^k)$.

Parameterized Complexity (3)

- Theorem (Cai, Chan and Chan '06) LGPPs are solvable in time $O^*(2^{(\Delta+1)k}((\Delta+1)k)^{O(\log((\Delta+1)k))})$.
- Theorem (B., Escoffier, Paschos, and Tourniaire '13) Degrading LGPPs are solvable in time $O^*((\Delta + 1)^k)$.

Theorem (Shachnai and Zehavi '14) Non degrading LGPPs are solvable in time $O^*(4^{k+o(k)}\Delta^k)$.

Introduction 0 0000	Positive Results •0000 o	Negative Results 000	Perspectives 0
Max k-Vertex Cover			

We will show the following result:

Theorem

Generalized Max k-Vertex Cover is FPT in bipartite graphs.

where the k vertices should be picked in $V' \subseteq V$.

We order the vertices by decreasing degrees: $v_1, v_2, \ldots v_n$.

Lemma If $d(v) \leq d(v_k) - k$, v is not in an optimal solution.

We order the vertices by decreasing degrees: $v_1, v_2, \ldots v_n$.

Lemma If $d(v) \leq d(v_k) - k$, v is not in an optimal solution.

We order the vertices by decreasing degrees: $v_1, v_2, \ldots v_n$.

Lemma If $d(v) \leq d(v_k) - k$, v is not in an optimal solution.

Introduction 0 0000	Positive Results 00●00 0	Negative Results 000	Perspectives O
Max k-Vertex Cover			

Lemma If $d(v_k) \leq d(v_1) - k$, any optimal solution intersects $\{v_1, \dots, v_{k-1}\}.$

If $S \cap \{v_1, \ldots, v_{k-1}\} = \emptyset$, we replace any vertex in S by v_1 .

Introduction 0 0000	Positive Results 00●00 0	Negative Results 000	Perspectives O
Max k-Vertex Cover			

Lemma If $d(v_k) \leq d(v_1) - k$, any optimal solution intersects $\{v_1, \dots, v_{k-1}\}.$

If $S \cap \{v_1, \ldots, v_{k-1}\} = \emptyset$, we replace any vertex in S by v_1 .

Necessary sets or intersectivity \rightsquigarrow bounded branching tree $O(k^k)$.

Introduction o oooo	Positive Results	Negative Results 000	Perspectives 0
Max k-Vertex Cover			

Conclusion

Vertices in V' have degree in $[d(v_1) - 2k, d(v_1)]$.

$$\begin{bmatrix} d(v_1) & \uparrow & \\ & < k \\ d(v_k) & \downarrow \\ & \\ d(v_{|V'|}) & \downarrow \end{bmatrix}$$

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Introduction 0 0000	Positive Results 0000● 0	Negative Results 000	Perspectives O
Max k-Vertex Cover			

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Introduction 0 0000	Positive Results ○○○○●	Negative Results 000	Perspectives 0
Max k-Vertex Cover			

Otherwise, we take k vertices in one part and gets kd_1 edges.

Introduction 0 0000	Positive Results 0000● 0	Negative Results 000	Perspectives 0
Max k-Vertex Cover			

We guess the part of an optimal solution in 2^{2k} .

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Introduction 0 0000	Positive Results 0000● 0	Negative Results 000	Perspectives O
Max k-Vertex Cover			

This is done at most 2k times.

0 0000	0000● ○	000	0
Max k-Vertex Cover			

We find an optimal solution in
$$O^*(2^{(2k)^2})$$
.

Introduction 0 0000	Positive Results 0000● 0	Negative Results	Perspectives O
Max k-Vertex Cover			

We find an optimal solution in $O^*((2k)^{3k})$.

Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Lemma If $d(v) \leq d(v_k) - 2k$, v is not in an optimal solution.

Lemma If $d(v_k) \leq d(v_1) - 2k$, any optimal solution intersects $\{v_1, \dots, v_{k-1}\}.$

Lemma If $d(v) \leq d(v_k) - 2k$, v is not in an optimal solution.

Lemma If $d(v_k) \leq d(v_1) - 2k$, any optimal solution intersects $\{v_1, \dots, v_{k-1}\}.$

Conclusion Vertices in V' have degree in $[d(v_1) - 4k, d(v_1)]$.

Lemma If $d(v) \leq d(v_k) - 2k$, v is not in an optimal solution.

Lemma If $d(v_k) \leq d(v_1) - 2k$, any optimal solution intersects $\{v_1, \dots, v_{k-1}\}$.

Conclusion Vertices in V' have degree in $[d(v_1) - 4k, d(v_1)]$.

We find an optimal solution in $O^*((4k)^{5k})$.

Introduction 0 0000	Positive Results 00000 0	Negative Results ●00	Perspectives O
Negative Results			

Theorem

Min k-Vertex Cover is W[1]-complete in bipartite graphs.

Theorem

Min (k, n - k)-Cut is W[1]-complete in bipartite graphs.

We reduce from k-Clique in regular graphs.

Introduction 0 0000	Positive Results 00000 0	Negative Results ○●○	Perspectives O
Negative Results			

$$(k + \binom{k}{2})$$
-Vertex Cover touching less than $\Delta k - 2\binom{k}{2}$ edges?

$$(k + \binom{k}{2})$$
-Densest with $2\binom{k}{2}$ edges?

$$(k + \binom{k}{2})$$
-Densest with $2\binom{k}{2}$ edges?

Introduction 0 0000	Positive Results 00000 0	Negative Results 000	Perspectives ●
B			
Perspectives			

- Polynomial kernel for Max k-Vertex Cover?
- Can we rule out an algorithm in $O^*(c^k)$ with c constant?
- Parameterized complexity of Max k-Vertex Cover in chordals?

Introduction 0 0000	Positive Results 00000 0	Negative Results 000	Perspectives ●
Perspectives			

- Polynomial kernel for Max k-Vertex Cover?
- Can we rule out an algorithm in $O^*(c^k)$ with c constant?
- Parameterized complexity of Max k-Vertex Cover in chordals?
- Complexity of k-Densest in interval graphs?
- Complexity of k-Densest in planar graphs?