Parameterized Complexity of Cardinality-Constraint Problems in Bipartite Graphs

Édouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, Florian Sikora, Georgios Stamoulis, Rémi Watrigant

June 6, 2014

Introduction
Cardinality-Constraint Graph Problems
Known Results
Positive Results
Max k-Vertex Cover
$\operatorname{Max}(k, n-k)$-Cut
Negative Results
Negative Results
Perspectives
Perspectives

Max/Min k-Vertex Cover

k-Densest/k-Sparsest

Max/Min $(k, n-k)$-Cut

Max/Min k-Dominating Set

Classical Complexity

All the eight problems are NP-complete in general, and:

Classical Complexity

All the eight problems are NP-complete in general, and:
Theorem (Corneil and Perl '84)
k-Densest (hence, Min k-Vertex Cover) is NP-complete in bipartite graphs.

Classical Complexity

All the eight problems are NP-complete in general, and:
Theorem (Corneil and Perl '84)
k-Densest (hence, Min k-Vertex Cover) is NP-complete in bipartite graphs.

Theorem (Joret and Vetta '12, Caskurlu and Subramani '13, Apollonio and Simeone '14)
Max k-Vertex Cover (hence, k-Sparsest) is NP-complete in bipartite graphs.

Parameterized Complexity

Theorem (Cai '08)
Max/Min k-Vertex Cover, k-Densest, k-Sparsest, Max/Min ($k, n-k$)-Cut are W[1]-complete.

Parameterized Complexity

Theorem (Cai '08)
Max/Min k-Vertex Cover, k-Densest, k-Sparsest, Max/Min ($k, n-k$)-Cut are W[1]-complete.

Theorem (Corneil and Perl '84)
Max k-Densest is W[1]-complete in bipartite graphs.

Parameterized Complexity

Theorem (Cai '08)
Max/Min k-Vertex Cover, k-Densest, k-Sparsest, Max/Min ($k, n-k$)-Cut are W[1]-complete.

Theorem (Corneil and Perl '84)
Max k-Densest is W[1]-complete in bipartite graphs.
Theorem (Raman and Saurabh '08)
Max k-Dominating Set is W[2]-complete in bipartite graphs.

Parameterized Complexity (2)

Theorem (Bläser '03)
Max k-Vertex Cover is FPT parameterized by p.

Parameterized Complexity (2)

Theorem (Bläser '03)
Max k-Vertex Cover is FPT parameterized by p.
Theorem (Cygan, Lokshtanov, Pilipczuk, Pilipczuk and Saurabh '14)
Min $(k, n-k)$-cut is FPT parameterized by p.

Parameterized Complexity (3)

Theorem (Cai, Chan and Chan '06)
LGPPs are solvable in time $O^{*}\left(2^{(\Delta+1) k}((\Delta+1) k)^{O(\log ((\Delta+1) k))}\right)$.

Parameterized Complexity (3)

Theorem (Cai, Chan and Chan '06)
LGPPs are solvable in time $O^{*}\left(2^{(\Delta+1) k}((\Delta+1) k)^{O(\log ((\Delta+1) k))}\right)$.
Theorem (B., Escoffier, Paschos, and Tourniaire '13)
Degrading LGPPs are solvable in time $O^{*}\left((\Delta+1)^{k}\right)$.

Parameterized Complexity (3)

Theorem (Cai, Chan and Chan '06)
LGPPs are solvable in time $O^{*}\left(2^{(\Delta+1) k}((\Delta+1) k)^{O(\log ((\Delta+1) k))}\right)$.
Theorem (B., Escoffier, Paschos, and Tourniaire '13)
Degrading LGPPs are solvable in time $O^{*}\left((\Delta+1)^{k}\right)$.
Theorem (Shachnai and Zehavi '14)
Non degrading LGPPs are solvable in time $O^{*}\left(4^{k+o(k)} \Delta^{k}\right)$.

We will show the following result:
Theorem
Generalized Max k-Vertex Cover is FPT in bipartite graphs.
where the k vertices should be picked in $V^{\prime} \subseteq V$.

We order the vertices by decreasing degrees: $v_{1}, v_{2}, \ldots v_{n}$. Lemma
If $d(v) \leqslant d\left(v_{k}\right)-k, v$ is not in an optimal solution.

We order the vertices by decreasing degrees: $v_{1}, v_{2}, \ldots v_{n}$. Lemma
If $d(v) \leqslant d\left(v_{k}\right)-k, v$ is not in an optimal solution.

We order the vertices by decreasing degrees: $v_{1}, v_{2}, \ldots v_{n}$. Lemma
If $d(v) \leqslant d\left(v_{k}\right)-k, v$ is not in an optimal solution.

Lemma
If $d\left(v_{k}\right) \leqslant d\left(v_{1}\right)-k$, any optimal solution intersects $\left\{v_{1}, \ldots, v_{k-1}\right\}$.

If $S \cap\left\{v_{1}, \ldots, v_{k-1}\right\}=\emptyset$, we replace any vertex in S by v_{1}.

Lemma
If $d\left(v_{k}\right) \leqslant d\left(v_{1}\right)-k$, any optimal solution intersects
$\left\{v_{1}, \ldots, v_{k-1}\right\}$.

If $S \cap\left\{v_{1}, \ldots, v_{k-1}\right\}=\emptyset$, we replace any vertex in S by v_{1}.
Necessary sets or intersectivity \rightsquigarrow bounded branching tree $O\left(k^{k}\right)$.

Conclusion
Vertices in V^{\prime} have degree in $\left[d\left(v_{1}\right)-2 k, d\left(v_{1}\right)\right]$.

$$
\left[\begin{array}{cc}
d\left(v_{1}\right) & \uparrow \\
& <k \\
d\left(v_{k}\right) & \downarrow \\
& \downarrow k \\
& <k \\
d\left(v_{\mid V^{\prime}}\right) & \downarrow
\end{array}\right.
$$

Otherwise, we take k vertices in one part and gets $k d_{1}$ edges.

We guess the part of an optimal solution in $2^{2 k}$.

This is done at most $2 k$ times.

We find an optimal solution in $O^{*}\left(2^{(2 k)^{2}}\right)$.

We find an optimal solution in $O^{*}\left((2 k)^{3 k}\right)$.

Theorem

Max $(k, n-k)$-Cut is FPT in bipartite graphs.

Theorem

Max $(k, n-k)$-Cut is FPT in bipartite graphs.
Lemma
If $d(v) \leqslant d\left(v_{k}\right)-2 k, v$ is not in an optimal solution.
Lemma
If $d\left(v_{k}\right) \leqslant d\left(v_{1}\right)-2 k$, any optimal solution intersects $\left\{v_{1}, \ldots, v_{k-1}\right\}$.

Theorem

Max $(k, n-k)$-Cut is FPT in bipartite graphs.
Lemma
If $d(v) \leqslant d\left(v_{k}\right)-2 k, v$ is not in an optimal solution.
Lemma
If $d\left(v_{k}\right) \leqslant d\left(v_{1}\right)-2 k$, any optimal solution intersects $\left\{v_{1}, \ldots, v_{k-1}\right\}$.

Conclusion
Vertices in V^{\prime} have degree in $\left[d\left(v_{1}\right)-4 k, d\left(v_{1}\right)\right]$.

Theorem

Max $(k, n-k)$-Cut is FPT in bipartite graphs.
Lemma
If $d(v) \leqslant d\left(v_{k}\right)-2 k, v$ is not in an optimal solution.
Lemma
If $d\left(v_{k}\right) \leqslant d\left(v_{1}\right)-2 k$, any optimal solution intersects $\left\{v_{1}, \ldots, v_{k-1}\right\}$.

Conclusion
Vertices in V^{\prime} have degree in $\left[d\left(v_{1}\right)-4 k, d\left(v_{1}\right)\right]$.
We find an optimal solution in $O^{*}\left((4 k)^{5 k}\right)$.

Theorem
Min k-Vertex Cover is W[1]-complete in bipartite graphs.
Theorem
Min ($k, n-k$)-Cut is W[1]-complete in bipartite graphs.

We reduce from k-Clique in regular graphs.

$\left(k+\binom{k}{2}\right)$-Vertex Cover touching less than $\Delta k-2\binom{k}{2}$ edges?

$$
\left(k+\binom{k}{2}\right) \text {-Densest with } 2\binom{k}{2} \text { edges? }
$$

$$
\left(k+\binom{k}{2}\right) \text {-Densest with } 2\binom{k}{2} \text { edges? }
$$

$$
\text { If }\left|S \cap V_{E}\right|<\binom{k}{2} \text {, then }|E(S)|<2\binom{k}{2} \text {. }
$$

$$
\left(k+\binom{k}{2}\right) \text {-Densest with } 2\binom{k}{2} \text { edges? }
$$

$$
\text { If }|S \cap V|<k \text {, then }|E(S)|<2\binom{k-r}{2}+k-r \leqslant 2\binom{k}{2} \text {. }
$$

$\left(k+\binom{k}{2}\right)$-Densest with $2\binom{k}{2}$ edges?

- Polynomial kernel for Max k-Vertex Cover?
- Can we rule out an algorithm in $O^{*}\left(c^{k}\right)$ with c constant?
- Parameterized complexity of Max k-Vertex Cover in chordals?
- Polynomial kernel for Max k-Vertex Cover?
- Can we rule out an algorithm in $O^{*}\left(c^{k}\right)$ with c constant?
- Parameterized complexity of Max k-Vertex Cover in chordals?
- Complexity of k-Densest in interval graphs?
- Complexity of k-Densest in planar graphs?

