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Graph Motif
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Given a graph G = (V ,E ) whose vertices are colored by a function
c : V → C and a multiset M over C . . .
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Motivations

I Lacroix et al. (2005): reaction networks.
I Social, technical networks, and mass spectrometry.
I Graph pattern matching with only connectivity constraint.
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Known results - algorithms

I FPT in the size of the motif: O∗(2|M|) [BKK ’12,PZ ’12].
I FPT in the neighborhood diversity: O∗(2nd) [G ’12].
I XP in tw(G) + |C| [FFHV ’11].
I Polytime solvable in caterpillar trees [ABHKMPR ’10].



Graph Motif - what is known? Bounded neighborhood diversity Unbounded neighborhood diversity Hardness

Known results - hardness

I W[1]-hard on trees w.r.t the number of colors [FFHV ’11].
I NP-hard on bipartite graphs of degree 4, |C| = 2 [FFHV ’11].
I NP-hard on trees of diameter 4 [ABHKMPR ’10].
I NP-hard on comb graphs [CPPW ’12].
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Neighborhood diversity

I Least number of subsets in a partition into true or false twins.
I κ has linear neighborhood diversity if ∀G , nd(G) 6 O(κ(G)).
I κ has exponential n.d. if ∀G , nd(G) 6 2O(κ(G)).
I κ has unbounded n.d. if ∀f , ∃G such that nd(G) > f (κ(G)).

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Vertex cover number has exponential n.d. since nd(G) 6 vc + 2vc.
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Cluster editing number on connected graphs has linear n.d.:
nd(G) 6 3k + 1.
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Neighborhood diversity

I Least number of subsets in a partition into true or false twins.
I κ has linear neighborhood diversity if ∀G , nd(G) 6 O(κ(G)).
I κ has exponential n.d. if ∀G , nd(G) 6 2O(κ(G)).
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Distance to co-cluster has unbounded n.d.
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Aim of the paper

Completing the picture for structural/secondary parameters.
I Does only boundedness of neighborhood diversity count?
I For exponential n.d.: from double to single-exponential time.
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Ecological Landscape

NP-hard
with constant parameter values

FPT but no poly-kernel
if NP * coNP/poly

W[1]-hard, in W[P]FPT
Distance

to clique • Vertex Cover • Cluster Editing ∗ Max leaf # ♦

Min Edge
Clique Cover •

Distance to
co-cluster ♦

Distance to
cluster ♦

Distance to
disjoint paths ♦

Feedback
edge set # ∗ Bandwidth ♦

Min Vertex
Clique Cover ♦

Max Ind. Set

Distance
to co-graphs

Distance
to interval

Feedback
Vertex Set # Pathwidth Max Degree

Min Dominating
Set ♦

Distance
to chordal

Distance
to bipartite Treewidth h-index

Diameter

Distance
to perfect Degeneracy

Chromatic # Average Degree
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Bounded neighborhood diversity
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Parameter: distance to clique

Theorem
Graph Motif can be solved in O∗(4k).
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C1 C2 C3 C4 C5 C6

6 k

M ′ = M − { , , , , , , , , , , , }
Set-colored Set Cover with threshold constraints imposed by M ′.

Solvable in O∗(m2n) for m sets and n elements.
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Time O∗(4k) should be improvable to O∗(2k) but not further:

Observation
Under SCH, Graph Motif cannot be solved in O∗((2− ε)k).

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

SCH: For any ε > 0, Set Cover cannot be solved in O((2− ε)n).
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Parameter: vertex cover number

Theorem
Graph Motif can be solved in O∗(22k log k).
I Let’s start as the previous algorithm.

I Guess an ordered partition of the connected components Ci s
I which says how the Ci s connect with each other via the IS.
I Maximum matching in an auxiliary bipartite graph.

C1 C2 C3 C4 C5 C6

Set-colored Set Cover with threshold constraints and
connected intersection graph of the solution.
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Again, you may expect to go down to O∗(2k) but not lower:

Observation
Under SETH, Graph Motif cannot be solved in O∗((2− ε)k).

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

SETH: For any ε > 0, SAT cannot be solved in O((2− ε)n).
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Unbounded neighborhood diversity
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Parameter: distance to co-cluster

Theorem
Graph Motif can be solved in O∗(22k log k).
H = V − S = I1 ∪ . . . ∪ Iq is a co-cluster.
Fix a solution R.

I case a) R intersects only one Ij , solve S ∪ Ij  vertex cover k.
I case b) R intersects two Ijs, cliquify H  distance to clique k.
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Theorem
Graph Motif is W[1]-hard for parameter max leaf number.

In fact,

Theorem
Graph Motif is W[1]-hard for parameter number of leaves of
the graph + number of colors in subdivisions of stars.
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Reduction from k-Multicolored Clique on (∪16i6kHi ,E )
where Hi = {ui ,1, . . . , ui ,t}.

Pi ij ij ij ij
t

ij ij ij ij
t

ij ij ij ij
t

Pj ij ij ij
uj,1 uj,2 uj,3 uj,4

ui ,1 ui ,2 ui ,3 ui ,4

List of edges: {13, 15, 20, 29, . . . , 80, 81, 92, 97} (t = 10).
Complements to t2: {3, 8, 19, 20, . . . , 71, 80, 85, 87}.

Consecutive differences: {3, 5, 11, 1, . . . , 9, 5, 2}.

Pi ,j 3× ij 5× ij 11× ij 1× ij

M = { , × blah, × blah, t2 × ij}
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Theorem
Graph Motif is solvable in O∗(16mln10ml) = nO(ml).

Observation
There is less than 4ml vertices of degree at least 3 and removing
those vertices leaves a disjoint union of at most 5ml paths.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

The previous reduction was only ruling out no(
√

ml) assuming ETH.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Partitioned Subgraph Isomorphism → Graph Motif
 no((ml(G)+|C|)/ log (ml(G)+|C|)) ETH-based lower bound.
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Perspectives

I Settle the 2O(vc) vs no 2o(vc log vc) under ETH.
I A 2O(vc) algorithm would immediately give a

single-exponential for parameter distance to co-cluster and
edge clique cover number (where the edge clique cover is
given with the input).

I Extend the FPT algorithms to the list-colored variant.
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