On Subexponential and FPT-time Inapproximability

É. Bonnet, B. Escoffier, E. J. Kim, V. Th. Paschos

September 2013

É. Bonnet, B. Escoffier, E. J. Kim, V. Th. Paschos On Subexponential and FPT-time Inapproximability

Inapproximability in subexponential time

- APETH
- designing a.p. sparsifiers
- APETH and parameterised complexity

Inapproximability in FPT-time LPC

results

ETH for approximations

Hypothesis $(APETH(\Pi))$

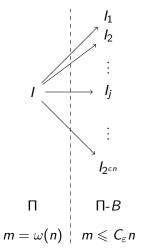
There exists r and ε such that Π cannot be r-approximated within time $O^*(2^{\epsilon n})$.

Definition (APETH-equivalent problems)

 Π_1 and Π_2 are two APETH-equivalent problems denoted by $\Pi_1 \underset{ae}{\equiv} \Pi_2$ if APETH(Π_1) holds iff APETH(Π_2) holds Inapproximability in subexponential time Inapproximability in FPT-time APETH designing a.p. sparsifiers APETH and parameterised complexity

Standard Sparsification

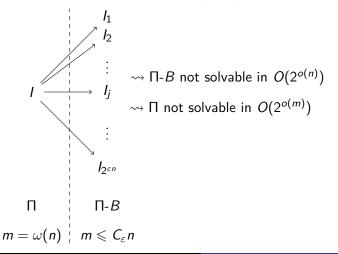
Assumption: Π not solvable in $O(2^{o(n)})$



Inapproximability in subexponential time Inapproximability in FPT-time APETH designing a.p. sparsifiers APETH and parameterised complexity

Standard Sparsification

Assumption: Π not solvable in $O(2^{o(n)})$



(Approximation preserving) Sparsification

Definition (approximation preserving sparsification)

Two functions (f,g) s.t. $\forall \varepsilon > 0$ and $\forall I$ instance of $\Pi \exists B_{\varepsilon}$ s.t.

- $f: I \mapsto I_1, I_2, \ldots, I_h$ in time $O^*(2^{\epsilon n}), h \leq 2^{\epsilon n}$.
- $\forall i \in \{1, \ldots, h\}$, $I_i \leqslant n$ and $p(I_i) \leqslant B_{\varepsilon}$.
- $g:Sol(I_i) \mapsto Sol(I)$ in polynomial time.
- $\exists i, S_i \ r$ -approximation of $I_i \Rightarrow g(S_i) \ r$ -approximation of I.

Theorem (straightforward)

If Π admits an a.p. sparsification then $\Pi \equiv \prod_{ae} \Pi - B$.

Aim

We want to give evidences that most inapproximable problems satisfy APETH:

- showing that many problems are APETH-equivalents.
- linking APETH to other complexity conjectures.

Recipe

- Design a.p. sparsifier for well-known problems ↔ Pi₁ ≡ Pi₁-B, Pi₂ ≡ Pi₂-B, ..., Pi₁ ≡ Pi₁-B.
 L-reduction in Max SNP [Papadimitriou, Yannakakis '91] ↔ Pi₁-B ≡ Pi₂-B ≡ ... ≡ Pi₁-B.
- Conclude $Pi_1 \equiv Pi_2 \equiv \ldots \equiv Pi_l$.

An a.p. sparsifier for Independent Set

Basic idea: to stop the branching tree at the right time. B_{ε} : smallest integer such that the positive root of $X^{B_{\varepsilon}+1}-X^{B_{\varepsilon}}-1=0$ is smaller than 2^{ε} .

- $\Delta(G) \ge B_{\varepsilon} \rightsquigarrow n-1, n-B_{\varepsilon}-1$ branching.
- $\Delta(G) < B_{\varepsilon} \rightsquigarrow G B_{\varepsilon}$ -sparse.

- branching tree has size $(2^{\varepsilon})^n = 2^{\varepsilon n}$.
- f: building the tree.
- g: adding to S_j the vertices taken from I to I_j .
- approximation preserving: one branch takes only vertices of the optimal solution S^* . Let this number of vertices be k and the branch be the *j*-th: $\frac{k+|S^*\cap G_j|}{k+|S_i|} \leq \frac{|S^*\cap G_j|}{|S_i|}.$

An a.p. sparsifier for Generalised Dominating Set

Generalised Dominating Set: $G = (V = V_1 \cup V_2 \cup V_3, E)$. Find a minimum subset of $V_1 \cup V_2$ which dominates $V_2 \cup V_3$.

- (i) While there exists $v \in V_1$ s.t. $d(v) \ge B'$, branch on v.
- (ii) While there exists $v \in V_2$ s.t. $d(v) \ge B'^2$, branch on v.
- (iii) While there exists $v \in V_3$ s.t. $d(v) \ge B'^3$, branch on a neighbor of v.

Weights

$$w(v) = \begin{cases} \min(\frac{1}{2}, \frac{1}{4} + \frac{d(v)}{4B'}) & \text{if } v \in V_1. \\ \min(1, \frac{3}{4} + \frac{d(v)}{4B'}) & \text{if } v \in V_2. \\ \frac{1}{2} & \text{if } v \in V_3. \end{cases}$$

- (i) $n-\frac{1}{2}$, $n-\frac{B'}{2}-\frac{1}{2}$ branching, neighbors in V_3 removed, neighbors in V_2 transferred to V_1 .
- (ii) $n \frac{1}{2}, n \frac{B'^2}{B'}$ branching.
- (iii) $n \frac{1}{2}$, $n \frac{B^{\prime 3}}{B^{\prime 2}}$ branching.

In any case, roughly a n-c, n-B' branching.

Theorem (Th1)

Set Cover, Independent Set, Independent Set-B, Vertex Cover, Vertex Cover-B, Dominating Set, Dominating Set-B, Max Cut-B, Max kSAT-B ($k \ge 2$) are APETH-equivalent.

Theorem (Th2)

The followings are equivalent:

- (i) APETH holds for one problem of Th1
- (ii) ∃Π Max SNP-complete, ∃r, ε s.t. Π cannot be r-approximated in O*(2^{εk}).
- (iii) ∀Π Max SNP-complete, ∃r, ε s.t. Π cannot be r-approximated in O*(2^{εk}).

Theorem (Th2)

The followings are equivalent:

- (i) APETH holds for one problem of Th1
- (ii) ∃Π Max SNP-complete, ∃r, ε s.t. Π cannot be r-approximated in O*(2^{εk}).
- (iii) ∀Π Max SNP-complete, ∃r, ε s.t. Π cannot be r-approximated in O^{*}(2^{εk}).

(i) \Rightarrow (ii), (iii) \Rightarrow (i): Contrapositives are straightforward. (ii) \Rightarrow (iii): Suppose there is a Max SNP-complete problem Π' *r*-approximable in $O^*(2^{\varepsilon k})$ for all *r* and ε . For any Max SNP-complete problem Π , consider an L-reduction from Π to Π' to show that so does Π .

Linear PCP Conjecture

Conjecture (LPC)

 $3SAT \in PCP_{\beta,1}[\log |\phi| + D, E].$

It is more an open question than a conjecture but:

Theorem (Dinur '07)

 $\forall \varepsilon > 0, \ 3SAT \in PCP_{\varepsilon,1}[(1 + o(1)) \log n + O(\log(\frac{1}{\varepsilon})), O(\log(\frac{1}{\varepsilon}))].$

Theorem (Moshkovitz, Raz '08)

Under ETH, $\forall \varepsilon, \delta > 0$, you cannot tell apart instances of Max 3SAT where:

- at least $(1 \varepsilon)m$ clauses are satisfiable.
- at most $(\frac{7}{8} + \varepsilon)m$ clauses are satisfiable.

in time $O(2^{m^{1-\delta}})$.

Lemma (Lem1)

Under LPC+ETH, $\exists r < 1$, $\forall \varepsilon > 0$, you cannot tell apart instances of Max 3SAT where:

- at least $(1 \varepsilon)m$ clauses are satisfiable.
- at most $(r + \varepsilon)m$ clauses are satisfiable.

in time $O(2^{o(m)})$.

Sparsification Reduction: 3SAT formula $\phi \rightarrow 3$ SAT formula ψ simulating the prover of ϕ implied by LPC. Solving the gap for ψ in subexponential time \rightarrow solving ϕ in subexponential time Contradiction of ETH.

Lemma (Lem2, self-improvement property)

If there exists an FPT-time r-approximation for Independent Set for some r, then there is one for all $r \in (0, 1)$.

Theorem (Chen, Huang, Kanj, Xia '06)

Under ETH, Independent Set cannot be solved in time $f(k)n^{o(k)}$.

Theorem (Th3)

Under LPC+ETH, there exists r s.t. Independent Set cannot be r-approximated in time $f(k)n^{o(k)}$.

Combination of previous theorem and gap-preserving reduction.

Corollary

Under LPC+ETH, for any r there is no r-approximation for Independent Set in FPT-time.

Th3+Lem2

Open Questions

- Inapproximability results upon ETH only, or a more standard conjecture than LPC?
 - $\forall \varepsilon, \exists r_0 = h(n, \varepsilon), \forall r \ge r_0$ Independent Set cannot be *r*-approximated in $O(2^{\frac{n^{1-\varepsilon}}{r^{1+\varepsilon}}})$ [Chalermsook, Laekhanukit, Nanongkai, FOCS '13].
 - See also [Chitnis, Hajiaghayi, Kortsarz, IPEC '13].
- Approximation preserving sparsifiers for Max Cut, Max 3SAT?