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Survey a few developments in geometric intersection graphs:
between minor and induced minor theory
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Minor and Induced Minor




Minor and Induced Minor




Minor and Induced Minor




Excluding minors vs. excluding induced minors

Excludes Ks as a minor



Excluding minors vs. excluding induced minors
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Does not exclude any minor



Excluding minors vs. excluding induced minors

Does not exclude any minor



Excluding minors vs. excluding induced minors

Yet is a bounded-degree unit disk graph



Excluding minors vs. excluding induced minors
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Excludes the 1-subdivision of Kg as an induced minor



String graphs



String graphs




String graphs and region intersection graphs




String graphs and region intersection graphs

RIG({ K¢-minor-free}) excludes Kt(l) as induced minor



Unbounded balanced separators

< 2n/3 < 2n/3



Clique-based separators

Balanced separator S partitioned into “few” cliques C3, Gy, ...

Weight of S: w(S) := 3 log(|V(G)| +1)

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden ’20)
Intersection graphs of fat objects in RY admit clique-based

1
separator of weight O(n'~4).



Clique-based separators — subexponential algorithms

Balanced separator S partitioned into “few” cliques C3, Gy, ...

Weight of S: w(S) := 3 log(|V(G)| +1)

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden ’20)
Intersection graphs of fat objects in RY admit clique-based

. _1
separator of weight O(n'~4).

At most J](|V(G)| +1) = 2%(5) independent sets within S
T(n) < 2% T(2n/3) — 29("(5))-time algorithm for MIS



Clique-based separators — subexponential algorithms

Balanced separator S partitioned into “few” cliques C3, Gy, ...

Weight of S: w(S) := 3 log(|V(G)| +1)

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden ’20)
Intersection graphs of fat objects in RY admit clique-based

. _1
separator of weight O(n'~4).

At most H(]V(C;)|2 + 1) < 22%(5) induced forests within S

1
— 20(W(5))_time algorithm for FEEDBACK VERTEX SET



Clique-based separators — subexponential algorithms

Balanced separator S partitioned into “few"” cliques Cy, G, ...

Weight of S: w(S) := 3> log(|V(G)| +1)

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden '20)

Intersection graphs of fat objects in RY admit clique-based
1
separator of weight O(n'~4).

Clique-based separators of sublinear weight on pseudodisk graphs,
map graphs, geodesic disks in subsets of R2, etc.



Clique-based separators — off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous '24]

©,
<2n/3 @ @ <2n/3
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Clique-based separators — off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous '24]

Store distance of every v € V(G) to every C; of S: n-n = p'*#



Clique-based separators — off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous '24]

Recurse on the components of G — S — O(n'*?) stored values



Clique-based separators — off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous '24]

d(u,v)? If u and v are on # comp. of G — S:
mind(u, G;) +d(v,C) +1



Clique-based separators — off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous '24]

©,
<2n/3 @ @ <2n/3
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S

d(u,v)? Otherwise, recurse and take the min with
mind(u, G;) +d(v,C) +1



Clique-based separators — off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous '24]
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S
Subquadratic space O(n**?) and sublinear query time O(n®)



Clique-based separators — off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous '24]
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S
Each C; has weak diameter at most d — off-by-d DO



Tree-independence number

Treewidth where bag “size” is max independent set within the bag

Theorem (Dallard, Fomin, Golovach, Korhonen, Milani¢ '24)

Tree-independence number k is 8-approximable in 20(k) nO(k)

n2k) is likely needed (GAP-ETH) but not the 2°(K) factor
Given such a decomposition, MIS can be solved in nOk)



Tree-independence number

Treewidth where bag “size” is max independent set within the bag

Theorem (Dallard, Fomin, Golovach, Korhonen, Milani¢ '24)

Tree-independence number k is 8-approximable in 20(k) nO(k)

n2k) is likely needed (GAP-ETH) but not the 2°(K) factor
Given such a decomposition, MIS can be solved in nOk)

“Treewidth vs. clique number” and “Tree-independence number”



Balanced separators dominated by few vertices

Theorem (Robertson, Seymour '86)

Graphs excluding a grid as minor have balanced separators of
constant size.

Conjecture (Gartland—Lokshtanov)

Graphs excluding a grid as induced minor have balanced separators
dominated by a constant number of vertices.



Balanced separators dominated by few vertices

Theorem (Robertson, Seymour '86)

Graphs excluding a grid as minor have balanced separators of
constant size.

Conjecture (Gartland—Lokshtanov)

Graphs excluding a grid as induced minor have balanced separators
dominated by a constant number of vertices.

Known in some classes: P;-free graphs, even-hole-free graphs, etc.

Geometric intersection classes?



Contraction Decomposition — parameterized algorithms

Baker's approach by contracting instead of deleting

Edge Contraction Decomposition:
Partition Ei,..., E, of E(G) s.t. tw(G/E;) = O(p), Vi€ [p].



Contraction Decomposition — parameterized algorithms

Baker's approach by contracting instead of deleting

Edge Contraction Decomposition:
Partition Ei,..., E, of E(G) s.t. tw(G/E;) = O(p), Vi€ [p].



Contraction Decomposition — parameterized algorithms

Baker's approach by contracting instead of deleting

M: remove k edges such that... (think EDGE MuLTiwAY CUT)
Set p= Vk, guess i and SN E; for a smallest SN E; in Vk - n2Vk



Contraction Decomposition — parameterized algorithms

Baker's approach by contracting instead of deleting

M: remove k edges such that... (think EDGE MuLTiwAY CUT)
Solve G/(E;\ S) as its treewidth is at most O(p) + vk = O(p)



Contraction Decomposition — parameterized algorithms

Baker's approach by contracting instead of deleting

I1: remove k edges such that...
nO(Vk) if nO(tw) algorithm, 20(Vk) nO(1) jf polynomial kernel, too



Contraction Decomposition — parameterized algorithms

Baker's approach by contracting instead of deleting

I1: remove k edges such that...
It breaks for vertex variants



Robust Vertex Contraction Decomposition

Vertex Contraction Decomposition: Partition Vi,..., V, of V(G)
st. tw(G/Eyys) = O(p +(S[), Vi€ [p]and VS C V..



Robust Vertex Contraction Decomposition

Vertex Contraction Decomposition: Partition Vi,..., V, of V(G)
st. tw(G/Evs) = O(p +S[), Vi€ [p]and VS C V.



Robust Vertex Contraction Decomposition

Vertex Contraction Decomposition: Partition Vi,..., V, of V(G)
st. tw(G/Eyys) = O(p+|S]), Vi€ [p]and VS C V.

Theorem (Bandyapadhyay, Lochet, Lokshtanov, Marx, Misra, Neuen, Saurabh, Tale, Xue Y25)

H-minor-free graphs admit a Vertex Contraction Decomposition.



Robust Vertex Contraction Decomposition — UDGs

UDG Vertex Contraction Decomposition: [J-preserving partition
Vi,..., \/p s.t. tW(G/EV,-\S U ED) = O(p + |5|),VI S [p], SCV.



Robust Vertex Contraction Decomposition — UDGs
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UDG Vertex Contraction Decomposition: [J-preserving partition
Vi,..., Vp s.t. tW(G/EV,-\S U ED) = O(p + |5|),VI S [p], SCV.



Robust Vertex Contraction Decomposition — UDGs
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UDG Vertex Contraction Decomposition: [J-preserving partition
Vi,..., Vp s.t. tW(G/EV,-\S U ED) = O(p + |5|),VI S [p], SCV.

Theorem (Bandyapadhyay, Lochet, Lokshtanov, Saurabh, Xue '24)
Unit disk graphs admit a UDG Vertex Contraction Decomposition.



Local radius of disk graphs — EPTASes

Local radius of D = radius of dual graph of arrangement ND
Local radius of G = ming of ¢ maxpew local radius of D



Local radius of disk graphs — EPTASes

Theorem (Lokshtanov, Panolan, Saurabh, Xue, Zehavi '23)

» Jow local radius — linearly bounded local treewidth (Baker)

» EPTAS-preserving reduction to low local radius



Bounded weak-diameter colorings

Weak-diameter-d k-coloring of G: (improper) k-coloring of G such
that every pair of vertices in a same monochromatic component is
at distance at most d in G.




Bounded weak-diameter colorings

Weak-diameter-d k-coloring of G: (improper) k-coloring of G such
that every pair of vertices in a same monochromatic component is
at distance at most d in G.

Weak-diameter-2 3-coloring



Bounded weak-diameter colorings

Weak-diameter-d k-edge-coloring of G: (improper) k-edge-coloring
of G such that every pair of vertices in a same monochromatic
component is at distance at most d in G.

Weak-diameter-2 3-edge-coloring



Applications of bounded weak-diameter colorings
Closely related to padded and low-diameter decompositions

Various applications in approximation algorithms, distributed
algorithms, spanners, routing, induced minor theory, etc.

Weak-diameter-d k-coloring — (A + 1)-coloring in O(dk) rounds



Applications of bounded weak-diameter colorings
Closely related to padded and low-diameter decompositions

Various applications in approximation algorithms, distributed
algorithms, spanners, routing, induced minor theory, etc.

In O(d) rounds, a delegate per component of the first color collects
their induced subgraph and broadcasts the (A + 1)-coloring



Applications of bounded weak-diameter colorings
Closely related to padded and low-diameter decompositions

Various applications in approximation algorithms, distributed
algorithms, spanners, routing, induced minor theory, etc.

Then we move to the second color, etc.



Bounded weak-diameter colorings for minor-free classes
Theorem (Klein, Plotkin, Rao '93)

Every Ky-minor-free graph admits a weak-diameter-f(h)
20(h) (_edge)-coloring with f(h) = O(h?).



Bounded weak-diameter colorings for minor-free classes
Theorem (Klein, Plotkin, Rao '93)

Every Ky-minor-free graph admits a weak-diameter-f(h)
20(h) (_edge)-coloring with f(h) = O(h?).
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While the processed component has weak diameter > f(h),
start a BFS at an arbitrary vertex



Bounded weak-diameter colorings for minor-free classes
Theorem (Klein, Plotkin, Rao '93)

Every Ky-minor-free graph admits a weak-diameter-f(h)
20(h) (_edge)-coloring with f(h) = O(h?).
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and recurse on every connected component of every subgraph
induced by O(1) consecutive layers.



Bounded weak-diameter colorings for minor-free classes

Theorem (Klein, Plotkin, Rao '93)

Every Ku-minor-free graph admits a weak-diameter-f(h)
20(h) (-edge)-coloring with f(h) = O(hz)-
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Claim: The branching tree has depth at most h + 1.



Bounded weak-diameter colorings for minor-free classes

O(1) consecutive
layers in Ti—1

Pi(i—1)
Po(i — 1
root of Ti_> \AQ
P3(i—1)
Po(i =1

root of Ti_1 Gi_1

O(1) consecutive layers in Ti_»

Say there is a branch Gi, Gy, ..., Gpio in the branching tree



Bounded weak-diameter colorings for minor-free classes

O(1) consecutive
layers in Ti—1

Py(i— 1)

Py(i — 1
root of Ti_> \AQ
P3(i—1)
Po(i =1

root of Ti_1 Gi_1

O(1) consecutive layers in Ti_»

Ai(h+1),...,As(h+1) C V(Gpy1) far apart in G is a Ky minor



Bounded weak-diameter colorings for minor-free classes

O(1) consecutive
layers in Ti—1

Py(i— 1)

Py(i — 1
root of Ti_> \AQ
P3(i—1)
Po(i =1

root of Ti_1 Gi_1

O(1) consecutive layers in Ti_»

Rewinding back to G; builds a K}, , minor



Bounded weak-diameter colorings for minor-free classes

O(1) consecutive
layers in Ti—1

Py(i— 1)

Py(i — 1
root of Ti_> \AQ
P3(i—1)
Po(i =1

root of Ti_1 Gi_1

O(1) consecutive layers in Ti_»

Rewinding back to Gy builds a Kj 4 (induced!) minor



Bounded weak-diameter colorings for ind-minor-free classes

O(1) consecutive
layers in Ti_1

Pi(i—1)
d
—Ll=Y)
root of T;_»
P3(i—1)
Pp(i—1

root of T;_1 Gi_1

O(1) consecutive layers in Ti_»

Can we build an induced minor model of the 1-subdivision of Kj, 4?7



Weak-diameter colorings beyond minor-free classes

Question

Are there f, g such that every K,Sl)—induced—minor—free graph has
a weak-diameter-f(h) g(h)(-edge)-coloring?



Weak-diameter colorings beyond minor-free classes

Question
Are there f, g such that every K,Sl)—induced—minor-free graph has
a weak-diameter-f(h) g(h)(-edge)-coloring?

Theorem (Davies '25+)

Every region intersection graph G over some Ky-minor free H has
a weak-diameter-O(h?) 29" (_edge)-coloring.

Twist the metric in G based on its representation in H



Weak-diameter colorings beyond minor-free classes

Question
Are there f, g such that every K,Sl)—induced—minor—free graph has
a weak-diameter-f(h) g(h)(-edge)-coloring?

Theorem (Davies '25+)

Every region intersection graph G over some Ky-minor free H has
a weak-diameter-O(h?) 29" (_edge)-coloring.

Twist the metric in G based on its representation in H

Can it be made robust?

Could it be that every class excluding an induced minor is
contained in RIG({Kpx-minor-free}) for some fixed h?



Extending the Pohoata-Davies grid

Theorem (B., Hickingbotham '25+)

For every h, there is a Kél)—induced—minor—free graph that is not
a region intersection graph over Ky-minor free graphs.

Excludes three cycles with paths bridging any two cycles and
avoiding the neighborhood of the third




Extending the Pohoata-Davies grid

Theorem (B., Hickingbotham '25+)

For every h, there is a Kél)—induced—minor—free graph that is not
a region intersection graph over Ky-minor free graphs.

replaced by disjoint union of 1-subdivided apex grids

Still excludes an induced minor, but is no longer in
RIG({ Ks-minor-free}) for any h



Balanced separators of string graphs

Theorem (Matousek '13)
Every m-edge string graph has treewidth O(y/mlog m).



Balanced separators of string graphs

Theorem (Matousek '13)
Every m-edge string graph has treewidth O(y/mlog m).

Theorem (Lee '17 & Davies '25+)
Every m-edge string graph has treewidth O(y/m).



Balanced separators of string graphs

Theorem (Matousek '13)
Every m-edge string graph has treewidth O(y/mlog m).

Theorem (Lee '17 & Davies '25+)
Every m-edge string graph has treewidth O(y/m).

Fox and Pach first observed that this yields a subexponential
algorithm for MAX INDEPENDENT SET

1. While there is a vertex of degree at least n'/3, branch on
adding it to the solution or removing it from the graph.

2. At the leaves, graphs have treewidth O(v/'nl/3 - n) = O(n?/3).



Balanced separators of string graphs

Theorem (Matousek '13)
Every m-edge string graph has treewidth O(y/mlog m).

Theorem (Lee '17 & Davies '25+)
Every m-edge string graph has treewidth O(y/m).

Fox and Pach first observed that this yields a subexponential
algorithm for MAX INDEPENDENT SET

1. While there is a vertex of degree at least n'/3, branch on
adding it to the solution or removing it from the graph.

2. At the leaves, graphs have treewidth O(v/'nl/3 - n) = O(n?/3).

1. takes time 25(”2/3), and each leaf of 2. takes time 20("*"*)



Tight ETH bounds in string graphs

Theorem (Fox, Pach '11; B., Rzazewski '19)

MAX INDEPENDENT SET, FEEDBACK VERTEX SET,
3-COLORING can be solved in time 20(”2/3), and requires 29(n/?)
under the ETH.

Theorem (Marx, Pilipczuk '15)

MAX INDEPENDENT SET in n-vertex string graphs given with

a representation of size s can be solved in time 25(”1/2)50(1).

What is the correct exponent?



Approximating MAX INDEPENDENT SET in string graphs

Theorem (Adamaszek, Har-Peled, Wiese '19)
MAX INDEPENDENT SET in string graphs given with
a polynomial-size representation admits a QPTAS.
Theorem (Fox, Pach '11)

MAX INDEPENDENT SET in O(1)-string graphs admits
a n°-approximation in time n'(¢).



Approximating MAX INDEPENDENT SET in string graphs

Theorem (Adamaszek, Har-Peled, Wiese '19)
MAX INDEPENDENT SET in string graphs given with
a polynomial-size representation admits a QPTAS.

Theorem (Fox, Pach '11)

MAX INDEPENDENT SET in O(1)-string graphs admits
a n°-approximation in time n'(¢).

We currently cannot rule out:

Conjecture (most optimistic)

For every H, MAX INDEPENDENT SET in H-induced-minor-free
graphs admits a PTAS.



Balanced separators of induced-minor-free graphs

Theorem (Korhonen, Lokshtanov '24)
Every m-edge H-induced-minor-free graph has treewidth Op(y/m).

/2 same algorithmic applications

Question
Can it be improved to Oy(y/m)?



Things | did not mention

» the use of Voronoi diagrams of graphs
» the use of (distance) VC dimension for DIAMETER

P> new parameters and how they relate to intersection graphs



Things | did not mention

» the use of Voronoi diagrams of graphs
» the use of (distance) VC dimension for DIAMETER

P> new parameters and how they relate to intersection graphs

Thank you for your attention!



