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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs
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Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs
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edges to N(u)△N(v) turn red, for N(u) ∩ N(v) red is absorbing
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A contraction sequence of G:
Sequence of trigraphs G = Gn, Gn−1, . . . , G2, G1 such that

Gi is obtained by performing one contraction in Gi+1.
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A contraction sequence of G:
Sequence of trigraphs G = Gn, Gn−1, . . . , G2, G1 such that

Gi is obtained by performing one contraction in Gi+1.
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Sequence of trigraphs G = Gn, Gn−1, . . . , G2, G1 such that

Gi is obtained by performing one contraction in Gi+1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
▶ Bounded rank-width or clique-width graphs,
▶ every hereditary proper subclass of permutation graphs,
▶ posets of bounded antichain size,
▶ unit interval graphs,
▶ Kt-minor free graphs,
▶ map graphs,
▶ subgraphs of d-dimensional grids,
▶ Kt-free unit d-dimensional ball graphs,
▶ Ω(log n)-subdivisions of all the n-vertex graphs,
▶ strong products of two bounded twin-width classes, one with

bounded degree,
▶ (given) first-order transductions of the above.



Twin-width bounds of graph classes



Graphs on surfaces

Theorem (Hliněný & Jedelský ’22; Král & Lamaison ’22)
The class of planar graphs has twin-width at most 8, and at least 7.
A matching upper bound of 7 is being written up by H & J.

Theorem (Hliněný & Jedelský ’22)
The class of 1-planar graphs has twin-width at most 16.

Theorem (Hliněný & Jedelský ’22)
The class of map graphs has twin-width at most 38.

Theorem (Král, Pekárková & Štorgel ’23)
The class of graphs of genus at most g has twin-width Θ(√g).

Theorem (B., Kim, Thomassé & Watrigant; B. & Déprés ’22)
The class of Kt-minor-free graphs has twin-width 222O(t)

, and 2Ω(t).



Subdivisions

Theorem (Bergé, B. & Déprés ’21)
For every graph G, any (⩾ 2 log n)-subdivision of G has twin-width
at most 4.

Theorem (Ahn, Chakraborti, Hendrey & Oum ’23)
Full understanding of (⩾ 2)-subdivisions of twin-width 0, 1, 2, or 3
as which minors the original graph excludes.

As one consquence:

Theorem (Ahn, Chakraborti, Hendrey & Oum ’23)
The class of grids has twin-width 4.
Already the 7 × 7 grid has twin-width 4.
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Random graphs and graphs of largest twin-width

Theorem (Ahn, Chakraborti, Hendrey, Kim & Oum ’22)
Almost surely tww(G(n, 1

2)) = n
2 −

√
3n log n

2 ± o(
√

n log n).

Theorem (Ahn, Chakraborti, Hendrey, Kim & Oum ’22)
For any p ∈ [726 ln n

n , 1
2 ], tww(G(n, p)) = Θ(n√p).

Let P(q) be the Paley graphs on q vertices.

Theorem (Ahn, Hendrey, Kim & Oum ’21)
tww(P(q)) = q−1

2 .

Open Question
Is there an n-vertex graph of twin-width at least n

2?
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Are these classes of bounded twin-width?

Polynomial expansion ≡ truly sublinear separators:
∃ε > 0 s.t. every n-vertex graph in the (closure of the) class has
balanced separators of size O(n1−ε).

Open Question
Is every class with polynomial expansion of bounded twin-width?

Open Question
Is every Kt,t-free H-induced-minor-free class of bounded
twin-width?
It is known that every Kt,t-free H-induced-minor-free class has
polynomial expansion, and the converse does not hold.
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Bounded-degree graphs

Theorem (B., Geniet, Kim, Thomassé & Watrigant ’20;
B., Nesetril, Ossona de Mendez, Siebertz & Thomassé ’21)
Every class of bounded twin-width has growth n!2O(n) as a labeled
class; has growth 2O(n) as an unlabeled class.

→ the class of subcubic graphs has unbounded twin-width

Open Question
Find an explicit construction of bounded-degree graphs with
increasing twin-width.
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First-order graph model checking

Given a first-order sentence φ ∈ FO[{E(2)}], e.g.,

∃x1 · · · ∃xk∀x(x = x1 ∨ · · · ∨ x = xk) ∨ (E (x , x1) ∨ · · · ∨ E (x , xk))

G |= φ is true if φ holds in G .

Theorem (B., Kim, Thomassé & Watrigant ’20)
Given a graph G, a d-sequence of G, and a first-order sentence φ,
G |= φ can be decided in time f (d , φ)|V (G)|.

Theorem (B., Kim, Thomassé & Watrigant ’20)
For every FO interpretation φ(x , y) of a monadic lift of a class C of
bounded twin-width, φ(C) has bounded twin-width.
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Special cases with better running times

special cases like k-Independent Set in time dO(k)|V (G)|
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How hard is computing twin-width?

Theorem (Bergé, B. & Déprés ’21)
It is NP-complete to decide if the twin-width is at most 4.

Theorem (B., Kim, Reinald, Thomassé & Watrigant ’21;
Ahn, Jacob, Köhler, Paul & Reinald ’25)
Twin-width at most 1 is in polynomial-time; in linear-time.

Open Question
What about twin-width at most 2? at most 3?

Theorem (Bergougnoux, Gajarský, Guspiel, Hlinený, Pokrývka & Sokolowski ’23)

Graphs of twin-width at most 2 and no Kt,t subgraph have
bounded treewidth.
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How hard is computing twin-width?

Theorem (Bergé, B. & Déprés ’21)
It is NP-complete to decide if the twin-width is at most 4.

Theorem (B., Kim, Reinald, Thomassé & Watrigant ’21;
Ahn, Jacob, Köhler, Paul & Reinald ’25)
Twin-width at most 1 is in polynomial-time; in linear-time.

Open Question
Is there an algorithm that given a graph G and an integer d, either
▶ provides an f (d)-sequence of G, or
▶ correctly report that tww(G) > d

in time |V (G)|g(d)?



Twin-width parameterized by larger parameters

Theorem (Balabán, Ganian & Rocton ’24)
FPT algorithm for twin-width w.r.t. feedback edge number, FPT
2-approximation for twin-width w.r.t. vertex integrity.

Open Question
Is there an FPT (XP) f (OPT)-approximation algorithm for
twin-width parameterized by pathwidth, treewidth, rank-width?



Unconditional parameterized algorithms



k-grid permutation

Here with k = 3, it has every 3-permutation as subpermutation



The 6 minimal families of unbounded twin-width

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé & Toruńczyk ’21)
∃f , g s.t., given an n × n adjacency matrix Adj≺(G), in time
g(k)nO(1) one can find an f (k)-sequence of (G , ≺) or one of the
six following encodings of a k-grid permutation submatrix:

Semi-induced matching/antimatching, and 4 half-graphs or ladders



Ordered binary structures

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé & Toruńczyk ’21)
Let C be a hereditary class of ordered graphs. There is an FPT
f (OPT)-approximation for twin-width on C, and the following are
equivalent.
(1) C has bounded twin-width.
(2) C is dependent.
(3) C contains 2O(n) ordered n-vertex graphs.
(4) C contains less than

∑⌊n/2⌋
k=0

( n
2k

)
k! ordered n-vertex graphs,

for some n.
(5) C does not include one of 25 hereditary ordered graph classes

with unbounded twin-width.
(6) FO-model checking is fixed-parameter tractable on C

(assuming FPT ̸= AW[∗]).



Twin-width win-win

Goal: compute FO-definable parameter p in FPT time in C.

Show that ∃f non-decreasing, such that ∀G ∈ C an
f (p(G))-sequence of G can be computed in FPT time

▶ Width > f (k): report p(G) > k
▶ Width ⩽ f (k): use FO model checking algorithm



Visibility graphs of 1.5D terrains

Order along x -coordinates
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k-Biclique and k-Ladder are FPT in this class
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Matrix Multiplication
Theorem (B., Giocanti, Ossona de Mendez & Thomassé ’23)
Given two n × n Fq-matrices A, B of twin-width at most d, one
can compute AB in time Od ,q(n2 log n).

Consequence of:
▶ Od ,q(n2 log n) time f (OPT)-approximation for twin-width of

ordered binary structures,
▶ FO+MOD interpretations preserve bounded twin-width,
▶ squaring is an FO+MOD interpretation, and

Theorem (Gajarský, Pilipczuk, Przybyszewski & Toruńczyk ’22)
Given an FO(+MOD) interpretation φ(x1, . . . , xk) and a binary
structure G with a d-sequence, a data structure can be computed
in time Od ,φ(n1+ε) that answers queries “does φ(v1, . . . , vk) hold
in G?” in time Od ,φ(1/ε).

φ1(r , c) holds in M̂ ≡ there is a 1-entry at row r , column c of M2.
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Matrix Multiplication
Theorem (B., Giocanti, Ossona de Mendez & Thomassé ’23)
Given two n × n Fq-matrices A, B of twin-width at most d, one
can compute AB in time Od ,q(n2 log n).

Consequence of:
▶ Od ,q(n2 log n) time f (OPT)-approximation for twin-width of

ordered binary structures,
▶ a d-sequence can be turned into a twin-decomposition of

width d in time Od(n2), and
▶ qO(d)n-time algorithm for the twin-decomposition of M2.

c f

b e g

a d

c

b g

a d

6

f

e

c

b g
6

a d5

c

b g
5

5

4

c

3

4

3

2

1

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7



Approximation algorithms



Balanced contraction sequences
Theorem (B., Geniet, Kim, Thomassé & Watrigant ’21)
For every d, there is a D such that every n-vertex graph with
twin-width at most d iteratively admits n

D disjoint pairs that can
be contracted in a D-sequence.

Consequence: We can turn a d-sequence into a balanced
D-sequence S, i.e., such that ∀Pi ∈ S, ∀P ∈ Pi , |P| ⩽ D n

i

⩽ Dn/i
vertices
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Approximating Max Independent Set
In general graphs: an n1−ε-approximation or r(n)-approximation in
time exp( n1−ε

r(n)1+ε ) are unlikely

P√
n

α(P4)

α(P2)

α(P7)α(P13)

α(P10) α(P9)

⩽ D
√

n
vertices

C1 C2 C3

D + 1-color the red graph of G/P√
n in polynomial time
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Approximating Max Independent Set
In general graphs: an n1−ε-approximation or r(n)-approximation in
time exp( n1−ε

r(n)1+ε ) are unlikely
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A heaviest such solution is a (D + 1)-approximation



Approximating MIS given a d-sequence

Theorem (Bergé, B., Déprés & Watrigant ’23)
MIS can be Od(1)-approximated in time 2Od (

√
n).

Instead of exactly solving instances of size Od(
√

n), recurse

Theorem (Bergé, B., Déprés & Watrigant ’23)
MIS can be Od(1)2q−1-approximated in time 2Od,q(n2−q ), ∀q ∈ N.

Setting q := log ε log n
Od (1)

Theorem (Bergé, B., Déprés & Watrigant ’23)
MIS can be nε-approximated in polynomial time.
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Theorem (Bergé, B., Déprés & Watrigant ’23)
MIS can be Od(1)2q−1-approximated in time 2Od,q(n2−q ), ∀q ∈ N.

Setting q := log ε log n
Od (1)

Theorem (Bergé, B., Déprés & Watrigant ’23)
MIS can be nε-approximated in polynomial time.



Coloring, Max Induced Matching

Similar results for these problems

Ij

Cj

I ′
h

Eh

T1

T2

e

mG (e)



Better approximation algorithms

Open Question
Does MIS admit a PTAS on graphs of bounded twin-width given
with O(1)-sequences?

Any constant factor approximation would imply a PTAS for MIS.

Open Question
Is there a constant factor approximation for Coloring on graphs
of bounded twin-width given with O(1)-sequences?

This constant has to be at least 4/3.



Open questions

FPT/XP approximation of twin-width (parameterized by larger
parameters)

Find an explicit family of bounded-degree graphs with unbounded
twin-width (counting-free argument)

Is every Kt,t-free induced-minor-free class of bounded twin-width?

Better than nε-approximation for MIS given O(1)-sequences?

More unexpected uses of the FO model checking algorithm on
bounded twin-width (like [HJLMPSS ’23] for Directed Multicut
with three terminal pairs parameterized by cutset size)

Thank you for your attention!



Open questions

FPT/XP approximation of twin-width (parameterized by larger
parameters)

Find an explicit family of bounded-degree graphs with unbounded
twin-width (counting-free argument)

Is every Kt,t-free induced-minor-free class of bounded twin-width?

Better than nε-approximation for MIS given O(1)-sequences?

More unexpected uses of the FO model checking algorithm on
bounded twin-width (like [HJLMPSS ’23] for Directed Multicut
with three terminal pairs parameterized by cutset size)

Thank you for your attention!


