
Twin-width

Édouard Bonnet

ENS Lyon, LIP

September 10th, 2021, IPEC Tutorial

Graphs

a

b

c

d

e

f

g

Two outcomes between a pair of vertices:
edge or non-edge

Trigraphs

a

b

c

d

e

f

g

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing

Contraction sequence

a

b

c

d

e

f

g

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

b

c

gef

a dad

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

c

g

ad

b efbef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

c

adg

bef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

adg

bcef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

Maximum red degree = 0
overall maximum red degree = 0

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

b

c

gef

a dad

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

c

g

ad

b efbef

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

c

adg

bef

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

adg

bcef

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

abcdefg

Maximum red degree = 0
overall maximum red degree = 2

Simple operations preserving small twin-width

I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one vertex linked arbitrarily: at most “doubles”
I substitution, lexicographic product: max of the twin-widths

Complementation

a

b

c

d

e

f

g

G

a

b

c

d

e

f

g

G

tww(G) = tww(G)

Complementation

a

b

c

d

e

f

g

G

a

b

c

d

e

f

g

G

a

b

c

d

ge

f
ef

G6

a

b

c

d

ge

f
ef

G6

tww(G) = tww(G)

Induced subgraph

a

b

c

d

e

f

g

G

a

b

c

d

e

H

tww(H) 6 tww(G)

Induced subgraph

a

b

c

d

ge

f
ef

a

b

c

d

e

H

Ignore absent vertices

Induced subgraph

b

c

gef

a dad

H

ad

b

c

e

Mimic the contractions otherwise

Induced subgraph

c

g

ad

b efbef

H

ad

be

c

Mimic the contractions otherwise

Induced subgraph

c

adg

bef

H

ad

be

c

Mimic the contractions otherwise

Induced subgraph

adg

bcef

H

ad

bce

Mimic the contractions otherwise

Induced subgraph

abcdefg

H

abcde

Mimic the contractions otherwise

Adding one apex v

A B

v

G

Ignore the contractions of X ⊆ A with Y ⊆ B

Substitution and lexicographic product

G = C5

Substitution and lexicographic product

G = C5, H = P4, substitution G [v ← H]

Substitution and lexicographic product

G = C5, H = P4, lexicographic product G [H]

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

tww(G [H]) = max(tww(G), tww(H))

Classes with bounded twin-width

I cographs = twin-width 0
I trees, bounded treewidth, clique-width/rank-width
I grids
I . . .

Trees

If possible, contract two twin leaves

Trees

If not, contract a deepest leaf with its parent

Trees

If not, contract a deepest leaf with its parent

Trees

If possible, contract two twin leaves

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Bounded rank-width graphs

Generalization to bounded rank-width

Bounded rank-width graphs

Two near-twins in a small subtree → contraction

Bounded rank-width graphs

Red edges cluster in bounded size components

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

3-dimensional grids

Contains arbitrary large clique minors

3-dimensional grids

Contract the blue edges in any order → 12-sequence

3-dimensional grids

The d-dimensional grid has twin-width 6 4d (even 3d)

2-lifts, expanders with bounded twin-width

split each vertex in 2, replace each edge by 1 of the 2 matchings

but no balanced separators of size o(n)

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

but no balanced separators of size o(n)

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

but no balanced separators of size o(n)

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

but no balanced separators of size o(n)

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

but no balanced separators of size o(n)

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6
but no balanced separators of size o(n)

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

No pair of near twins

First example of unbounded twin-width

No pair of near twins

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

∅
1

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

12

2

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

13

3

1
12
13
14

123
124
134

1234

2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

14

4

1
12
13
14

123
124
134

1234

2

23
24

234

3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

123

23

1
12
13
14

123
124
134

1234

2

23
24

234

3

34

4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

124

24

1
12
13
14

123
124
134

1234

2
23

24
234

3

34

4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

134

34

1
12
13
14

123
124
134

1234

2
23
24

234

3

34

4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1234

234

1
12
13
14

123
124
134

1234

2
23
24

234

3
34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2
23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2
23
24

234
3

34
4

Planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction

More powerfool tool needed

Planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction

More powerfool tool needed

Planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction

More powerfool tool needed

Twin-width in the language of matrices

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Encode a bipartite graph (or, if symmetric, any graph)

Twin-width in the language of matrices

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Contraction of two columns (similar with two rows)

Twin-width in the language of matrices

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
r
r
0
r
1

1
1
1
0
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

1
1
1
1
0
0
1

How is the twin-width (re)defined?

Twin-width in the language of matrices

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
r
r
0
r
1

1
1
1
0
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

1
1
1
1
0
0
1

How to tune it for non-bipartite graph?

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Maximum number of non-constant zones per column or row part
= error value

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Maximum number of non-constant zones per column or row part
= error value

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Maximum number of non-constant zones per column or row part
. . . until there are a single row part and column part

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Maximum number of non-constant zones per column or row part

Twin-width as maximum error value
of a contraction sequence

Grid minor

t-grid minor: t × t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

A matrix is said t-grid free if it does not have a t-grid minor

Grid minor

t-grid minor: t × t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

A matrix is said t-grid free if it does not have a t-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

Every mixed cell is witnessed by a 2× 2 square

Mixed minor

Mixed cell: not horizontal nor vertical

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

Every mixed cell is witnessed by a 2× 2 square = corner

Mixed minor

Mixed cell: not horizontal nor vertical

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

R1

R2

R3

R4

C2

1
0
1
0
1
1
1

0
1
1
1
0
0
1

1
1
0
0
1
1
1

0
1
0
0
0
0
0

1
0
1
1
0
0
0

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

≈ (maximum) number of cells with a corner per row/column part

Mixed value

R1

R2

R3

R4

C2

1
0
1
0
1
1
1

0
1
1
1
0
0
1

1
1
0
0
1
1
1

0
1
0
0
0
0
0

1
0
1
1
0
0
0

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

But we add the number of boundaries containing a corner

Mixed value

R1

R2

R3

R4

C2

1
0
1
0
1
1
1

0
1
1
1
0
0
1

1
1
0
0
1
1
1

0
1
0
0
0
0
0

1
0
1
1
0
0
0

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

∪

∴ merging row parts do not increase mixed value of column part

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If G admits a t-mixed free adjacency matrix, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Stuck, removing every other separation → f (t)
2 mixed cells per part

Marcus-Tardos theorem

Theorem (Marcus and Tardos ’04, Stanley-Wilf conjecture)
For every k, there is a ck such that every n×m 0, 1-matrix with at
least ck max(n,m) 1 entries admits a k-grid minor.

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Marcus-Tardos theorem

Theorem (Marcus and Tardos ’04, Stanley-Wilf conjecture)
For every k, there is a ck such that every n×m 0, 1-matrix with at
least ck max(n,m) 1 entries admits a k-grid minor.

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

Let M be an n × n 0, 1-matrix without k-grid minor

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

Draw a regular n
k2 × n

k2 division on top of M

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

A cell is wide if it has at least k columns with a 1

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

A cell is tall if it has at least k rows with a 1

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

There are less than k
(k2

k
)

wide cells per column part. Why?

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

There are less than k
(k2

k
)

tall cells per row part

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

In W and T, at most 2 · n
k2 · k

(k2

k
)
· k4 = 2k3(k2

k
)
n entries 1

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

There are at most (k − 1)2ck
n
k2 remaining 1. Why?

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

Choose ck = 2k4(k2

k
)

so that (k − 1)2ck
n
k2 + 2k3(k2

k
)
n 6 ckn

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Stuck, removing every other separation → f (t)
2 mixed cells per part

Impossible!

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Stuck, removing every other separation → f (t)
2 mixed cells per part

Impossible!

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)
Step 2: find a contraction sequence with error value g(t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Refinement of Di where each part coincides on the non-mixed cells

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs

1

0

0

order by left endpoints

Unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors
Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3

Graph minors
Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Given a hamiltonian path, we would just use this order

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Contracting the 2t subpaths yields a Kt,t-minor, hence a Kt-minor

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Instead we use a specially crafted lex-DFS discovery order

A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé ’21+)
Twin-width and oriented twin-width are functionally equivalent.

red degree red out-degree
(red arcs oriented from the contraction)

Theorem (Kotzig’s theorem ’55)
Planar graphs have oriented twin-width at most 9.

A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé ’21+)
Twin-width and oriented twin-width are functionally equivalent.

red degree red out-degree
(red arcs oriented from the contraction)

Theorem (Kotzig’s theorem ’55)
Planar graphs have oriented twin-width at most 9.

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

One cograph definition

Cographs form the unique maximal hereditary class in which every1

graph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Is there another algorithmic scheme based on this definition?

1provided it has at least two vertices

One cograph definition

Cographs form the unique maximal hereditary class in which every1

graph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Is there another algorithmic scheme based on this definition?

1provided it has at least two vertices

One cograph definition

Cographs form the unique maximal hereditary class in which every1

graph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Let’s try with α(G), and store in a vertex its inner max solution

1provided it has at least two vertices

One cograph definition

Cographs form the unique maximal hereditary class in which every1

graph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5

→ 7
1

1

4

3
→ 7 4

1

1
. . .

We can find a pair of false/true twins

1provided it has at least two vertices

One cograph definition

Cographs form the unique maximal hereditary class in which every1

graph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3

→ 7 4
1

1
. . .

Sum them if they are false twins

1provided it has at least two vertices

One cograph definition

Cographs form the unique maximal hereditary class in which every1

graph has two twins

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

→. . .
1

1

4

3

2

5
→ 7

1

1

4

3
→ 7 4

1

1
. . .

Max them if they are true twins

1provided it has at least two vertices

Example of k-Independent Set
d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?

Example of k-Independent Set
d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?

Example of k-Independent Set
d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?

Example of k-Independent Set
d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both

Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both

Other (almost) single-exponential parameterized
algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Given a d-sequence G = Gn, . . . ,G1 = K1,
I k-Independent Set,
I k-Clique,
I (r , k)-Scattered Set,
I k-Dominating Set, and
I (r , k)-Dominating Set

can be solved in time 2O(k)n,
whereas Subgraph Isomorphism and Induced Subgraph
Isomorphism can be solved in time 2O(k log k)n.

A more general FPT algorithm?

Other (almost) single-exponential parameterized
algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Given a d-sequence G = Gn, . . . ,G1 = K1,
I k-Independent Set,
I k-Clique,
I (r , k)-Scattered Set,
I k-Dominating Set, and
I (r , k)-Dominating Set

can be solved in time 2O(k)n,
whereas Subgraph Isomorphism and Induced Subgraph
Isomorphism can be solved in time 2O(k log k)n.

A more general FPT algorithm?

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔ k-Dominating Set

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔

First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔ k-Independent Set

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs
[Seese ’96]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere densenowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

FO Model Checking solvable in f (|ϕ|)n1+ε on any nowhere dense class
[Grohe, Kreutzer, Siebertz ’14]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere densenowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

End of the story for the subgraph-closed classes
tractable FO Model Checking ⇔ nowhere dense

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

MSO1 Model Checking solvable in f (|ϕ|,w)n on graphs of rank-width w
[Courcelle, Makowsky, Rotics ’00]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions

map
graphs

dense
classes

Is σ a subpermutation of τ? solvable in f (|σ|)|τ |
[Guillemot, Marx ’14]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

FO Model Checking solvable in f (|ϕ|,w)n2 on posets of width w
[GHLOORS ’15]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions

map
graphsdense

classes

FO Model Checking solvable in f (|ϕ|)nO(1) on map graphs
[Eickmeyer, Kawarabayashi ’17]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence
[B., Kim, Thomassé, Watrigant ’20]

Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé ’21+)
Component twin-width is functionally equivalent to rank-width.
Total twin-width is functionally equivalent to linear rank-width.

Component twin-width:
max red component size

Total twin-width:
max number of red edges

The sparse regime captures treewidth and pathwidth

Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé ’21+)
Component twin-width is functionally equivalent to rank-width.
Total twin-width is functionally equivalent to linear rank-width.

Component twin-width:
max red component size

Total twin-width:
max number of red edges

Alternative proof of Courcelle, Makowsky, Rotics’s theorem:
FO model checking approach using Feferman-Vaught instead of
Gaifman’s theorem

Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Unifies and extends the same result for:
σ-free permutations [Marcus, Tardos ’04]
Kt-minor free graphs [Norine, Seymour, Thomas, Wollan ’06]

Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs
have unbounded twin-width

Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

The converse for hereditary classes does not hold

Theorem (B., Geniet, Tessera, Thomassé ’21+)
There is a randomized construction of a finitely-generated group
whose hereditary class of finite restrictions of the Cayley graph has
unbounded twin-width (and yet is small).

Open questions

Algorithm to compute/approximate twin-width in general

Explicit examples of bounded-degree graphs of unbounded
twin-width

Fully classify classes with tractable FO model checking

Some more classes could have bounded twin-width: polynomial
expansion, Kt,t-free string graphs, etc.

Could smallness alone be algorithmically exploitable?

What about kernels? (Amadeus’s talk)

