Edouard Bonnet ´

ENS Lyon, LIP

September 10th, 2021, IPEC Tutorial

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree $= 0$ **overall maximum red degree = 0**

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree
$$
= 2
$$

overall maximum red degree $= 2$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree $= 2$ **overall maximum red degree = 2**

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $= 2$ **overall maximum red degree = 2**

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $= 1$ **overall maximum red degree = 2**

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $= 1$ **overall maximum red degree = 2**

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree
$$
= 0
$$
 overall maximum red degree $= 2$

Simple operations preserving small twin-width

- \triangleright complementation: remains the same
- \blacktriangleright taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"
- \triangleright substitution, lexicographic product: max of the twin-widths

Complementation

$$
\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)
$$

Complementation

$$
\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)
$$

tww $(H) \leq$ tww (G)

 H

Ignore absent vertices

Adding one apex v

Ignore the contractions of $X \subseteq A$ with $Y \subseteq B$

 $G = C_5$, $H = P_4$, substitution $G[v \leftarrow H]$

 $G = C_5$, $H = P_4$, lexicographic product $G[H]$

More generally any modular decomposition

More generally any modular decomposition
Substitution and lexicographic product

 $tww(G[H]) = max(tww(G), tww(H))$

Classes with bounded twin-width

- \triangleright cographs = twin-width 0
- \triangleright trees, bounded treewidth, clique-width/rank-width
- \blacktriangleright grids
- \blacktriangleright

If possible, contract two twin leaves

If not, contract a deepest leaf with its parent

If not, contract a deepest leaf with its parent

If possible, contract two twin leaves

Trees

Trees

Bounded rank-width graphs

Generalization to bounded rank-width

Bounded rank-width graphs

Two near-twins in a small subtree \rightarrow contraction

Bounded rank-width graphs

Red edges cluster in bounded size components

4-sequence for planar grids

3-dimensional grids

Contains arbitrary large clique minors

3-dimensional grids

Contract the blue edges in any order \rightarrow 12-sequence

3-dimensional grids

The d-dimensional grid has twin-width $\leq 4d$ (even 3d)

split each vertex in 2, replace each edge by 1 of the 2 matchings

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6 but no balanced separators of size $o(n)$

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

No pair of near twins

First example of unbounded twin-width

No pair of near twins

Universal bipartite graph

No $O(1)$ -contraction sequence:

twin-width is not an iterated identification of near twins.
No $O(1)$ -contraction sequence:

Planar graphs?

Planar graphs?

For every d , a planar trigraph without planar d -contraction

Planar graphs?

For every d, a planar trigraph without planar d-contraction

More powerfool tool needed

Encode a bipartite graph (or, if symmetric, any graph)

$$
\left[\begin{array}{cccc|c}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]
$$

Contraction of two columns (similar with two rows)

How is the twin-width (re)defined?

How to tune it for non-bipartite graph?

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive

Maximum number of non-constant zones per column or row part = **error value**

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive

Maximum number of non-constant zones per column or row part . . . until there are a single row part and column part

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive

Twin-width as maximum error value of a contraction sequence

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

A matrix is said t**-grid free** if it does not have a t-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

3-mixed minor

Mixed minor

Mixed cell: not horizontal nor vertical

Every mixed cell is witnessed by a 2×2 square = **corner**

Mixed minor

Mixed cell: not horizontal nor vertical

A matrix is said t**-mixed free** if it does not have a t-mixed minor

Mixed value

 \approx (maximum) number of cells with a corner per row/column part

Mixed value

But we add the number of boundaries containing a corner

Mixed value

∴ merging row parts do not increase mixed value of column part

Theorem (B., Kim, Thomassé, Watrigant '20) If G admits **a** t-mixed free adjacency matrix, then tww(G) = $2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\text{Adj}_{\sigma}(G)$ is t-mixed free, then tww $(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\text{Adj}_{\sigma}(G)$ is t-mixed free, then tww $(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence (D_i) with mixed value $f(t)$

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\text{Adj}_{\sigma}(G)$ is t-mixed free, then tww $(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence (D_i) with mixed value $f(t)$

Merge consecutive parts greedily
Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\text{Adj}_{\sigma}(G)$ is t-mixed free, then tww $(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence (D_i) with mixed value $f(t)$

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\text{Adj}_{\sigma}(G)$ is t-mixed free, then tww $(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence (D_i) with mixed value $f(t)$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Marcus-Tardos theorem

Theorem (Marcus and Tardos '04, Stanley-Wilf conjecture) For every k, there is a c_k such that every $n \times m$ 0, 1-matrix with at least c_k max (n, m) 1 entries admits a k-grid minor.

Marcus-Tardos theorem

Theorem (Marcus and Tardos '04, Stanley-Wilf conjecture) For every k, there is a c_k such that every $n \times m$ 0, 1-matrix with at least c^k max(n*,* m) 1 entries admits a k-grid minor.

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Let M be an $n \times n$ 0, 1-matrix without *k*-grid minor

Draw a regular $\frac{n}{k^2} \times \frac{n}{k^2}$ $\frac{n}{k^2}$ division on top of M

A cell is *wide* if it has at least k columns with a 1

A cell is tall if it has at least k rows with a 1

There are less than $k\binom{k^2}{k}$ $\binom{k^2}{k}$ wide cells per column part. Why?

There are less than $k\binom{k^2}{k}$ $\binom{k^2}{k}$ tall cells per row part

In W and T, at most $2 \cdot \frac{n}{k^2}$ $\frac{n}{k^2} \cdot k \binom{k^2}{k}$ k^2 _k (k^4) $\cdot k^4 = 2k^3$ $\binom{k^2}{k}$ $\binom{k}{k}$ n entries 1

There are at most $(k-1)^2 c_k \frac{n}{k^2}$ $\frac{n}{k^2}$ remaining 1. Why?

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\text{Adj}_{\sigma}(G)$ is t-mixed free, then tww $(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(D_i)_i$ with mixed value $f(t)$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\text{Adj}_{\sigma}(G)$ is t-mixed free, then tww $(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence (D_i) with mixed value $f(t)$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part **Impossible!**

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\text{Adj}_{\sigma}(G)$ is t-mixed free, then tww $(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence (D_i) with mixed value $f(t)$ **Step 2: find a contraction sequence with error value** $g(t)$

Refinement of D_i where each part coincides on the non-mixed cells

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\text{Adj}_{\sigma}(G)$ is t-mixed free, then tww $(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\text{Adj}_{\sigma}(G)$ is t-mixed free, then tww $(G) = 2^{2^{O(t)}}$.

Now to bound the twin-width of a class \mathcal{C} :

1) Find a good vertex-ordering procedure

2) Argue that, in this order, a t-mixed minor would conflict with $\mathcal C$

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs

order by left endpoints

Unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors

Formed by **vertex deletion**, **edge deletion**, and **edge contraction**

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Graph minors

Formed by **vertex deletion**, **edge deletion**, and **edge contraction**

A graph G is H -minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K_5 or K_3 ₃ as a minor

Bounded twin-width – K_t -minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width – K_t -minor free graphs

Contracting the 2t subpaths yields a $K_{t,t}$ -minor, hence a K_t -minor

Bounded twin-width – K_t -minor free graphs

Instead we use a specially crafted lex-DFS discovery order

A surprising and convenient equivalent

Theorem $(B.,$ Kim, Reinald, Thomassé '21+) Twin-width and oriented twin-width are functionally equivalent.

red degree red out-degree (red arcs oriented from the contraction)

A surprising and convenient equivalent

Theorem $(B_{1}, Kim, Reinald, Thomasse' 21+)$ Twin-width and oriented twin-width are functionally equivalent.

(red arcs oriented from the contraction)

Theorem (Kotzig's theorem '55) Planar graphs have oriented twin-width at most 9.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and $O(1)$ -sequences can be computed in polynomial time.

- \triangleright Bounded rank-width, and even, boolean-width graphs,
- \triangleright every hereditary proper subclass of permutation graphs,
- \triangleright posets of bounded antichain size (seen as digraphs),
- \blacktriangleright unit interval graphs,
- \blacktriangleright K_t-minor free graphs,
- \blacktriangleright map graphs,
- \triangleright subgraphs of d-dimensional grids.
- \triangleright K_t-free unit d-dimensional ball graphs,
- \triangleright Ω (log n)-subdivisions of all the n-vertex graphs,
- \triangleright cubic expanders defined by iterative random 2-lifts from K_4 ,
- \triangleright strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and $O(1)$ -sequences can be computed in polynomial time.

- \triangleright Bounded rank-width, and even, boolean-width graphs,
- \triangleright every hereditary proper subclass of permutation graphs,
- \triangleright posets of bounded antichain size (seen as digraphs),
- \blacktriangleright unit interval graphs,
- \blacktriangleright K_t-minor free graphs,
- \blacktriangleright map graphs,
- \triangleright subgraphs of d-dimensional grids,
- \triangleright K_t-free unit d-dimensional ball graphs,
- \triangleright Ω (log n)-subdivisions of all the n-vertex graphs,
- \triangleright cubic expanders defined by iterative random 2-lifts from K_4 ,
- \triangleright strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an O(1)**-sequence?**

Cographs form the unique *maximal hereditary* class in which every¹ graph has two twins

 $^{\rm 1}$ provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two twins

Is there another algorithmic scheme based on this definition?

 $^{\rm 1}$ provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two twins

Let's try with $\alpha(G)$, and store in a vertex its inner max solution

 $^{\rm 1}$ provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two twins

We can find a pair of false/true twins

 $^{\rm 1}$ provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two twins

Sum them if they are false twins

 $^{\rm 1}$ provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two twins

Max them if they are true twins

 $^{\rm 1}$ provided it has at least two vertices
Example of k -INDEPENDENT SET d-sequence: $G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1$

Algorithm: **Compute by dynamic programming a best partial solution in each red connected subgraph of size at most** k**.**

Example of k -INDEPENDENT SET

d-sequence: $G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1$

Algorithm: **Compute by dynamic programming a best partial solution in each red connected subgraph of size at most** k**.**

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

Example of k -INDEPENDENT SET

d-sequence: $G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1$

Algorithm: **Compute by dynamic programming a best partial solution in each red connected subgraph of size at most** k**.**

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

In G_n : red connected subgraphs are singletons, so are the solutions. In G_1 : If solution of size at least k, global solution.

Example of k -INDEPENDENT SET

d-sequence: $G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1$

Algorithm: **Compute by dynamic programming a best partial solution in each red connected subgraph of size at most** k**.**

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

In G_n : red connected subgraphs are singletons, so are the solutions. In G_1 : If solution of size at least k, global solution.

How to go from the partial solutions of G_{i+1} to those of G_i ?

Best partial solution inhabiting •?

3 unions of $\le d + 2$ red connected subgraphs to consider in G_{i+1} with u , or v , or both

Other (almost) single-exponential parameterized algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Given a d-sequence $G = G_n, \ldots, G_1 = K_1$,

- \blacktriangleright *k*-INDEPENDENT SET.
- \blacktriangleright k-Clique.
- \blacktriangleright (r, k) -SCATTERED SET,
- \blacktriangleright k-DOMINATING SET, and
- \blacktriangleright (r, k) -DOMINATING SET

can be solved in time $2^{O(k)}n$,

whereas SUBGRAPH ISOMORPHISM and INDUCED SUBGRAPH $\sqrt{\text{ISOMORPHISM}}$ can be solved in time $2^{O(k\log k)}n$.

Other (almost) single-exponential parameterized algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Given a d-sequence $G = G_n, \ldots, G_1 = K_1$,

- \blacktriangleright *k*-Independent Set.
- \blacktriangleright k-Clique.
- \blacktriangleright (r, k) -SCATTERED SET,
- \blacktriangleright k-DOMINATING SET, and
- \blacktriangleright (r, k) -DOMINATING SET

can be solved in time $2^{O(k)}n$,

whereas SUBGRAPH ISOMORPHISM and INDUCED SUBGRAPH $\sqrt{\text{ISOMORPHISM}}$ can be solved in time $2^{O(k\log k)}n$.

A more general FPT algorithm?

Graph FO Model Checking **Parameter:** |*ϕ*| **Input:** A graph G and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ **Question:** $G \models \varphi$?

Graph FO Model Checking **Parameter:** |*ϕ*| **Input:** A graph G and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ **Question:** $G \models \varphi$?

Example:

$$
\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leq i \leq k} x = x_i \vee \bigvee_{1 \leq i \leq k} E(x, x_i) \vee E(x_i, x)
$$

 $G \models \varphi? \Leftrightarrow$

Graph FO Model Checking **Parameter:** |*ϕ*| **Input:** A graph *G* and a first-order sentence $\varphi \in FO({E_2, =_2})$ **Question:** $G \models \varphi$?

Example:

$$
\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leq i \leq k} x = x_i \vee \bigvee_{1 \leq i \leq k} E(x, x_i) \vee E(x_i, x)
$$

 $G \models \varphi? \Leftrightarrow k$ -DOMINATING SET

Graph FO Model Checking **Parameter:** |*ϕ*| **Input:** A graph *G* and a first-order sentence $\varphi \in FO({E_2, =_2})$ **Question:** $G \models \varphi$?

Example:

$$
\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg(x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)
$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order sentence $\varphi \in FO({E_2, =_2})$ **Question:** $G \models \varphi$?

Example:

$$
\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg(x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)
$$

 $G \models \varphi? \Leftrightarrow k$ -Independent Set

FO MODEL CHECKING solvable in $f(|\varphi|)n$ on bounded-degree graphs [Seese '96]

 ${\rm FO}$ ${\rm MODEL}$ ${\rm CHECKING}$ solvable in $f(|\varphi|)n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

End of the story for the subgraph-closed classes tractable FO MODEL CHECKING \Leftrightarrow nowhere dense

 $MSO₁$ MODEL CHECKING solvable in $f(|\varphi|, w)n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]

Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$ [Guillemot, Marx '14]

FO MODEL CHECKING solvable in $f(|\varphi|, w)n^2$ on posets of width w [GHLOORS '15]

FO MODEL CHECKING solvable in $f(|\varphi|)n^{O(1)}$ on map graphs [Eickmeyer, Kawarabayashi '17]

FO MODEL CHECKING solvable in $f(|\varphi|, d)$ n on graphs with a d-sequence [B., Kim, Thomassé, Watrigant '20]

Classic width-measures via contraction sequences

Theorem $(B_{1}, Kim, Reinald, Thomasse' 21+)$

Component twin-width is functionally equivalent to rank-width. Total twin-width is functionally equivalent to linear rank-width.

Component twin-width: max red component size

Total twin-width: max number of red edges

The sparse regime captures treewidth and pathwidth

Classic width-measures via contraction sequences

Theorem $(B.,$ Kim, Reinald, Thomassé '21+)

Component twin-width is functionally equivalent to rank-width. Total twin-width is functionally equivalent to linear rank-width.

Component twin-width: max red component size

Total twin-width: max number of red edges

Alternative proof of Courcelle, Makowsky, Rotics's theorem: FO model checking approach using Feferman-Vaught instead of Gaifman's theorem

Small classes

Small: class with at most $n!c^n$ labeled graphs on $[n]$. Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width classes are small.

Unifies and extends the same result for: *σ*-free permutations [Marcus, Tardos '04] K_t -minor free graphs [Norine, Seymour, Thomas, Wollan '06]

Small classes

Small: class with at most $n!c^n$ labeled graphs on $[n]$. Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have **unbounded** twin-width

Small classes

Small: class with at most $n!c^n$ labeled graphs on $[n]$. Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width classes are small.

The converse for hereditary classes does not hold

Theorem (B., Geniet, Tessera, Thomassé '21+)

There is a randomized construction of a finitely-generated group whose hereditary class of finite restrictions of the Cayley graph has unbounded twin-width (and yet is small).

Open questions

Algorithm to compute/approximate twin-width in general

Explicit examples of bounded-degree graphs of unbounded twin-width

Fully classify classes with tractable FO model checking

Some more classes could have bounded twin-width: polynomial expansion, K_t , t -free string graphs, etc.

Could smallness alone be algorithmically exploitable?

What about kernels? (Amadeus's talk)