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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs
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u v

uvuv

Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing



Contraction sequence
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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Maximum red degree = 0
overall maximum red degree = 0
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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Simple operations preserving small twin-width

I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one vertex linked arbitrarily: at most “doubles”
I substitution, lexicographic product: max of the twin-widths
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tww(G) = tww(G)



Complementation

a

b

c

d

e

f

g

G

a

b

c

d

e

f

g

G

a

b

c

d

ge

f
ef

G6

a

b

c

d

ge

f
ef

G6

tww(G) = tww(G)



Induced subgraph
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Induced subgraph
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Induced subgraph
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Induced subgraph
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Mimic the contractions otherwise



Induced subgraph

abcdefg

H

abcde

Mimic the contractions otherwise



Adding one apex v

A B

v

G

Ignore the contractions of X ⊆ A with Y ⊆ B



Substitution and lexicographic product

G = C5



Substitution and lexicographic product

G = C5, H = P4, substitution G [v ← H]



Substitution and lexicographic product

G = C5, H = P4, lexicographic product G [H]



Substitution and lexicographic product

More generally any modular decomposition



Substitution and lexicographic product

More generally any modular decomposition



Substitution and lexicographic product

tww(G [H]) = max(tww(G), tww(H))



Classes with bounded twin-width

I cographs = twin-width 0
I trees, bounded treewidth, clique-width/rank-width
I grids
I . . .



Trees

If possible, contract two twin leaves



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex
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Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Bounded rank-width graphs

Generalization to bounded rank-width



Bounded rank-width graphs

Two near-twins in a small subtree → contraction



Bounded rank-width graphs

Red edges cluster in bounded size components



Grids

4-sequence for planar grids
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4-sequence for planar grids



Grids

4-sequence for planar grids



3-dimensional grids

Contains arbitrary large clique minors



3-dimensional grids

Contract the blue edges in any order → 12-sequence



3-dimensional grids

The d-dimensional grid has twin-width 6 4d (even 3d)



2-lifts, expanders with bounded twin-width

split each vertex in 2, replace each edge by 1 of the 2 matchings

but no balanced separators of size o(n)
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Iterated 2-lifts of K4 have twin-width at most 6

but no balanced separators of size o(n)
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2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6
but no balanced separators of size o(n)



First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph



First example of unbounded twin-width

No pair of near twins



First example of unbounded twin-width

No pair of near twins



Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Planar graphs?
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For every d , a planar trigraph without planar d-contraction

More powerfool tool needed
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For every d , a planar trigraph without planar d-contraction

More powerfool tool needed



Twin-width in the language of matrices
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Encode a bipartite graph (or, if symmetric, any graph)



Twin-width in the language of matrices
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Contraction of two columns (similar with two rows)
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How is the twin-width (re)defined?



Twin-width in the language of matrices
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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= error value
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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. . . until there are a single row part and column part



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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Maximum number of non-constant zones per column or row part

Twin-width as maximum error value
of a contraction sequence



Grid minor

t-grid minor: t × t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry
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4-grid minor

A matrix is said t-grid free if it does not have a t-grid minor
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Mixed minor

Mixed cell: not horizontal nor vertical
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Every mixed cell is witnessed by a 2× 2 square
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Mixed cell: not horizontal nor vertical
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Every mixed cell is witnessed by a 2× 2 square = corner
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Mixed cell: not horizontal nor vertical
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A matrix is said t-mixed free if it does not have a t-mixed minor



Mixed value
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≈ (maximum) number of cells with a corner per row/column part



Mixed value

R1

R2

R3

R4

C2

1
0
1
0
1
1
1

0
1
1
1
0
0
1

1
1
0
0
1
1
1

0
1
0
0
0
0
0

1
0
1
1
0
0
0

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

But we add the number of boundaries containing a corner
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∪

∴ merging row parts do not increase mixed value of column part



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If G admits a t-mixed free adjacency matrix, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge parts greedily



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
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If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
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Stuck, removing every other separation → f (t)
2 mixed cells per part



Marcus-Tardos theorem

Theorem (Marcus and Tardos ’04, Stanley-Wilf conjecture)
For every k, there is a ck such that every n×m 0, 1-matrix with at
least ck max(n,m) 1 entries admits a k-grid minor.

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed
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Marcus-Tardos one-page inductive proof
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Let M be an n × n 0, 1-matrix without k-grid minor
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A cell is wide if it has at least k columns with a 1
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Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

There are less than k
(k2

k
)

tall cells per row part



Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

In W and T, at most 2 · n
k2 · k

(k2

k
)
· k4 = 2k3(k2

k
)
n entries 1



Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

There are at most (k − 1)2ck
n
k2 remaining 1. Why?



Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

Choose ck = 2k4(k2

k
)

so that (k − 1)2ck
n
k2 + 2k3(k2

k
)
n 6 ckn



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
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Stuck, removing every other separation → f (t)
2 mixed cells per part

Impossible!
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Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
Step 2: find a contraction sequence with error value g(t)
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Refinement of Di where each part coincides on the non-mixed cells



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C



Unit interval graphs

Intersection graph of unit segments on the real line



Unit interval graphs

1

0

0

order by left endpoints



Unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Graph minors
Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3
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Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Given a hamiltonian path, we would just use this order



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Contracting the 2t subpaths yields a Kt,t-minor, hence a Kt-minor



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Instead we use a specially crafted lex-DFS discovery order



A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé ’21+)
Twin-width and oriented twin-width are functionally equivalent.

red degree red out-degree
(red arcs oriented from the contraction)

Theorem (Kotzig’s theorem ’55)
Planar graphs have oriented twin-width at most 9.



A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé ’21+)
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Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?
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One cograph definition

Cographs form the unique maximal hereditary class in which every1

graph has two twins

1
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5
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3
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1
. . .

Is there another algorithmic scheme based on this definition?

1provided it has at least two vertices
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Let’s try with α(G), and store in a vertex its inner max solution

1provided it has at least two vertices
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We can find a pair of false/true twins

1provided it has at least two vertices
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One cograph definition

Cographs form the unique maximal hereditary class in which every1

graph has two twins
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5
→ 7

1
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4

3
→ 7 4
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1
. . .

Max them if they are true twins

1provided it has at least two vertices



Example of k-Independent Set
d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?
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Example of k-Independent Set
d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?



Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both



Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both



Other (almost) single-exponential parameterized
algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Given a d-sequence G = Gn, . . . ,G1 = K1,
I k-Independent Set,
I k-Clique,
I (r , k)-Scattered Set,
I k-Dominating Set, and
I (r , k)-Dominating Set

can be solved in time 2O(k)n,
whereas Subgraph Isomorphism and Induced Subgraph
Isomorphism can be solved in time 2O(k log k)n.

A more general FPT algorithm?
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First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔
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First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi )

G |= ϕ? ⇔



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi )

G |= ϕ? ⇔ k-Independent Set



Classes with known tractable FO model checking
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FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs
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FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs
[Seese ’96]
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FO Model Checking solvable in f (|ϕ|)n1+ε on any nowhere dense class
[Grohe, Kreutzer, Siebertz ’14]
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End of the story for the subgraph-closed classes
tractable FO Model Checking ⇔ nowhere dense
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MSO1 Model Checking solvable in f (|ϕ|,w)n on graphs of rank-width w
[Courcelle, Makowsky, Rotics ’00]
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Is σ a subpermutation of τ? solvable in f (|σ|)|τ |
[Guillemot, Marx ’14]
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FO Model Checking solvable in f (|ϕ|,w)n2 on posets of width w
[GHLOORS ’15]
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FO Model Checking solvable in f (|ϕ|)nO(1) on map graphs
[Eickmeyer, Kawarabayashi ’17]
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FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence
[B., Kim, Thomassé, Watrigant ’20]



Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé ’21+)
Component twin-width is functionally equivalent to rank-width.
Total twin-width is functionally equivalent to linear rank-width.

Component twin-width:
max red component size

Total twin-width:
max number of red edges

The sparse regime captures treewidth and pathwidth



Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé ’21+)
Component twin-width is functionally equivalent to rank-width.
Total twin-width is functionally equivalent to linear rank-width.

Component twin-width:
max red component size

Total twin-width:
max number of red edges

Alternative proof of Courcelle, Makowsky, Rotics’s theorem:
FO model checking approach using Feferman-Vaught instead of
Gaifman’s theorem



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Unifies and extends the same result for:
σ-free permutations [Marcus, Tardos ’04]
Kt-minor free graphs [Norine, Seymour, Thomas, Wollan ’06]



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs
have unbounded twin-width



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

The converse for hereditary classes does not hold

Theorem (B., Geniet, Tessera, Thomassé ’21+)
There is a randomized construction of a finitely-generated group
whose hereditary class of finite restrictions of the Cayley graph has
unbounded twin-width (and yet is small).



Open questions

Algorithm to compute/approximate twin-width in general

Explicit examples of bounded-degree graphs of unbounded
twin-width

Fully classify classes with tractable FO model checking

Some more classes could have bounded twin-width: polynomial
expansion, Kt,t-free string graphs, etc.

Could smallness alone be algorithmically exploitable?

What about kernels? (Amadeus’s talk)


