Édouard Bonnet

ENS Lyon, LIP

September 10th, 2021, IPEC Tutorial

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 0 overall maximum red degree = 0

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 1 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 1 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"
- substitution, lexicographic product: max of the twin-widths

Complementation

 $\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)$

G

Complementation

$$\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)$$

 $\mathsf{tww}(H) \leq \mathsf{tww}(G)$

Н

Ignore absent vertices

Adding one apex v

Ignore the contractions of $X \subseteq A$ with $Y \subseteq B$

 $G = C_5$

 $G = C_5$, $H = P_4$, substitution $G[v \leftarrow H]$

 $G = C_5$, $H = P_4$, lexicographic product G[H]

More generally any modular decomposition

More generally any modular decomposition

Substitution and lexicographic product

 $\mathsf{tww}(G[H]) = \mathsf{max}(\mathsf{tww}(G), \mathsf{tww}(H))$

Classes with bounded twin-width

- cographs = twin-width 0
- trees, bounded treewidth, clique-width/rank-width
- grids
- ▶

If possible, contract two twin leaves

If not, contract a deepest leaf with its parent

If not, contract a deepest leaf with its parent

If possible, contract two twin leaves

Trees

Trees

Bounded rank-width graphs

Generalization to bounded rank-width

Bounded rank-width graphs

Two near-twins in a small subtree \rightarrow contraction

Bounded rank-width graphs

Red edges cluster in bounded size components

4-sequence for planar grids

3-dimensional grids

Contains arbitrary large clique minors

3-dimensional grids

Contract the blue edges in any order ightarrow 12-sequence

3-dimensional grids

The *d*-dimensional grid has twin-width $\leq 4d$ (even 3d)

split each vertex in 2, replace each edge by 1 of the 2 matchings

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6 but no balanced separators of size o(n)

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

No pair of near twins

First example of unbounded twin-width

No pair of near twins

Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.

No O(1)-contraction sequence:

No O(1)-contraction sequence: twin-width is *not* an iterated identification of near twins.

No O(1)-contraction sequence: twin-width is *not* an iterated identification of near twins.

Planar graphs?

Planar graphs?

For every d, a planar trigraph without planar d-contraction

Planar graphs?

For every d, a planar trigraph without planar d-contraction

More powerfool tool needed

Encode a bipartite graph (or, if symmetric, any graph)

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Contraction of two columns (similar with two rows)

How is the twin-width (re)defined?

How to tune it for non-bipartite graph?

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1				0	
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Maximum number of non-constant zones per column or row part = error value

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

Maximum number of non-constant zones per column or row part ... until there are a single row part and column part

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

Twin-width as maximum error value of a contraction sequence

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

1	1	1	1	1	1	1	0			
0	1	1	0	0	1	0	1			
0	0	0	0	0	0	0	1			
0	1	0	0	1	0	1	0			
1	0	0	1	1	0	1	0			
0	1	1	1	1	1	0	0			
1	0	1	1	1	0	0	1			
	4-grid minor									

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

1	1	1	1	1	1	1	0		
0	1	1	0	0	1	0	1		
0	0	0	0	0	0	0	1		
0	1	0	0	1	0	1	0		
1	0	0	1	1	0	1	0		
0	1	1	1	1	1	0	0		
1	0	1	1	1	0	0	1		
4-grid minor									

A matrix is said *t*-grid free if it does not have a *t*-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

1	1	1	1	1	1	1	0
1 0	1	1	0	0	1	0	1
0 0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1 0 1	0	1	1	1	0	0	1

3-mixed minor

Mixed minor

Mixed cell: not horizontal nor vertical

Every mixed cell is witnessed by a 2×2 square = corner

Mixed minor

Mixed cell: not horizontal nor vertical

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

pprox (maximum) number of cells with a corner per row/column part

Mixed value

But we add the number of boundaries containing a corner

Mixed value

 \therefore merging row parts do not increase mixed value of column part

Theorem (B., Kim, Thomassé, Watrigant '20) If G admits **a** t-mixed free adjacency matrix, then $tww(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

	1						0
0	1	1					1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1	1	1	1	1	0
0	1	1					1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Marcus-Tardos theorem

Theorem (Marcus and Tardos '04, Stanley-Wilf conjecture) For every k, there is a c_k such that every $n \times m$ 0, 1-matrix with at least $c_k \max(n, m)$ 1 entries admits a k-grid minor.

Marcus-Tardos theorem

Theorem (Marcus and Tardos '04, Stanley-Wilf conjecture) For every k, there is a c_k such that every $n \times m$ 0, 1-matrix with at least $c_k \max(n, m)$ 1 entries admits a k-grid minor.

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Let *M* be an $n \times n$ 0, 1-matrix without *k*-grid minor

Draw a regular $\frac{n}{k^2} \times \frac{n}{k^2}$ division on top of M

A cell is *wide* if it has at least k columns with a 1

A cell is *tall* if it has at least k rows with a 1

There are less than $k\binom{k^2}{k}$ wide cells per column part. Why?

There are less than $k\binom{k^2}{k}$ tall cells per row part

In W and T, at most $2 \cdot \frac{n}{k^2} \cdot k \binom{k^2}{k} \cdot k^4 = 2k^3 \binom{k^2}{k} n$ entries 1

There are at most $(k-1)^2 c_k \frac{n}{k^2}$ remaining 1. Why?

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)**Step 2:** find a contraction sequence with error value g(t)

Refinement of \mathcal{D}_i where each part coincides on the non-mixed cells

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Now to bound the twin-width of a class C:

1) Find a *good* vertex-ordering procedure

2) Argue that, in this order, a *t*-mixed minor would conflict with C

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs

order by left endpoints

Unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is *H*-minor free if H is not a minor of G

A graph class is *H*-minor free if all its graphs are

Graph minors

Formed by **vertex deletion**, **edge deletion**, and **edge contraction** A graph *G* is *H*-minor free if *H* is not a minor of *G* A graph class is *H*-minor free if all its graphs are

Planar graphs are exactly the graphs without K_5 or $K_{3,3}$ as a minor

Bounded twin-width – K_t -minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width – K_t -minor free graphs

Contracting the 2t subpaths yields a $K_{t,t}$ -minor, hence a K_t -minor

Bounded twin-width – K_t -minor free graphs

Instead we use a specially crafted lex-DFS discovery order

A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé '21+) *Twin-width and oriented twin-width are functionally equivalent.*

red degree

red out-degree (red arcs oriented from the contraction)

A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé '21+) Twin-width and oriented twin-width are functionally equivalent.

red degree

red out-degree (red arcs oriented from the contraction)

Theorem (Kotzig's theorem '55) Planar graphs have oriented twin-width at most 9.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins*

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins*

Is there another algorithmic scheme based on this definition?

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins*

Let's try with $\alpha(G)$, and store in a vertex its inner max solution

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins*

We can find a pair of false/true twins

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins*

Sum them if they are false twins

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins*

Max them if they are true twins

¹provided it has at least two vertices

d-sequence: $G = G_n, G_{n-1}, \dots, G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

d-sequence: $G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

d-sequence: $G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

In G_n : red connected subgraphs are singletons, so are the solutions. In G_1 : If solution of size at least k, global solution.

d-sequence: $G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

In G_n : red connected subgraphs are singletons, so are the solutions. In G_1 : If solution of size at least k, global solution.

How to go from the partial solutions of G_{i+1} to those of G_i ?

Best partial solution inhabiting •?

3 unions of $\leq d + 2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

Other (almost) single-exponential parameterized algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Given a d-sequence $G = G_n, \ldots, G_1 = K_1$,

- ▶ *k*-Independent Set,
- ▶ k-CLIQUE,
- ▶ (r, k)-Scattered Set,
- ► *k*-DOMINATING SET, and
- ▶ (r, k)-Dominating Set

can be solved in time $2^{O(k)}n$,

whereas SUBGRAPH ISOMORPHISM and INDUCED SUBGRAPH ISOMORPHISM can be solved in time $2^{O(k \log k)}n$.

Other (almost) single-exponential parameterized algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Given a d-sequence $G = G_n, \ldots, G_1 = K_1$,

- ▶ *k*-Independent Set,
- ▶ k-CLIQUE,
- ▶ (r, k)-Scattered Set,
- ► *k*-DOMINATING SET, and
- (r, k)-Dominating Set

can be solved in time $2^{O(k)}n$,

whereas SUBGRAPH ISOMORPHISM and INDUCED SUBGRAPH ISOMORPHISM can be solved in time $2^{O(k \log k)}n$.

A more general FPT algorithm?

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ Input: A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ Question: $G \models \varphi$?

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ Input: A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi$? \Leftrightarrow *k*-Dominating Set

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ Input: A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ Input: A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi$? \Leftrightarrow k-Independent Set

FO MODEL CHECKING solvable in $f(|\varphi|)n$ on bounded-degree graphs [Seese '96]

FO MODEL CHECKING solvable in $f(|\varphi|)n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

End of the story for the subgraph-closed classes tractable FO MODEL CHECKING \Leftrightarrow nowhere dense

MSO₁ MODEL CHECKING solvable in $f(|\varphi|, w)n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]

Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$ [Guillemot, Marx '14]

FO MODEL CHECKING solvable in $f(|\varphi|, w)n^2$ on posets of width w [GHLOORS '15]

FO MODEL CHECKING solvable in $f(|\varphi|)n^{O(1)}$ on map graphs [Eickmeyer, Kawarabayashi '17]

FO MODEL CHECKING solvable in $f(|\varphi|, d)n$ on graphs with a *d*-sequence [B., Kim, Thomassé, Watrigant '20]

Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé '21+)

Component twin-width is functionally equivalent to rank-width. Total twin-width is functionally equivalent to linear rank-width.

Component twin-width: max red component size

Total twin-width: max number of red edges

The sparse regime captures treewidth and pathwidth

Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé '21+)

Component twin-width is functionally equivalent to rank-width. Total twin-width is functionally equivalent to linear rank-width.

Component twin-width: max red component size

Total twin-width: max number of red edges

Alternative proof of Courcelle, Makowsky, Rotics's theorem: FO model checking approach using Feferman-Vaught instead of Gaifman's theorem

Small classes

Small: class with at most *n*!*cⁿ* labeled graphs on [*n*]. Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width classes are small.

Unifies and extends the same result for: σ -free permutations [Marcus, Tardos '04] K_t -minor free graphs [Norine, Seymour, Thomas, Wollan '06]

Small classes

Small: class with at most *n*!*cⁿ* labeled graphs on [*n*]. Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have **unbounded** twin-width

Small classes

Small: class with at most $n!c^n$ labeled graphs on [n]. Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width classes are small.

The converse for hereditary classes does not hold

Theorem (B., Geniet, Tessera, Thomassé '21+)

There is a randomized construction of a finitely-generated group whose hereditary class of finite restrictions of the Cayley graph has unbounded twin-width (and yet is small).

Open questions

Algorithm to compute/approximate twin-width in general

Explicit examples of bounded-degree graphs of unbounded twin-width

Fully classify classes with tractable FO model checking

Some more classes could have bounded twin-width: polynomial expansion, $K_{t,t}$ -free string graphs, etc.

Could smallness alone be algorithmically exploitable?

What about kernels? (Amadeus's talk)